种植体边缘骨吸收影响因素的研究进展
Research Progress of Factors Influencing Marginal Bone Loss around Dental Implants
DOI: 10.12677/ACM.2022.1291231, PDF, HTML, XML, 下载: 335  浏览: 620  科研立项经费支持
作者: 严佳慧:浙江大学医学院口腔医学系,浙江 杭州;章燕珍*:浙江大学医学院附属第二医院综合牙科,浙江 杭州
关键词: 种植体边缘骨吸收骨结合Implant Marginal Bone Loss Osseointegration
摘要: 种植牙因其特有的优势被广泛应用于缺牙患者的修复。虽然牙种植技术已趋于成熟,但进行性的边缘骨吸收(Marginal Bone Loss, MBL)仍发生在不少种植体的周围。边缘骨吸收量作为种植体成功的评价标准之一,若不能得到较好的控制,将导致最终种植失败。本文就种植体边缘骨吸收的影响因素作一综述。
Abstract: Dental implants are widely used in the restoration of edentulous patients due to their unique ad-vantages. Although the technology of dental implant has been matured, progressive marginal bone loss can still be observed around some implants. As one of the evaluation criteria for implant suc-cess, marginal bone loss will lead to final implant failure if it cannot be well controlled. This article reviews the influencing factors of marginal bone loss around the implant.
文章引用:严佳慧, 章燕珍. 种植体边缘骨吸收影响因素的研究进展[J]. 临床医学进展, 2022, 12(9): 8529-8535. https://doi.org/10.12677/ACM.2022.1291231

1. 引言

边缘骨吸收作为种植术后最常见的并发症,是影响种植牙功能性、稳定性及美观性的关键。Albrektsson和Zarb认为 [1],种植体在负载后的第一年边缘骨吸收不应当高于1.5 mm,之后每年小于0.2 mm的边缘骨吸收被认为在正常生理范围内,但过度的边缘骨吸收将导致种植体周围炎,进而影响种植体的存活率。多因素可联合影响边缘骨吸收,其主要理论包括由牙周医生支持的感染理论以及由修复医生支持的超负荷理论 [2]。此外在可导致骨质流失的其他因素中,种植体结构设计、手术创伤、颌骨质量及患者因素也起着重要作用。

2. 种植体结构设计

2.1. 种植体尺寸

种植体尺寸包括长度和直径两个方面。研究表明,过大的种植体骨界面应力将导致种植体失败和周围骨吸收的发生。丁等 [3] 比较了不同长度种植体周围的应力分布情况,发现随着种植体长度的增加,骨界面应力和应变值发生了下降。Meta分析显示短种植体的失败风险要比长种植体高2.5倍 [4]。Eazhil等 [5] 通过3D FEA研究发现,随着种植体长度和直径的增加,种植体骨界面应力出现下降,且相较于长度而言,种植体直径对应力的影响更大。通过增加直径,种植体-骨接触率增大,将有利于种植体的稳定性提高。因此,在颌骨高度和宽度足够时,应当尽量选择较宽直径和较长的牙种植体。骨量不足时,则可以考虑短种植体和窄种植体替代骨增量术应用于临床实践。

2.2. 冠种植体比

冠种植体比(Crown-to-Implant Ratio, CIR)指解剖冠与种植体的长度比或临床冠与种植体的长度比。目前,国内外文献对CIR提出了不少建议。Shillingburg等 [6] 建议将1:1.5作为CIR的最佳比例,其值最小不能低于1:1。Lee等 [7] 对259个种植体进行了为期5年的研究,结果发现CIR低于1的种植牙与CIR大于1的种植牙相比,存在更多的边缘骨吸收。然而,过大的CIR也被视为非轴向负荷的一种形式。Hingsammer等 [8] 发现当CIR为1.5:1或更高时将导致更多的边缘骨吸收。牙冠越长,对种植体施加的侧向力越大,将导致种植体骨界面发生牙槽嵴的应力集中,不利于种植体骨结合 [9]。

