SET结构域赖氨酸甲基转移酶8在肿瘤发生发展中的作用
The Role of SET8 in Tumorigenesis and Tumor Development
DOI: 10.12677/ACM.2022.1291207, PDF, HTML, XML, 下载: 225  浏览: 391 
作者: 杨尚臻, 贺信橙:西安医学院,陕西 西安;陕西省人民医院肿瘤内科,陕西 西安;白 俊*:陕西省人民医院肿瘤内科,陕西 西安
关键词: SET8甲基化肿瘤SET8 Monomethylation Tumor
摘要: SET8,也称PR-set7、SETD8或KMT5A,是迄今为止发现的唯一能够特异性单甲基化组蛋白H4赖氨酸20位的赖氨酸甲基转移酶。SET8参与调控DNA修复、基因转录、细胞周期及细胞凋亡等重要生理过程。SET8的异常表达,能够促进肿瘤的增殖、侵袭和转移,可预测肿瘤的不良预后。现就结构、其在肿瘤发生发展中的作用以及目前相关靶向抑制剂予以综述,探讨其调控机制以及靶向治疗的前景。
Abstract: SET8, also known as PR-SET7, SETD8 or KMT5A, is the only lysine methyltransferase that can spe-cifically monomethylate lysine 20 of histone H4. SET8 is involved in the regulation of important physiological processes such as DNA repair, gene transcription, cell cycle and apoptosis. Abnormal expression of SETD8 promotes tumor proliferation, invasion and metastasis, and predicts poor tu-mor prognosis. This article reviews the structure of SET8, its role in tumor development and cur-rent related targeted inhibitors, and discusses its regulatory mechanism and the prospect of tar-geted therapy.
文章引用:杨尚臻, 贺信橙, 白俊. SET结构域赖氨酸甲基转移酶8在肿瘤发生发展中的作用[J]. 临床医学进展, 2022, 12(9): 8371-8376. https://doi.org/10.12677/ACM.2022.1291207

1. 引言

蛋白质翻译后的化学修饰调控在有机体的发育和疾病过程中发挥重要的作用,其中甲基转移酶介导的蛋白质甲基化是一种至关重要且必不可少的化学修饰方式。赖氨酸甲基化由蛋白质赖氨酸甲基转移酶(Protein lysine methyltransferases, PKMTs)催化,其通过S-腺苷甲硫氨酸依赖的方式催化赖氨酸ε基团甲基化发挥调控作用。SET8属于蛋白赖氨酸甲基转移酶家族,其包含进化保守的SET结构域,SET结构域将S-腺苷-L-甲硫氨酸(S-adenosyl-L-methionine, AdoMet)转移1~3个甲基基团到目标赖氨酸ε-氨基基团上(ε-amino group),分别使赖氨酸发生单甲基化、二甲基化、三甲基化 [1]。研究发现SET8在细胞增殖、细胞代谢以及细胞周期调控等方面发挥着至关重要的作用。随着对肿瘤研究的不断深入,发现SET8在肿瘤的发生过程中异常表达,提示SET8在肿瘤的发生发展中扮演着重要角色。

2. SET8结构

SET8又被称为PR-set7、SETD8或KMT5A,其编码基因定位于12q24.31,包含25,586个碱基对,是现今发现的唯一能够特异性单甲基化组蛋白H4赖氨酸20位(Histone H4 lysine 20, H4K20)的赖氨酸甲基转移酶 [2]。SET8包含高度保守的SET结构域、PIP-box、D-box和Cdk1/CycB [3] [4],在空间结构上形成C-侧翼、SET-I、核心SET结构域和N-侧翼。SET8的单甲基化活性是由SET域内保守的Tyr334决定的,它与SET8的单甲基化赖氨酸产物形成氢键,阻止产物进一步甲基化 [5]。SET8通过多价相互作用使其i-SET和c-SET结构域与核小体结合 [6]。SET8可以促进细胞高效增殖,同时保护自己免受外源DNA损伤。在SET8缺失的情况下,细胞周期虽然可以通过初始的S和M期,但最终会导致细胞周期延迟,出现DNA损伤以及染色体凝缩 [7]。PIP Box位于SET区上游,通过与增殖细胞核抗原(Proliferating Cell Nuclear Antigen, PCNA)结合形成刺激因子,促进SET8在S期被CRL4CDT2泛素连接酶以依赖PCNA的方式靶向降解 [8],从而调控细胞周期。相比之下,D-box和Cdk1/CycB通过在G1~G2早期使SET8的丝氨酸残基S29发生磷酸化,从而抑制APC/C介导的泛素化降解,这对于维持SET8的稳定性十分重要 [9]。

