PGK1在肿瘤中的研究进展
Research Progress of PGK1 in Tumor
DOI: 10.12677/ACM.2022.1291230, PDF, HTML, XML, 下载: 508  浏览: 870  科研立项经费支持
作者: 李钰婵:西安医学院,陕西 西安;张 薇, 杨淑梅*:陕西省人民医院呼吸与危重症医学科,陕西 西安;兀 威:西安医学院第二附属医院呼吸与危重症医学科,陕西 西安
关键词: 磷酸甘油激酶1糖酵解肿瘤Phosphoglycerate Kinase 1 Glycolysis Cancer
摘要: 磷酸甘油激酶1 (PGK1)是糖酵解过程中产生ATP的第一个关键代谢酶,参与肿瘤的糖酵解途径。PGK1不仅可以作为一种代谢酶,影响肿瘤生长,也可以通过其非代谢酶功能影响肿瘤细胞的基因表达、能量代谢、分子调控等过程,进而介导肿瘤的生长、迁移和侵袭,加剧恶性癌细胞生物学特征。本文通过对PGK1的结构、功能及其与肿瘤的关系进行综述,阐明PGK1在肿瘤进展中的重要作用,为靶向PGK1进行药物开发提供理论基础。
Abstract: Phosphoglycerate kinase 1 (PGK1) is the first key metabolic enzyme to produce ATP during glycoly-sis and is involved in the glycolysis pathway of tumors. PGK1 can not only affect tumor growth as a metabolic enzyme, but also affect gene expression, energy metabolism, molecular regulation and other processes of tumor cells through its non-metabolic enzyme function, thus mediating tumor growth, migration and invasion, and exacerbating the biological characteristics of malignant cancer cells. In this paper, the structure, function and relationship between PGK1 and tumor were re-viewed to clarify the important role of PGK1 in tumor progression and provide theoretical basis for drug development targeting PGK1.
文章引用:李钰婵, 张薇, 杨淑梅, 兀威. PGK1在肿瘤中的研究进展[J]. 临床医学进展, 2022, 12(9): 8521-8528. https://doi.org/10.12677/ACM.2022.1291230

1. 引言

癌症是一种全球流行病,2020年全球预计新发癌症病例数19,292,789例,粗发病率247.5/10万;预计新发死亡病例数为9,958,133例,粗死亡率127.8/10万 [1]。代谢重编程和表观遗传学改变是肿瘤的两大重要特征,与正常细胞代谢不同,肿瘤细胞在恶性增殖过程中,即使有氧状态下,能量代谢优先选择糖酵解产生乳酸的途径,而不是线粒体氧化磷酸化途径来获取ATP能量,这种现象被称为Warburg效应。磷酸甘油酸激酶1 (phosphoglycerate kinase 1, PGK1)是糖酵解途径中的关键酶,参与糖酵解途径的第一个ATP产生,因此与肿瘤的发生发展密切相关。故本文拟从肿瘤代谢重编程角度出发阐述PGK1在肿瘤发生发展过程中的作用。

2. 主体

2.1. PGK1的结构

磷酸甘油酸激酶(phosphoglycerate kinase, PGK)是一种具有典型的双域铰链弯曲酶的单体糖酵解酶,存在于在整个进化过程中具有高度序列保守性的所有生物体中。PGK由两个大小相同的α-螺旋结构域组成 [2]。N-段结构域与3-PG或1,3-bpg结合,C-端结构域与MgADP或MgATP结合,3-磷酸甘油酸和mg-复合体核苷酸通过结合N端结构域与C端结构域,增加了分子整体的结构稳定性 [3]。N-端结构域或C-端结构域的突变可引起临床疾病的发生。PGK有两种同工型PGK1和PGK2,其表达分布不同,由第6常染色体基因编码的PGK2仅在精子发生过程中表达,而由X连锁基因编码的PGK1在所有细胞中普遍表达 [4],这为PGK1成为肿瘤治疗标靶提供了可能性。