2.3. 种植体类型

根据基台与植体的连接方式,可将种植体分成一段式和两段式种植体,其中前者的基台和种植体作为一个整体植入于牙槽骨中,而后者的种植体和基台分成两段,通常需在种植体植入后等待骨结合完成再行二期手术连接基台。Hahn等 [10] 发现在种植体功能负载1年后,有6%的一段式种植体边缘骨吸收超过了2 mm,而两段式种植体边缘骨吸收超过2 mm的则占了16%。Broggini等 [11] 认为一段式种植体边缘骨吸收量小的原因可能与其不存在种植体基台微间隙及周围炎症细胞的积累较少有关。两段式种植体存在的微间隙可导致植体与基台间发生微移动,细菌更容易堆积在微间隙或螺钉孔上,从而导致周围软组织产生局部炎症。相较于一段式种植体,两段式种植体周围观察到了更多炎症细胞的浸润。然而,也有学者认为,一段式种植体的边缘骨吸收要比两段式种植体更多。Ostman等 [12] 在104个一段式种植体中发现有49%边缘骨吸收大于2 mm,20%大于3 mm,而在两段式种植体中,只有7.7%边缘骨吸收大于2 mm,0.6%大于3 mm。

2.4. 种植体颈部设计

由于骨吸收开始于种植体颈部的皮质骨,因此种植体颈部表面特征是种植设计的关键。目前,临床治疗中常使用机械加工的光滑颈部和粗糙螺纹颈部两种设计。Zhang等 [13] 认为粗糙螺纹颈部种植体较机械加工的光滑颈部种植体更有利于边缘骨保留,尤其是在与平台转移结合使用时,其原因可能是种植体颈部的设计影响了颈部区域皮质骨的应力分布。当皮质骨应力低于1.6 Mpa时,将发生废用性吸收;而光滑颈部种植体周围的皮质骨应力低于1.1 MPa,根据Wolff定律,光滑颈部种植体的机械刺激不足将导致边缘骨损失 [14]。粗糙螺纹种植体的颈部皮质骨应力比光滑颈部种植体大29%,微螺纹提供的适度机械刺激将有助于避免边缘骨吸收 [15]。此外,种植体的粗糙螺纹也增大了种植体–骨接触率,有利于成骨细胞的黏附和增殖。Bratu等 [16] 比较了机械加工的光滑颈部种植体与微螺纹颈部种植体的边缘骨吸收水平,发现前者(1.47 ± 0.4 mm)骨丧失显著大于后者(0.69 ± 0.25 mm)。

2.5. 种植体–基台连接

2.5.1. 平台转移

平台转移是将较小直径的基台连接到较大直径的种植体上,以使种植体–基台连接位置向平台中心转移 [17],它可以最大限度地减少垂直向和水平向的边缘骨吸收。生物力学理论认为,将较小直径的基台连接到种植体上,能够使咬合力沿种植体长轴传导,减小种植体周围骨应力以抑制骨吸收 [18]。Wagenberg等 [19] 报告了11~14年随访期间94个种植体的存活率和边缘骨水平,证实了平台转移技术能够有效防止种植体边缘骨吸收。Cappiello等 [20] 观察到在功能负载1年后,平台转移种植体周围的边缘骨质流失在0.6到1.2 mm之间,而平台匹配种植体的边缘骨质流失则在1.3到2.1 mm之间。使用平台转移设计时,种植体和基台的直径差异与边缘骨吸收量之间也存在显著相关性。直径差异越大,边缘骨吸收量越小,即向内移动的程度与边缘骨吸收量成反比 [21]。

2.5.2. 连接设计

种植体与基台的连接包括内连接和外连接两种方式。Lemos等 [22] 对不同基台连接设计的边缘骨吸收水平进行了Meta分析,发现与外连接相比,内基台连接的种植体发生的骨吸收更少。生物力学研究表明,内基台连接能使应力沿种植体长轴集中,且由于杠杆臂长的减小,基台的侧向稳定性将更高,这将有效减小种植体周围皮质骨的应力,避免骨吸收的发生 [23]。此外,大多数内基台连接呈现平台转移,消除了种植体基台界面的微间隙, 避免了微生物在此处的聚集。