3. SET8的作用靶点

3.1. 组蛋白

大量研究表明组蛋白H4赖氨酸20甲基化(H4K20me)对于维持基因组的完整性至关重要,如DNA损伤修复、DNA复制和染色质固缩。SET8单甲基化H4K20发生在S期晚期 [10],通过招募特定的调节蛋白引起转录抑制 [11],然而有研究发现SET8参与雄激素受体介导的转录激活 [12]。在H4K20me1的基础上,H4K20还可分别由SUV4-20h1 (Suppressor of variegation 4-20 homolog 1)和SUV4-20h2 (Suppressor of variegation 3~9 homolog 2)催化发生双甲基化(H4K20me2)和三基化(H4K20me3),目前认为SET8和SUV4-20H甲基转移酶对于H4K20的甲基化有协同作用 [13]。研究发现SET8单甲基化H4K20,抑制核仁和线粒体的活性,从而抑制细胞衰老。在癌基因诱导的细胞衰老过程中,由于蛋白酶体的选择性降解,SET8的表达下调,导致人成纤维细胞生长停滞和衰老,依赖H4K20单甲基化调控的核糖体蛋白(RP)基因和衰老相关基因表达上调,促进细胞衰老 [14]。

3.2. 非组蛋白

越来越多的证据表明,非组蛋白底物的赖氨酸甲基化修饰在肿瘤的发生发展中发挥着重要作用。SET8能够通过甲基化调控非组蛋白底物的功能,其中常见的非组蛋白底物包括p53、PCNA、Wnt和Twist等。SET8单甲基化p53蛋白第382位点的赖氨酸(p53K382me1),促进了L3MBTL1与p53在细胞中的相互作用,从而抑制了癌细胞中p53依赖的反式激活 [15]。SET8通过催化Numb的甲基化进一步调节p53介导的凋亡途径。Numb是一种存在于哺乳动物中的多种异构体的蛋白质,被证明与p53和E3泛素连接酶Mdm2形成复合体。SET8甲基化Numb的磷酸酪氨酸结合位点,阻断Numb与p53的结合,促进p53泛素化降解,从而通过p53-PUMA通路发挥抑制凋亡的作用 [16]。最近研究发现,p53可能协助SET8诱导胃癌细胞衰老 [17]。p53是重要的肿瘤抑制因子,因此研究其调控机制对了解肿瘤的发生有重要的意义。

PCNA是一类存在于增殖细胞中的阶段性表达的蛋白质,可作为评价细胞增殖状态的一个指标。PCNA在DNA复制、DNA修复、细胞周期调控、染色质重塑、姐妹染色单体凝缩等过程中发挥着重要作用 [18]。SET8通过甲基化PCNA蛋白第248位点的赖氨酸,增强了PCNA与人皮瓣核酸内切酶(Flap endonuclease 1, FEN1)的相互作用,促进肿瘤的发生 [19]。此外,PCNA甲基化的缺乏也可以阻止冈崎片段的成熟,从而抑制DNA复制过程,诱导DNA的损伤 [19]。因此SET8甲基化PCNA过程为癌症治疗提供一种新的思路。

Wnt/β-catenin信号传导通路中,在Wnt刺激下,转录因子淋巴增强因子1/T细胞因子4通过招募SET8激活基因转录 [20]。此外有实验发现SET8与Twist直接相互作用促进肿瘤细胞上皮间质转化及转移 [21]。

4. SET8与肿瘤

近年来,研究发现SET8与胃癌、肝癌、乳腺癌、前列腺癌及结直肠癌等肿瘤的发生有关。

在前列腺癌中,SET8在二氢睾酮的作用下富集于前列腺特异性抗原(Prostate-specific antigen, PSA)基因的启动子区域,使该区域的H4K20me1增加,SET8与雄激素受体共同作用介导PSA的基因转录激活,从而促进前列腺癌细胞的增殖 [12]。随后发现,SET8诱导上皮间质转化,并与锌指E-box结合同源盒1 (Zinc finger E-box binding homeobox 1, Zeb1)共同抑制下游E钙黏蛋白的表达,促进前列腺癌细胞转移 [22]。