2.2. PGK1的功能

2.2.1. PGK1的代谢酶功能

肿瘤的发生发展需要物质和能量,糖酵解活性增强是肿瘤的一个重要的代谢特征。即使有氧状态下,能量代谢优先选择糖酵解产生乳酸的途径,PGK1是作为糖酵解过程中产生ATP的代谢酶之一 [5]。作用在糖酵解途径的第二步,催化1,3-二磷酸甘油酸转化为3-磷酸甘油酸,形成1分子ATP。这是厌氧糖酵解 [6] 生成ATP的第一步反应。同时,其底物的高能磷酸基被转移到ADP上,产生ATP。这对于在缺氧条件下细胞能量的持续产生具有重要意义 [7]。PGK1作为代谢酶参与糖酵解为肿瘤细胞的生长和增殖提高能量和物质。有文献表明 [8],根据PGK1作为代谢酶调控肿瘤细胞的作用机制,可考虑通过以下途径进行干预:1) 阻断代谢酶核转位的信号通路;2) 设计特异性靶向细胞核代谢酶的抑制剂;3) 阻断细胞核内代谢酶与转录复合物的结合;4) 特异性抑制代谢酶的蛋白激酶活性而不影响其代谢酶活性,这些为肿瘤干预治疗提供了新视角。

2.2.2. PGK1作为蛋白激酶

蛋白激酶是细胞内信号转导通路的重要调节因子,介导生物发育和调控,与细胞生长、分裂、分化、粘附、运动和死亡密切相关。PGK1作为蛋白激酶磷酸化其底物Beclin1和丙酮酸脱氢酶激酶1 (PDHK1),影响肿瘤的发生过程 [9]。Li X等 [10] 发现PGK1在缺氧应激、表皮生长因子受体(EGFR)激活或致癌K-Ras G12V或B-Raf V600E突变的表达下可以易位到线粒体中。进入线粒体中的PGK1作为蛋白激酶磷酸化PDHK1的Thr338位点,抑制线粒体氧化磷酸化,增加细胞外酸化和乳酸的生成 [11],从而促进肿瘤的发生。Qian X等 [12] 发现肿瘤细胞中经常发生PTEN功能缺失,导致PGK1自磷酸化、糖酵解和ATP生成增加,促进细胞增殖和肿瘤发生。此外,肿瘤的快速生长导致现有血管无法生长和瘤内缺血,使肿瘤发生代谢应激,从而诱导自噬来维持细胞稳态。在缺氧或谷氨酰胺饥饿条件下,导致mTOP介导的乙酰转移酶ARD1S228位点磷酸化,使ARD1依赖的PGK1 K388位点乙酰化,乙酰化的PGK1使Beclin1在Ser30位点磷酸化,从而调节了细胞内转运和自噬小体的形成 [10] [13],促进了肿瘤的发生发展。蛋白激酶在肿瘤功能中的发展可能使PGK1成为恶性肿瘤治疗的一个有希望的靶点。

2.3. PGK1作为转录因子的共激活因子

β-catenin是一种与肿瘤相关的癌蛋白,参与细胞增殖、侵袭、转移、血管生成和耐药性的分子。PGK1是β-catenin的上游调控因子,可以影响β-catenin的功能,从而影响肿瘤发生发展 [13] [14]。早期生长家族成员EGR1也显示与PGK1相关,Li X等 [15] 发现PGK1在S256位点被EGFR-和ERK-激活的酪蛋白激酶2a (CK2a)磷酸化,导致其与激酶细胞分裂周期7 (CDC7)相互作用,将ADP转化为ATP。PGK1 S256A在肿瘤细胞中的表达阻断了EGFR的激活,促进了CDC7-ASK的活性、DNA解螺旋酶的组装、DNA复制、细胞增殖和肿瘤的发生。此外,PGK1可以与Hsp90的共伴侣,通过参与多种蛋白质的折叠、成熟和对稳定性影响,参与肿瘤的发生发展 [16] [17]。尽管PGK1的胞质活性与其作为糖酵解酶的活性一致,但PGK1的核转位表明其在转移细胞中作为转录因子的共激活因子的非典型活性 [15] [18]。因此PGK1作为转录因子的共激活因子。