3. 手术创伤

传统的种植手术通常采用翻开黏骨膜瓣的方式以充分暴露术区。随着微创理念的提出,不翻瓣手术因其术中出血少、患者肿胀疼痛感轻、手术时间短等优点被许多种植医生青睐。研究发现,翻瓣手术容易发生术后牙龈退缩以及边缘骨吸收。Shamsan等 [24] 发现不翻瓣手术组的平均骨吸收为0.45 ± 0.22 mm,而传统翻瓣组的平均骨吸收为0.82 ± 0.09 mm。由于种植体周围骨的血液供应主要来自于黏骨膜,一旦骨膜被剥离,种植区域的血液供应减少,就会导致骨质流失加速。不翻瓣手术使得种植体与周围黏膜紧密接触,术后患者能进行有效的菌斑控制,在促进种植体周围软组织健康和预防种植体周围骨质流失方面起到了重要作用 [25]。Jeong等 [25] 评估了无瓣种植术后1年种植体周围软组织的状况及边缘骨水平变化,结果显示种植体平均探诊深度为2.1 mm,平均出血指数及牙龈指数均较低,评分为0.1,且平均边缘骨丢失仅为0.3 mm。此外,种植窝洞制备产生的热量、二期手术、骨膜瓣抬高、位点保存术等手术因素也会影响到种植体边缘骨吸收。

4. 颌骨质量

颌骨质量包括皮质骨厚度,骨小梁体积和骨矿化速率等,它能够通过影响种植体骨界面的强度干扰到骨结合。目前,对颌骨质量的定义最为广泛接受的是由Lekholm和Zarb提出的骨组织分类系统 [26],他们将骨质分为了四种类型:其中I类骨几乎完全由均质皮质骨构成,II类骨由厚层皮质骨及含密集骨小梁的松质骨构成,III类骨由薄层皮质骨及含密集骨小梁的松质骨构成,而IV类骨则为薄层的皮质骨包饶稀疏骨小梁的松质骨。较高的骨密度可以改善种植体到邻近骨组织的应力传递和分布,而骨应变的增加和种植体稳定性的降低则与低骨密度有关 [27]。章等 [28] 比较了种植术后6月不同颌骨密度种植体边缘骨吸收量的差异,发现四种类型颌骨中平均边缘骨吸收量为I类骨 < II/III类骨 < IV类骨。Amir等 [29] 也发现随着颌骨质量的增加,种植体边缘骨吸收减少。然而,也有一些学者在IV类骨中观察到了更少的边缘骨吸收 [30],可能是因为IV类骨的骨小梁有助于分散咬合力,血管化程度更高,未分化间充质干细胞含量也更为丰富,因此具有更高的组织修复能力 [31]。

5. 咬合负荷

咬合力的大小和方向是咬合负荷的两个重要方面。咬合过载可通过影响皮质骨的血液供应或由于超过导致微损伤的应力而造成边缘骨吸收。骨生理学理论认为,承载机械负荷的骨骼将通过骨重塑使其强度重新适应施加在其上的负荷。Frost提出如果骨骼中的应变不超过50~100微应变,此时将发生骨骼的废用性吸收,骨量平衡为负,总骨量出现减少;在100~1500微应变的范围内,骨骼处于生理负荷区;在1500~3000微应变范围内,骨骼将发生轻度过载,此时骨骼将通过重塑来修复损伤并最终使其适应负荷;当超过3000微应变时,此时骨吸收的速度要比骨修复更快,最终导致骨质流失 [32]。因此,牙种植体的骨结合是对低于机械应力阈值的生物学反应,而边缘骨吸收则是机械应力超过该阈值所造成的结果。Quirynen等 [33] 发现在全口种植固定义齿或种植覆盖义齿修复的患者中咬合超负荷或副功能运动的存在将导致种植体的进行性边缘骨吸收和种植体丢失。

种植体长轴应与咬合力在同一直线上,非轴向负荷是造成骨吸收的另一危险因素。有限元分析研究发现非轴向负荷的种植体周围骨的应力水平要高于轴向负荷的种植体,边缘骨吸收量更大 [34]。

6. 患者因素

6.1. 吸烟

香烟中含有4000多种生物活性化学成分,其中亚硝胺、醛、一氧化碳、苯、尼古丁等有害成分能够影响骨愈合过程 [35]。Yang等 [36] 发现在香烟提取物暴露下钛种植体的表面特征和元素组成发生了改变,影响了成骨细胞–钛的相互作用,抑制了骨结合。尼古丁作为一种血管收缩剂,可导致流向口腔软组织的血液减少,从而减少氧气、营养物质等的供给,促进边缘骨吸收 [35] [37];此外,尼古丁可以通过干扰中性粒细胞和单核细胞释放氧自由基或通过降低B淋巴细胞产生抗体的能力来影响免疫功能 [38] [39]。Levin等 [40] 比较了目前吸烟者、既往吸烟者和非吸烟者种植牙的边缘骨吸收情况,结果显示非吸烟组的边缘骨吸收量最小,其次为既往吸烟组,吸烟组的边缘骨吸收量最大。因此,吸烟是导致种植牙失败的危险因素之一,通过戒烟可有效减少边缘骨吸收。