细胞实验表明SET8是MiR-502的直接靶点 [23]。在乳腺癌中,MiR-502抑制乳腺癌细胞增殖。MiR-502直接靶向SET8的3'-UTR并负向调控其表达,SET8表达上调提示乳腺癌预后不良 [23]。研究发现SET8是缺氧诱导因子(Hypoxia inducible factor-1, HIF) 1α的下游靶点,SET8受到HIF1α的正性调控。SET8通过HIF1α促进糖代谢,增强了乳腺癌的增殖能力。SET8、HDAC2和PHD1协同维持HIF1α蛋白的稳定性,促进了肿瘤细胞营养物质的供应 [24]。TCGA数据库分析发现在发生乳腺癌转移的患者中,SET8的表达显著升高 [24],SET8与Twist相互作用促进了乳腺癌细胞的上皮间质转化及其转移 [21]。在结直肠癌中,SET8与Twist同样促进了乳腺癌细胞的上皮间质转化及转移 [25]。因此SET8可能是乳腺癌和结直肠癌的潜在治疗靶点。

研究表明,SETD8可以通过介导受体酪氨酸激酶样孤儿受体1 (Recombinant receptor tyrosine kinase like OKLan receptor 1, ROR1)的活性,促进干细胞和上皮–间质转化相关分子的表达,促进胰腺癌细胞的侵袭和迁移 [26]。

通过对100例胃癌标本进行免疫组化,分析SET8的表达与胃癌风险及预后的关系后发现,SET8的表达水平越低,患者的生存率越高,这说明SET8可能促进胃癌的发生发展 [27]。但有趣的是,通过肿瘤异种移植实验发现,抑制SET8后,治疗组的肿瘤相比对照组更大,说明SET8可能抑制胃癌的增殖和转移 [17]。最近研究发现,沉默SET8的表达可下调肿瘤干细胞相关基因(LSD1和SOX2)的表达,抑制胃腺癌细胞增殖、转移和侵袭 [28]。因此SET8对于胃癌发生发展的作用仍有待验证。

近期研究发现,在体内和体外,SET8表达下调抑制肝癌细胞的增殖、转移和侵袭,SET8过表达促进肝癌细胞增殖、转移和侵袭。而细胞实验证明敲除SET8后,多西他赛显著抑制肝癌细胞生长,这可能与提高了SMMC-7721细胞对多西他赛的化疗敏感性有关 [29]。因此靶向SET8治疗肝癌可以抑制肝癌细胞的增殖和侵袭,并增加其对化疗的敏感性。Jie等 [30] 发现禁食可降低细胞活力,下调SET8蛋白表达,上调Keap1蛋白表达,增加活性氧生成,促进HCC细胞凋亡。

此外,研究还发现SET8在卵巢癌、肾透明细胞癌、神经胶质瘤、肾细胞癌中表达上调 [31] [32] [33] [34]。因此SET8可能是肿瘤预后的关键标志物和预测因子,这为后续靶向SET8的抗癌药物的研发提供理论依据。

5. SET8抑制剂

首次被报道的SET8抑制剂为氢酸和百里酚酞,它们在体外抑制SET8的IC50值分别为3.8 μm和9.0 μm [35]。通过基因筛选,又发现了另一种SET8抑制剂EBI-099,IC50值为4.7 μm,对SET8表现出较强的抑制作用。2012年Mai等 [36] 分析合成了MC1946、MC1947、MC1948和MC2569,其中MC1947能够诱导癌细胞凋亡和粒细胞分化,MC1946和MC1948可选择性抑制SET8,而MC1947和MC2569同时抑制SET8和EZH2。2014年Jin等 [37] [38] 筛选发现UNC0379,IC50值为7.3±1.0 mm。UNC0379被认定为第一种具有良好选择性和抑制性的SET8竞争性抑制剂。此外,UNC0379已经被证实可以降低高危神经母细胞瘤中p53 K382me1的数量,激活p53信号通路,诱导细胞凋亡 [39]。随后通过高通量筛选,发现SPS8I1、SPS8I2和SPS8I3可以靶向抑制SET8,IC50值分别为0.21 ± 0.03 μm,0.50 ± 0.20 μm,0.70 ± 0.20 μm,但其抑制SET8的机制并不相同 [40]。以上资料提示,目前尚无一种SET8抑制剂进入临床应用,因此其临床价值有待于对SET8的进一步研究,相信会有更多抑制剂被发现。