2.4. PGK1作为趋化因子轴的关键下游靶标

PGK1表达通常受肿瘤微环境和生长因子等信号通路影响。瘤内缺氧在肿瘤复发、扩散、放化疗耐药中起着重要作用,Pang Y等 [19] 发现瘤内缺氧可诱发低氧诱导因子(Hypoxia inducible factors, HIF)激活。在嗜铬细胞瘤和副神经节瘤的肿瘤细胞发生缺氧时,靶基因HIF-1α和HIF-2α被激活,作为转录因子可刺激PGK1的表达,增强糖酵解水平,促使肿瘤细胞的增殖 [20]。另外,转录因子MYC也可通过PGK1影响代谢相关蛋白表达,影响细胞生长,Tang SW等 [21] 发现,在透明细胞肾细胞癌中,MYC被激活,诱导PGK1表达上调,促进肿瘤细胞的增殖。除此以外,乳腺癌细胞中作为转录因子的过氧化物酶体增殖激活受体γ (PPARγ)也调控PGK1表达,使ATP水平下降、细胞凋亡,抑制细胞增殖 [22]。活化T细胞核因子(nucler factor of Activated T cells) NFAT是一类具有多向调节功能的转录因子家族,由NFATc1、NFATc2、NFATc3、NFATc4和NFAT5组成。其中,PGK1是NFAT5的直接靶基因,研究表明 [23],NFAT5通过调控PGK1表达来影响肿瘤的增值生长和Warburg效应,从而促进肿瘤发生。Moeller BJ等人 [24] 研究表明,氧自由基的减少导致肿瘤细胞低氧部分对于治疗的敏感性降低。低氧激活HIF,HIF激活下游靶基因PGK1和血管内皮生长因子(vascular endothelial growth factor, VEGF)以及其他血管生成细胞因子的释放,促进肿瘤生长,增强了肿瘤细胞对于放射治疗的抵抗力 [20]。5型17β-羟甾体脱氢酶(17β-HSD5)是激素依赖性癌症中与性甾体代谢相关的一种重要酶。Xu D等 [22] 人发现,17β-HSD5可以负向调控PGK1的表达,从而增加肿瘤的增值和生存能力,在乳腺癌中,癌组织中的17β-HSD5表达明显高于正常组织,雌激素受体阳性患者17β-HSD5高表达提示预后差,复发风险高。敲除17β-HSD5可以增加PGK1的表达,PGK1的沉默降低了肿瘤细胞的基因表达水平和存活率。

同样,PGK1通过作用于转移相关因子,影响肿瘤细胞的转移、侵袭等瘤性行为,是肿瘤发生和转移的必要调控因子 [18]。基质细胞衍生因子(CXCL12)及其受体趋化因子(CXCR4)与肿瘤的发生发展相关,PGK1与CXCR4/CXCL12两者相互作用,正向调节,参与CXCR4/CXCL12-PGK1信号通路 [25],促进肿瘤的转移。研究表明 [26],PGK1与前列腺癌的Gleason评分、TNM分期、局部浸润、骨转移及血清PSA表达显著相关,PGK1可作为前列腺癌患者的预后标志物。Ahmad SS等人 [13] 发现在发生转移的结肠癌中,PGK1明显高表达,除了可以上调转移相关因子EGR1的表达外,还可以正向调控CYR61,CYR61进一步诱导转录因子FOS和JUN与激活蛋白(AP-1)的结合,调节基因转录,促进肿瘤转移。PGK1作为趋化因子轴的关键下游靶标,也是肿瘤“血管生成开关”的重要调节剂。

2.5. PGK的翻译后修饰

翻译后修饰(post-translational modification, PTMs)又称为共价修饰,是蛋白质在RNA翻译后接受到的一系列化学性质的修饰。这些修饰包括磷酸化、糖基化、泛素化、甲基化、乙酰化和蛋白水解等。PGK1的PTMs在不同的生物学过程中发挥重要作用,与肿瘤发生发展密切相关。