6.2. 糖尿病

糖尿病是一种代谢性疾病,高血糖造成的高渗透压环境能够刺激破骨细胞活化,从而干扰种植体早期骨结合 [41]。Moraschini等 [42] 对糖尿病患者和非糖尿病患者的种植体边缘骨吸收情况进行了Meta分析,结果显示糖尿病组的边缘骨吸收量要更高。其原因可能是由于糖尿病患者的微血管病变造成了种植区域修复细胞及生长因子、细胞因子的释放减少,从而干扰了胶原蛋白合成,不利于骨组织修复再生 [43]。此外,糖尿病患者的免疫功能较低,也增加了术后感染的发生。Lorean等 [44] 发现种植体边缘骨吸收情况与血糖控制程度有关,糖化血红蛋白高的患者比低的患者表现出更多的边缘骨丢失。因此,糖尿病患者的种植治疗需在血糖控制良好的情况下才能进行,并且术前需明确告知患者种植失败的相关风险。

6.3. 牙周炎和种植体周围炎

和天然牙的牙周炎类似,菌斑生物膜能影响种植体周围软硬组织,导致进行性边缘骨丧失和种植体周围袋形成。研究表明,口腔预存的生态条件会影响到种植体上生物膜的形成。牙周炎患者在拔牙1年后,仍在残留的牙槽骨中观察到了牙周病原体,且随着种植体功能负荷时间的延长出现了病原体数量的增加 [45]。因此,牙周炎或种植体周围感染病史的患者更容易发生进行性的边缘骨流失。Safii等 [46] 发现与牙周健康患者相比,牙周炎患者骨质吸收多了0.61 mm,种植体存活的比值比为3.02。此外,牙周炎的类型也会影响到种植治疗效果。Charis等 [47] 发现侵袭性牙周炎患者的3年平均边缘骨吸收量要显著高于慢性牙周炎患者和牙周健康者。因此,行种植手术前建议先进行预防性或治疗性的牙周治疗,种植治疗结束后需定期行种植体周围维护治疗以避免种植体周围炎的发生。

7. 小结

种植体边缘骨吸收是多因素联合作用的结果。现有研究表明,种植体的结构设计、手术创伤、颌骨质量、咬合负荷及由吸烟、糖尿病、牙周炎等带来的患者个体差异都可能影响种植体边缘骨吸收,与种植体的成败息息相关。临床医生应充分考虑到上述因素,关注高危患者的种植体周围软硬组织健康,针对患者制定合适的种植手术方案,以进一步提高种植体的成功率。