6. 总结与展望

SET8作为一种KMT相关的甲基化转移酶,其在生物体的生物学行为及过程中发挥重要作用;而其在肿瘤发生发展中的研究虽然取得一些进展,但目前研究结果存在分歧,可能与瘤种、不同的研究方法等有关,未来有待于进一步阐明其作用机制。而深入筛选并研究其抑制剂也将是筛选抗肿瘤药物的一种方法,未来前景广阔。因此,深入探索SET8在肿瘤中的作用,为肿瘤研究提供新的方向,为肿瘤的靶向治疗提供新的理论依据。

参考文献

NOTES

*通讯作者。

参考文献

[1] Guo, H.B. and Guo, H. (2007) Mechanism of Histone Methylation Catalyzed by Protein Lysine Methyltransferase SET7/9 and Origin of Product Specificity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8797-8802.
https://doi.org/10.1073/pnas.0702981104
[2] Chin, H.G., Esteve, P.O., Ruse, C., et al. (2020) The Microtubule-Associated Histone Methyltransferase SET8, Facilitated by Transcription Factor LSF, Methyl-ates Alpha-Tubulin. Journal of Biological Chemistry, 295, 4748-4759.
https://doi.org/10.1074/jbc.RA119.010951
[3] Xiao, B., Jing, C., Kelly, G., et al. (2005) Specificity and Mecha-nism of the Histone Methyltransferase Pr-Set7. Genes & Development, 19, 1444-1454.
https://doi.org/10.1101/gad.1315905
[4] Centore, R.C., Havens, C.G., Manning, A.L., et al. (2010) CRL4(Cdt2)-Mediated Destruction of the Histone Methyltransferase Set8 Prevents Premature Chromatin Compaction in S Phase. Molecular Cell, 40, 22-33.
https://doi.org/10.1016/j.molcel.2010.09.015
[5] Luo, M. (2018) Chemical and Biochemical Perspectives of Pro-tein Lysine Methylation. Chemical Reviews, 118, 6656-6705.
https://doi.org/10.1021/acs.chemrev.8b00008
[6] Girish, T.S., Mcginty, R.K. and Tan, S. (2016) Multivalent In-teractions by the Set8 Histone Methyltransferase with Its Nucleosome Substrate. Journal of Molecular Biology, 428, 1531-1543.
https://doi.org/10.1016/j.jmb.2016.02.025
[7] Oda, H., Okamoto, I., Murphy, N., et al. (2009) Monomethylation of Histone H4-lysine 20 Is Involved in Chromosome Structure and Stability and Is Essential for Mouse Development. Molecular and Cellular Biology, 29, 2278-2295.
https://doi.org/10.1128/MCB.01768-08
[8] Hayashi, A., Giakoumakis, N.N., Heidebrecht, T., et al. (2018) Direct Binding of Cdt2 to PCNA Is Important for Targeting the CRL4(Cdt2) E3 Ligase Activity to Cdt1. Life Science Alliance, 1, e201800238.
https://doi.org/10.26508/lsa.201800238
[9] Zheng, N., Dai, X., Wang, Z., et al. (2016) A New Layer of Degrada-tion Mechanism for PR-Set7/Set8 during Cell Cycle. Cell Cycle, 15, 3042-3047.
https://doi.org/10.1080/15384101.2016.1234552
[10] Li, Y., Armstrong, R.L., Duronio, R.J., et al. (2016) Meth-ylation of Histone H4 Lysine 20 by PR-Set7 Ensures the Integrity of Late Replicating Sequence Domains in Drosophila. Nucleic Acids Research, 44, 7204-7218.
https://doi.org/10.1093/nar/gkw333
[11] Kalakonda, N., Fischle, W., Boccuni, P., et al. (2008) Histone H4 Lysine 20 Monomethylation Promotes Transcriptional Repression by L3MBTL1. Oncogene, 27, 4293-4304.
https://doi.org/10.1038/onc.2008.67
[12] Yao, L., Li, Y., Du, F., Han, X., et al. (2014) Histone H4 Lys 20 Me-thyltransferase SET8 Promotes Androgen Receptor-Mediated Transcription Activation in Prostate Cancer. Biochemical and Biophysical Research Communications, 450, 692-696.