2.5.1. PGK1的磷酸化

EGFR激活或K-Ras/B-Raf突变或缺氧诱导的ERK激活导致PGK1Ser203磷酸化。PGK1磷酸化并激活PDHK1,导致PDH复合物磷酸化和失活,抑制线粒体丙酮酸的利用,进一步增加糖酵解,促进肿瘤发生发展 [11]。有研究发现 [27] 在恶性胶质瘤中,巨噬细胞通过白介素-6 (IL-6)增强肿瘤细胞中3-磷酸肌醇依赖蛋白激酶1 (PDPK1)介导的PGK1Thr243的磷酸化,进而改变底物亲和力来促进PGK1催化的糖酵解反应,敲除PGK1基因,巨噬细胞对肿瘤细胞增殖促进作用消除。揭示了巨噬细胞调节肿瘤细胞是通过抑制PGK1磷酸化来破坏巨噬细胞和肿瘤细胞之间连接的新机制,PGK1T243磷酸化可作为神经胶质瘤预后指标的生物标志物,为改善人类癌症的诊断和治疗提供分子基础,提示了PGK1与肿瘤之间的治疗潜力。

2.5.2. PGK1的乙酰化

研究表明 [28],谷氨酰胺剥夺和缺氧可抑制mter介导的乙酰基转移酶ARD1 S228的磷酸化,导致ARD1与PGK1结合,使PGK1K388位点乙酰化,乙酰化的PGK1与Beclin1S30结合并使其磷酸化,从而激活Beclin1-VPS34-ATG14L,形成自噬,影响肿瘤生长。Wang S等 [29] 发现PGK1在赖氨酸220 (K220)处被乙酰化,从而通过破坏与其底物ADP的结合抑制PGK1活性,影响肿瘤生长。同时,肝癌患者中,P300/环磷酸腺苷响应元件结合蛋白相关因子(PCAF)和Sirtuin7 (SIRT7)是调控PGK1K323位点双向乙酰化的酶。K323乙酰化可以增强代谢酶PGK1的活性,增加PGK1酶活性和癌细胞代谢 [5],为开发针对代谢酶PGK1的放疗增敏剂奠定了基础。

2.5.3. PGK1的泛素化

长链非编码RNA (IncRNA) MetaLnc9与PGK1相互作用并阻止其在肺癌细胞中的泛素化,导致致癌AKT/mTOR信号通路的激活 [30]。多项研究表明 [31] [32] [33] [34],Rab11-FIP2与PGK1相互作用,增强PGK1在细胞内泛素化,降低AKT/mTOR磷酸化水平,表明Rab11-FIP2抑瘤功能是通过抑制PGK1介导的。Cai Q等 [35] 发现在胆囊癌中,GBCDRlnc1抑制胆囊癌细胞PGK1泛素化作用,引起自噬启动子ATG5-ATG12复合体表达上调,从而导致自噬增强,肿瘤细胞耐药增加。Chu Z等 [36] 人发现在乳腺癌患者中,IncRNA LINC00926通过E3连接酶STUB1介导的PGK1泛素化增强下调PGK1的表达。在宫颈癌中,PGK1的上调有助于促进肿瘤细胞的有氧酵解,HPV16E6/E7通过减少PGK1蛋白的多聚泛素化来稳定PGK1蛋白,从而抑制肿瘤发生发展 [37]。但目前尚无研究确定泛素化的修饰位点。因此探索PGK1的泛素化修饰位点可能成为肿瘤靶向治疗的新策略之一。

2.5.4. PGK1的糖基化

O-乙酰氨基葡萄糖(O-linked beta-N-acetylglucosamine, O-GlcNAc)修饰是一种发生在丝氨酸和苏氨酸残基的蛋白质修饰后翻译,O-GlcNAc修饰在转录、翻译、代谢重编辑及免疫调控等生物进程发挥至关重要作用。Nie H等 [38] 在结肠癌中发现,PGK1可在T255位点进行O-GlcNAc修饰,增加PGK1的活性,提高乳酸的产量,同时诱导PGK1转运至线粒体,导致PDH复合物失活,降低线粒体的氧化磷酸化,增加糖酵解,减弱TCA循环,促进肿瘤生长,为结肠癌未来的靶向治疗提供理论基础。