基金项目

浙江省自然科学基金项目(项目编号:LY20H140001)。

参考文献

NOTES

*通讯作者。

参考文献

[1] Albrektsson, T. (1986) The Long Term Efficacy of Currently Used Dental Implants, A Review and Proposed Criteria of Success. International Journal of Oral & Maxillofacial Implants, 1, 11-25.
[2] Qian, J., Wennerberg, A. and Al-brektsson, T. (2012) Reasons for Marginal Bone Loss Around Oral Implants. Clinical Implant Dentistry and Related Research, 14, 792-807.
https://doi.org/10.1111/cid.12014
[3] 丁熙, 朱形好, 廖胜辉, 张秀华, 张林, 陈宏. 种植体长度对即刻负载种植体骨界面生物力学分布的影响[J]. 中国口腔种植学杂志, 2009, 14(2): 56-57.
[4] Abdel-Halim, M., Issa, D. and Chrcanovic, B.R. (2021) The Impact of Dental Implant Length on Failure Rates: A Systematic Review and Meta-Analysis. Materials, 14, Article No. 3972.
https://doi.org/10.3390/ma14143972
[5] Eazhil, R., Swaminathan, S.V., Gunaseelan, M., et al. (2016) Impact of Implant Diameter and Length on Stress Distribution in Osseointegrated Implants: A 3D Fea Study. Journal of Interna-tional Society of Preventive & Community Dentistry, 6, 590-596.
https://doi.org/10.4103/2231-0762.195518
[6] Shillingburg, H.T., Hobo, S., Whitsett, L.D., et al. (1997) Treat-ment Planning for the Replacement of Missing Teeth. Fundamentals of Fixed Prosthodontics, Chicago.
[7] Lee, K.J., Kim, Y.G., Park, J.W., Lee, J.M. and Suh, J.Y. (2012) Influence of Crown-to-Implant Ratio on Periimplant Marginal Bone Loss in the Posterior Region: A Five-Year Retrospective Study. Journal of Periodontal & Implant Science, 42, 231-236.
https://doi.org/10.5051/jpis.2012.42.6.231
[8] Hingsammer, L., Watzek, G. and Pommer, B. (2017) The Influence of Crown-to-Implant Ratio on Marginal Bone Levels around Splinted Short Dental Implants: A Radiological and Clincial Short Term Analysis. Clinical Implant Dentistry and Related Research, 19, 1090-1098.
https://doi.org/10.1111/cid.12546
[9] Bidez, M.W. and Misch, C.E. (2015) Clinical Biomechanics in Implant Den-tistry. In: Misch, C.E., Ed., Dental Implant Prosthetics, Elsevier Inc., Amsterdam, 95-106.
https://doi.org/10.1016/B978-0-323-07845-0.00005-1
[10] Hahn, J.A. (2007) Clinical and Radiographic Evaluation of One-Piece Implants Used for Immediate Function. Journal of Oral Implantology, 33, 152-155.
https://doi.org/10.1563/1548-1336(2007)33[152:CAREOO]2.0.CO;2
[11] Broggini, N., McManus, L.M., Her-mann, J.S., et al. (2003) Persistent Acute Inflammation at Implant-Abutment Interface. Journal of Dental Research, 82, 232-237.
https://doi.org/10.1177/154405910308200316
[12] Ostman, P.O., Hellman, M., Albrektsson, T., et al. (2010) Direct Loading of Nobel Direct and Nobel Perfect One-Piece Implants: A 1-Year Prospective Clinical and Radio-graphic Study. Clinical Oral Implants Research, 18, 409-418.
https://doi.org/10.1111/j.1600-0501.2007.01346.x
[13] Zhang, Q. and Yue, X. (2021) Marginal Bone Loss around Machined Smooth Neck Implants Compared to Rough Threaded Neck Implants: A Systematic Review and Me-ta-Analysis. Journal of Prosthodontics, 30, 401-411.
https://doi.org/10.1111/jopr.13333
[14] Camila, L., Marco, C., Dimorvan, B., et al. (2017) Biomechanical Behavior of the Dental Implant Macrodesign. International Journal of Oral & Maxillofacial Implants, 32, 264-270.
https://doi.org/10.11607/jomi.4797
[15] Schrotenboer, J., Tsao, Y.P., Kinariwala, V., et al. (2008) Effect of Mi-crothreads and Platform Switching on Crestal Bone Stress Levels: A Finite Element Analysis. Journal of Periodontology, 79, 2166-2172.
https://doi.org/10.1902/jop.2008.080178
[16] Bratu, E.A., Tandlich, M. and Shapira, L. (2009) A Rough Surface Implant Neck with Microthreads Reduces the Amount of Marginal Bone Loss: A Prospective Clinical Study. Clinical Oral Implants Research, 20, 827-832.
https://doi.org/10.1111/j.1600-0501.2009.01730.x