2.5.5. PGK1的琥珀酰化

张乃文等 [39] 人发现在肾癌细胞(RCC)中,SIRT5可能作为抑癌基因通过调控琥珀酰化修饰的方式调节PGK1的糖酵解活性,SIRT5的过表达调节条件下,PGK1的赖氨酸琥珀酰化修饰水平降低,进而影响肿瘤的增殖和迁移。但是具体作用位点还需进一步证明。

2.6. PGK1抑制钙黏素的表达影响肿瘤发生发展

E-钙黏素是一种抑制肿瘤侵袭和转移的粘附分子,其表达的高低与肿瘤的恶性程度和进展相关。PGK1影响钙黏素表达,在前列腺癌细胞中,高表达PGK1会抑制黏附相关蛋白E-钙黏素的表达,降低肿瘤细胞间的黏附,促进细胞的转移和侵袭 [40]。除此以外,在SMAD4阴性的胰腺癌细胞中,胞浆定位的PGK1主要参与糖酵解和促进细胞增殖,而核中的PGK1则是发挥转录调控的作用,抑制E-钙黏素的表达,从而促进胰腺癌的转移 [41]。从以上可以看出,PGK1的高表达与前列腺癌的不良预后显著相关,可以作为前列腺癌的预后标志物 [42]。

2.7. PGK1可促进肿瘤微环境的的形成

肿瘤微环境可抑制肿瘤免疫,促进肿瘤发生。PGK1参与肿瘤微环境的炎症形成,肿瘤免疫浸润一直是判断肿瘤预后的主要指标。在乳腺癌细胞中,PGK1与CD8+ T细胞和活化的NK细胞等肿瘤浸润免疫细胞呈正相关,PGK1有助于支持癌症与其微循环之间的作用,可能在乳腺癌中形成肿瘤微环境的炎症表型 [43]。Wang J等 [44] 人在前列腺癌中发现,PGK1在诱导成纤维细胞向肿瘤微环境中的CAF表型方面发挥了中心作用。在小鼠肺癌细胞中过表达PGK1,促进T淋巴细胞分泌IFN-γ的同时,还能够抑制IL-10的产生,IL-10的过量产生导致肿瘤介导的免疫抑制,PGK1过表达会导致IL-10的表达下降,增强抗肿瘤细胞免疫应答,抑制肿瘤生长。Shichijo S等 [45] 发现在HLAA2+阳性的结肠癌中,PGK1可以刺激IFN-γ的产生,提高T-淋巴细胞的杀伤作用,进而抑制肿瘤生长。

3. 讨论

近年来,人们对于肿瘤代谢重编程与表观遗产学修饰的交叉认识和研究都取得了重大进展。如前所述,PGK1不仅是一种代谢酶,参与肿瘤细胞的能量获取;还可以显示其非代谢功能在细胞间隔中的作用,例如蛋白激酶功能、与转录因子相互作用、影响细胞生长中的信号通路、通过自身的翻译后修饰影响肿瘤的发生发展。所以,PGK1是肿瘤治疗的一个重要潜在靶点,这一点可用于PGK1肿瘤治疗、相关药物开发和研究提供指导。此外,PGK1的异常表达不仅可以在肿瘤组织中检测到,还可以从患者外周血及唾液中检测到,使PGK1可能成为发现肿瘤及预测预后的新的标志物。所以,PGK1在肿瘤方面具有广阔的前景,需要投入更多试验研究进行进一步探索。

基金项目

陕西省自然科学基金研究计划项目(2021JQ-907);陕西省人民医院2021科技人才支持计划资助项目(2021JY-36)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Fu, Q. and Yu, Z. (2020) Phosphoglycerate Kinase 1 (PGK1) in Cancer: A Promising Target for Diagnosis and Therapy. Life Sciences, 256, Article ID: 117863.
https://doi.org/10.1016/j.lfs.2020.117863
[3] Fiorillo, A., Petrosino, M., Ilari, A., et al. (2018) The Phospho-glycerate Kinase 1 Variants Found in Carcinoma Cells Display Different Catalytic Activity and Conformational Stability Compared to the Native Enzyme. PLOS ONE, 13, e0199191.
https://doi.org/10.1371/journal.pone.0199191
[4] Danshina, P.V., Geyer, C.B., Dai, Q., et al. (2010) Phospho-glycerate Kinase 2 (PGK2) Is Essential for Sperm Function and Male Fertility in Mice. Biology of Reproduction, 82, 136-145.
https://doi.org/10.1095/biolreprod.109.079699
[5] Hu, H., Zhu, W., Qin, J., et al. (2017) Acetylation of PGK1 Promotes Liver Cancer Cell Proliferation and Tumorigenesis. Hepatology, 65, 515-528.
https://doi.org/10.1002/hep.28887
[6] Vas, M., Varga, A. and Gráczer, E. (2010) Insight into the Mechanism of Domain Movements and Their Role in Enzyme Function: Example of 3-Phosphoglycerate Kinase. Current Protein & Peptide Science, 11, 118-147.
https://doi.org/10.2174/138920310790848403
[7] Sun, S., Liang, X., Zhang, X., Liu, T., Shi, Q., Song, Y., Jiang, Y., Wu, H., Jiang, Y., Lu, X. and Pang, D. (2015) Phosphoglycerate Kinase-1 Is a Predictor of Poor Survival and a Novel Prognostic Biomarker of Chemoresistance to Paclitaxel Treatment in Breast Cancer. British Journal of Cancer, 112, 1332-1339.
https://doi.org/10.1038/bjc.2015.114
[8] Xu, D., Shao, F., Bian, X., Meng, Y., Liang, T. and Lu, Z. (2021) The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metabo-lism, 33, 33-50.
https://doi.org/10.1016/j.cmet.2020.12.015
[9] Lu, Z. and Hunter, T. (2018) Metabolic Kinases Moonlighting as Protein Kinases. Trends in Biochemical Sciences, 43, 301-310.
https://doi.org/10.1016/j.tibs.2018.01.006
[10] Li, X., Zheng, Y. and Lu, Z. (2016) PGK1 Is a New Member of the Protein Kinome. Cell Cycle, 15, 1803-1804.
https://doi.org/10.1080/15384101.2016.1179037
[11] Li, X., Jiang, Y., Meisenhelder, J., et al. (2016) Mitochon-dria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Molecular Cell, 61, 705-719.
https://doi.org/10.1016/j.molcel.2016.02.009
[12] Qian, X., Li, X., Shi, Z., et al. (2019) PTEN Suppresses Glycol-ysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Molecular Cell, 76, 516-527.e7.
https://doi.org/10.1016/j.molcel.2019.08.006
[13] Ahmad, S.S., Glatzle, J., Bajaeifer, K., et al. (2013) Phospho-glycerate Kinase 1 as a Promoter of Metastasis in Colon Cancer. International Journal of Oncology, 43, 586-590.
https://doi.org/10.3892/ijo.2013.1971
[14] Lowy, A.M., Clements, W.M., Bishop, J., et al. (2006) β-Catenin/Wnt Signaling Regulates Expression of the Membrane Type 3 Matrix Metalloproteinase in Gastric Cancer. Cancer Research, 66, 4734-4741.
https://doi.org/10.1158/0008-5472.CAN-05-4268
[15] Li, X., Qian, X., Jiang, H., et al. (2018) Nuclear PGK1 Al-leviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication. Molecular Cell, 72, 650-660.e8.
https://doi.org/10.1016/j.molcel.2018.09.007
[16] 李小龙. 人白细胞抗原分子B~*5801结构研究及磷酸甘油酸激酶与特拉唑嗪复合物结构研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2016.