[17] Lazzara, R.J. and Porter, S.S. (2006) Platform Switching: A New Concept in Implant Dentistry for Controlling Postrestorative Crestal Bone Level. The International Journal of Periodontics &Restorative Dentistry, 26, 9-17.
[18] Maeda, Y., Miura, J., Taki, I., et al. (2007) Biomechanical Analysis on Platform Switching: Is There Any Biomechanical Rationale? Clinical Oral Implants Research, 18, 581-584.
https://doi.org/10.1111/j.1600-0501.2007.01398.x
[19] Wagenberg, B. and Froum, S.J. (2010) Prospective Study of 94 Platform Switched Implants Observed from 1992 to 2006. The International Journal of Periodontics & Restorative Dentistry, 30, 9-17.
[20] Cappiello, M., Luongo, R., Iorio, D.D., et al. (2008) Evaluation of Peri-Implant Bone Loss around Platform-Switched Implants. International Journal of Periodontics & Restorative Dentistry, 28, 347-355.
[21] Canullo, L., Fedele, G.R., Iannello, G., et al. (2010) Platform Switching and Marginal Bone-Level Alter-ations: The Results of a Randomized-Controlled Trial. Clinical Oral Implants Research, 21, 115-121.
https://doi.org/10.1111/j.1600-0501.2009.01867.x
[22] Lemos, C., Verri, F.R., Bonfante, E.A., et al. (2018) Com-parison of External and Internal Implant-Abutment Connections for Implant Supported Prostheses. A Systematic Review and Meta-Analysis. Journal of Dentistry, 70, 14-22.
https://doi.org/10.1016/j.jdent.2017.12.001
[23] Pita, M.S., Anchieta, R.B., Barao, V., et al. (2011) Prosthetic Platforms in Implant Dentistry. Journal of Craniofacial Surgery, 22, 2327-2331.
https://doi.org/10.1097/SCS.0b013e318232a706
[24] Shamsan, Y.A., Eldibany, R.M., Halawani, G., et al. (2018) Flapless versus Conventional Flap Approach for Dental Implant Placement in the Maxillary Esthetic Zone. Alexandria Dental Journal, 43, 80-85.
https://doi.org/10.21608/adjalexu.2018.57628
[25] Jeong, S.M., Choi, B.H., Kim, J., et al. (2011) A 1-Year Pro-spective Clinical Study of Soft Tissue Conditions and Marginal Bone Changes around Dental Implants after Flapless Im-plant Surgery. Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics, 111, 41-46.
https://doi.org/10.1016/j.tripleo.2010.03.037
[26] Per-Ingvar, B.N., Zarb, G.A., et al. (1986) Tissue-Integrated Prostheses. Osseointegration in Clinical Dentistry. Plastic and Reconstructive Surgery, 77, 496-497.
https://doi.org/10.1097/00006534-198603000-00037
[27] Truhlar, R.S., Orenstein, I.H., Morris, H.F., et al. (1997) Distribution of Bone Quality in Patients Receiving Endosseous Dental Implants. Journal of Oral & Maxillofacial Surgery: Official Journal of the American Association of Oral & Maxillofacial Surgeons, 55, 38-45.
https://doi.org/10.1016/S0278-2391(16)31196-X
[28] 章润宇, 张志宏, 刘红红, 周航天, 秦坤. 不同密度颌骨早期种植体边缘骨吸收量的相关研究[J]. 临床口腔医学杂志, 2019, 35(9): 535-538.
[29] Eskandarloo, A., Arabi, R., Bidgoli, M., et al. (2019) Association between Marginal Bone Loss and Bone Quality at Dental Implant Sites Based on Evidence from Cone Beam Computed Tomography and Periapical Radiographs. Contemporary Clinical Dentistry, 10, 36-41.
https://doi.org/10.4103/ccd.ccd_185_18
[30] Ibaez, C., Andrés Catena, Galindo-Moreno, P., et al. (2016) Relationship between Long-Term Marginal Bone Loss and Bone Quality, Implant Width, and Surface. The International Journal of Oral & Maxillofacial Implants, 31, 398-405.
https://doi.org/10.11607/jomi.4245
[31] Davies, J.E. (2003) Understanding Peri-Implant Endosseous Healing. Journal of Dental Education, 67, 932-949.
https://doi.org/10.1002/j.0022-0337.2003.67.8.tb03681.x
[32] Frost, H.M. (1992) Perspectives: Bone’s Mechani-cal Usage Windows. Bone and Mineral, 19, 257-271.
https://doi.org/10.1016/0169-6009(92)90875-E
[33] Quirynen, M. ,Naert, I. and Van Steenberghe, D. (1992) Fix-ture Design and Overload Influence Marginal Bone Loss and Fixture Success in the Brnemark System. Clinical Oral Im-plants Research, 3, 104-111.