[17] Tang, W., Wu, Y., Qi, X., et al. (2021) PGK1-Coupled HSP90 Stabilizes GSK3β Expression to Regulate the Stemness of Breast Cancer Stem Cells. Cancer Biology and Medicine, 19, 486-503.
https://doi.org/10.20892/j.issn.2095-3941.2020.0806
[18] Katoh, M. and Katoh, M. (2009) Integrative Genomic Analyses of CXCR4: Transcriptional Regulation of CXCR4 Based on TGFβ, Nodal, Activin Signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 Transcription Factors. International Journal of Oncology, 36, 415-420.
https://doi.org/10.3892/ijo_00000514
[19] Dayan, F., Roux, D., Brahimi-Horn, M.C., et al. (2006) The Oxygen Sensor Factor-Inhibiting Hypoxia-Inducible Factor-1 Controls Expression of Distinct Genes through the Bifunctional Transcriptional Character of Hypoxia-Inducible Factor-1α. Cancer Research, 66, 3688-3698.
https://doi.org/10.1158/0008-5472.CAN-05-4564
[20] Semenza, G.L. (2010) Defining the Role of Hypox-ia-Inducible Factor 1 in Cancer Biology and Therapeutics. Oncogene, 29, 625-634.
https://doi.org/10.1038/onc.2009.441
[21] Tang, S.-W., Chang, W.-H., Su, Y.-C., et al. (2009) MYC Pathway Is Activated in Clear Cell Renal Cell Carcinoma and Essential for Proliferation of Clear Cell Renal Cell Carcinoma Cells. Cancer Letters, 273, 35-43.
https://doi.org/10.1016/j.canlet.2008.07.038
[22] Xu, D., Aka, J.A., Wang, R., et al. (2017) 17beta-Hydroxysteroid Dehydrogenase Type 5 Is Negatively Correlated to Apoptosis Inhibitor GRP78 and Tumor-Secreted Protein PGK1, and Modulates Breast Cancer Cell Viability and Proliferation. The Journal of Steroid Biochemistry and Molecular Biology, 171, 270-280.
https://doi.org/10.1016/j.jsbmb.2017.04.009
[23] Shaw, J., Utz, P., Durand, D., et al. (1988) Identification of a Putative Regulator of Early T Cell Activation Genes. Science, 241, 202-205.
https://doi.org/10.1126/science.3260404
[24] Moeller, B.J., Richardson, R.A. and Dewhirst, M.W. (2007) Hypoxia and Radiotherapy: Opportunities for Improved Outcomes in Cancer Treatment. Cancer and Metastasis Reviews, 26, 241-248.
https://doi.org/10.1007/s10555-007-9056-0
[25] Ameis, H.M., Drenckhan, A., von Loga, K., et al. (2013) PGK1 as Predictor of CXCR4 Expression, Bone Marrow Metastases and Survival in Neuroblastoma. PLOS ONE, 8, e83701.
https://doi.org/10.1371/journal.pone.0083701
[26] Zieker, D., Kouml, I., Traub, F., et al. (2008) PGK1 a Potential Marker for Peritoneal Dissemination in Gastric Cancer. Cellular Physiology and Biochemistry, 21, 429-436.
https://doi.org/10.1159/000129635
[27] Zhang, Y., Yu, G., Chu, H., et al. (2018) Macrophage-Associated PGK1 Phosphorylation Promotes Aerobic Glycolysis and Tumorigenesis. Molecular Cell, 71, 201-215.e7.
https://doi.org/10.1016/j.molcel.2018.06.023
[28] Qian, X., Li, X., Cai, Q., et al. (2017) Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Molecular Cell, 65, 917-931.e6.
https://doi.org/10.1016/j.molcel.2017.01.027
[29] Wang, S., Jiang, B., Zhang, T., et al. (2015) Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1. PLOS Biology, 13, e1002243.
https://doi.org/10.1371/journal.pbio.1002243
[30] Yu, T., Zhao, Y., Hu, Z., et al. (2017) MetaLnc9 Facilitates Lung Cancer Metastasis via a PGK1-Activated AKT/mTOR Pathway. Cancer Research, 77, 5782-5794.
https://doi.org/10.1158/0008-5472.CAN-17-0671
[31] Dong, W. and Wu, X. (2018) Overexpression of Rab11-FIP2 in Colorectal Cancer Cells Promotes Tumor Migration and Angiogenesis through Increasing Secretion of PAI-1. Cancer Cell International, 18, 35.