https://doi.org/10.1034/j.1600-0501.1992.030302.x
[34] Kitamura, E., Stegaroiu, R., Nomura, S., et al. (2005) In-fluence of Marginal Bone Resorption on Stress around an Implant—A Three-Dimensional Finite Element Analysis. Journal of Oral Rehabilitation, 32, 279-286.
https://doi.org/10.1111/j.1365-2842.2004.01413.x
[35] Nazeer, J., Singh, R., Suri, P., et al. (2020) Evaluation of Marginal Bone Loss around Dental Implants in Cigarette Smokers and Nonsmokers. A Comparative Study. Journal of Family Medicine and Primary Care, 9, 729-734.
https://doi.org/10.4103/jfmpc.jfmpc_1023_19
[36] Yang, J., Shao, S.Y., Chen, W.Q., et al. (2019) Cigarette Smoke Extract Exposure: Effects on the Interactions between Titanium Surface and Osteoblasts. BioMed Research Inter-national, 2019, Article ID: 8759568.
https://doi.org/10.1155/2019/8759568
[37] Bergstrom, J. and Preber, H. (1986) The Influence of Cigarette Smok-ing on the Development of Experimental Gingivitis. Journal of Periodontal Research, 21, 668-676.
https://doi.org/10.1111/j.1600-0765.1986.tb01504.x
[38] Galindo-Moreno, P., Fauri, M., Ávila-Ortiz, G., et al. (2010) Influence of Alcohol and Tobacco Habits on Peri-Implant Marginal Bone Loss: A Prospective Study. Clinical Oral Implants Research, 16, 579-586.
https://doi.org/10.1111/j.1600-0501.2005.01148.x
[39] Giannopoulou, C., Geinoz, A. and Cimasoni, G. (1999) Effects of Nicotine on Periodontal Ligament Fibroblasts in Vitro. Journal of Clinical Periodontology, 26, 49-55.
https://doi.org/10.1034/j.1600-051X.1999.260109.x
[40] Levin, L., Hertzberg, R., Har-Nes, S., et al. (2008) Long-Term Marginal Bone Loss around Single Dental Implants Affected by Current and Past Smoking Habits. Implant Dentistry, 17, 422-429.
https://doi.org/10.1097/ID.0b013e31818c4a24
[41] Kayal, R.A., Tsatsas, D., Bauer, M.A., et al. (2007) Dimin-ished Bone Formation during Diabetic Fracture Healing Is Related to the Premature Resorption of Cartilage Associated with Increased Osteoclast Activity. Journal of Bone and Mineral Research, 22, 560-568.
https://doi.org/10.1359/jbmr.070115
[42] Moraschini, V. and Barboza, E. (2016) The Impact of Diabetes on Dental Implant Failure: A Systematic Review and Meta-Analysis. International Journal of Oral & Maxillofacial Surgery, 45, 1237-1245.
https://doi.org/10.1016/j.ijom.2016.05.019
[43] Doxey, D.L., Cutler, C.W. and Iacopino, A.M. (1998) Diabetes Prevents Periodontitis-Induced Increases in Gingival Platelet Derived Growth Factor-B and Interleukin 1-Beta in a Rat Model. Journal of Periodontology, 69, 113-119.
https://doi.org/10.1902/jop.1998.69.2.113
[44] Adi, L., Hila, Z.O., Vladimir, P., et al. (2021) Marginal Bone Loss of Dental Implants in Patients with Type 2 Diabetes Mellitus with Poorly Controlled HbA1c Values: A Long-Term Ret-rospective Study. International Journal of Oral & Maxillofacial Implants, 36, 355-360.
https://doi.org/10.11607/jomi.8476
[45] Sachdeo, A., Haffajee, A.D. and Socransky, S.S. (2008) Biofilms in the Edentulous Oral Cavity. Journal of Prosthodontics, 17, 348-356.
https://doi.org/10.1111/j.1532-849X.2008.00301.x
[46] Safii, S.H., Palmer, R.M. and Wilson, R.F. (2010) Risk of Implant Failure and Marginal Bone Loss in Subjects with a History of Periodontitis: A Systematic Review and Me-ta-Analysis. Clinical Implant Dentistry & Related Research, 12, 165-174.
https://doi.org/10.1111/j.1708-8208.2009.00162.x
[47] Theodoridis, C., Grigoriadis, A., Menexes, G., et al. (2017) Outcomes of Implant Therapy in Patients with a History of Aggressive Periodontitis. A Systematic Review and Me-ta-Analysis. Clinical Oral Investigations, 21, 485-503.
https://doi.org/10.1007/s00784-016-2026-6