https://doi.org/10.1186/s12935-018-0532-0
[32] Xu, C., Wang, J., Xia, X., et al. (2016) Rab11-FIP2 Promotes Colorectal Cancer Migration and Invasion by Regulating PI3K/AKT/MMP7 Signaling Pathway. Biochemical and Bio-physical Research Communications, 470, 397-404.
https://doi.org/10.1016/j.bbrc.2016.01.031
[33] Dong, W., Qin, G. and Shen, R. (2016) Rab11-FIP2 Promotes the Metastasis of Gastric Cancer Cells: Rab11-FIP2 Promotes the Metastasis of Gastric Cancer Cells. International Journal of Cancer, 138, 1680-1688.
https://doi.org/10.1002/ijc.29899
[34] Dong, W., Li, H. and Wu, X. (2019) Rab11-FIP2 Suppressed Tumor Growth via Regulation of PGK1 Ubiquitination in Non-Small Cell Lung Cancer. Biochemical and Biophysical Research Communications, 508, 60-65.
https://doi.org/10.1016/j.bbrc.2018.11.108
[35] Cai, Q., Wang, S., Jin, L., et al. (2019) Long Non-Coding RNA GBCDRlnc1 Induces Chemoresistance of Gallbladder Cancer Cells by Activating Autophagy. Molecular Cancer, 18, 82.
https://doi.org/10.1186/s12943-019-1016-0
[36] Chu, Z., Huo, N., Zhu, X., et al. (2021) FOXO3A-Induced LINC00926 Suppresses Breast Tumor Growth and Metastasis through Inhibition of PGK1-Mediated Warburg Effect. Molecular Therapy, 29, 2737-2753.
https://doi.org/10.1016/j.ymthe.2021.04.036
[37] Liu, S.K., Song, L.L., Yao, H.R. and Zhang, L. (2022) HPV16 E6/E7 Stabilize PGK1 Protein by Reducing Its Poly- Ubiquitination in Cervical Cancer. Cell Biology International, 46, 370-380.
https://doi.org/10.1002/cbin.11744
[38] Nie, H., Ju, H., Fan, J., et al. (2020) O-GlcNAcylation of PGK1 Coordinates Glycolysis and TCA Cycle to Promote Tumor Growth. Nature Communications, 11, Article No. 36.
https://doi.org/10.1038/s41467-019-13601-8
[39] 张乃文. PGK1及其赖氨酸琥珀酰化修饰在肾细胞癌中的作用及其相关机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2018.
[40] Wang, J., Wang, J., Dai, J., et al. (2007) A Glycolytic Mechanism Regulating an Angiogenic Switch in Prostate Cancer. Cancer Research, 67, 149-159.
https://doi.org/10.1158/0008-5472.CAN-06-2971
[41] Liang, C., Shi, S., Qin, Y., et al. (2020) Localisation of PGK1 Determines Metabolic Phenotype to Balance Metastasis and Proliferation in Patients with SMAD4-Negative Pan-creatic Cancer. Gut, 69, 888-900.
https://doi.org/10.1136/gutjnl-2018-317163
[42] Goldstein, M. and Kastan, M.B. (2015) The DNA Damage Re-sponse: Implications for Tumor Responses to Radiation and Chemotherapy. Annual Review of Medicine, 66, 129-143.
https://doi.org/10.1146/annurev-med-081313-121208
[43] Li, L., Bai, Y., Gao, Y., et al. (2021) Systematic Analy-sis Uncovers Associations of PGK1 with Prognosis and Immunological Characteristics in Breast Cancer. Disease Mark-ers, 2021, Article ID: 7711151.
https://doi.org/10.1155/2021/7711151
[44] Wang, J., Ying, G., Wang, J., et al. (2010) Characterization of Phos-phoglycerate Kinase-1 Expression of Stromal Cells Derived from Tumor Microenvironment in Prostate Cancer Progres-sion. Cancer Research, 70, 471-480.
https://doi.org/10.1158/0008-5472.CAN-09-2863
[45] Shichijo, S., Azuma, K., Komatsu, N., et al. (2004) Two Proliferation-Related Proteins, TYMS and PGK1, Could Be New Cytotoxic T Lymphocyte-Directed Tumor-Associated Antigens of HLA-A2+ Colon Cancer. Clinical Cancer Research, 10, 5828-5836.
https://doi.org/10.1158/1078-0432.CCR-04-0350