https://doi.org/10.1016/j.bbrc.2014.06.033
[13] Jorgensen, S., Schotta, G. and Sorensen, C.S. (2013) Histone H4 Lysine 20 Methylation: Key Player in Epigenetic Regulation of Genomic Integrity. Nucleic Acids Research, 41, 2797-2806.
https://doi.org/10.1093/nar/gkt012
[14] Tanaka, H., Takebayashi, S.I., Sakamoto, A., et al. (2017) The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Reports, 18, 2148-2161.
https://doi.org/10.1016/j.celrep.2017.02.021
[15] West, L.E., Roy, S., Lachmi-Weiner, K., et al. (2010) The MBT Repeats of L3MBTL1 Link SET8-Mediated p53 Methylation at Lysine 382 to Target Gene Repression. Journal of Bio-logical Chemistry, 285, 37725-37732.
https://doi.org/10.1074/jbc.M110.139527
[16] Colaluca, I.N., Basile, A., Freiburger, L., et al. (2018) A Numb-Mdm2 Fuzzy Complex Reveals an Isoform-Specific Involvement of Numb in Breast Cancer. Journal of Cell Bi-ology, 217, 745-762.
https://doi.org/10.1083/jcb.201709092
[17] Zhang, X., Peng, Y., Yuan, Y., et al. (2020) Histone Methyltransferase SET8 Is Regulated by miR-192/215 and Induces Oncogene-Induced Senescence via p53-Dependent DNA Damage in Human Gastric Carcinoma Cells. Cell Death & Disease, 11, Article No. 937.
https://doi.org/10.1038/s41419-020-03130-4
[18] Cardano, M., Tribioli, C. and Prosperi, E. (2020) Targeting Pro-liferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Current Cancer Drug Targets, 20, 240-252.
https://doi.org/10.2174/1568009620666200115162814
[19] Takawa, M., Cho, H.S., Hayami, S., et al. (2012) Histone Lysine Methyltransferase SETD8 Promotes Carcinogenesis by Deregulating PCNA Expression. Cancer Re-search, 72, 3217-3227.
https://doi.org/10.1158/0008-5472.CAN-11-3701
[20] Li, Z., Nie, F., Wang, S. and Li, L. (2011) Histone H4 Lys 20 Monomethylation by Histone Methylase SET8 Mediates Wnt Target Gene Activation. Proceedings of the National Academy of Sciences of the United States of America, 108, 3116-3123.
https://doi.org/10.1073/pnas.1009353108
[21] Yang, F., Sun, L., Li, Q., et al. (2012) SET8 Promotes Epitheli-al-Mesenchymal Transition and Confers TWIST Dual Transcriptional Activities. EMBO Journal, 31, 110-123.
https://doi.org/10.1038/emboj.2011.364
[22] Hou, L., Li, Q., Yu, Y., et al. (2016) SET8 Induces Epithelialmesen-chymal Transition and Enhances Prostate Cancer Cell Metastasis by Cooperating with ZEB1. Molecular Medicine Re-ports, 13, 1681-1688.
https://doi.org/10.3892/mmr.2015.4733
[23] Liu, B., Zhang, X., Song, F., et al. (2016) MiR-502/SET8 Regulatory Circuit in Pathobiology of Breast Cancer. Cancer Letters, 376, 259-267.
https://doi.org/10.1016/j.canlet.2016.04.008
[24] Huang, R., Yu, Y., Zong, X., et al. (2017) Monomethyltransfer-ase SETD8 Regulates Breast Cancer Metabolism via Stabilizing Hypoxia-Inducible Factor 1alpha. Cancer Letters, 390, 1-10.
https://doi.org/10.1016/j.canlet.2016.12.038
[25] Vu, T. and Datta, P.K. (2017) Regulation of EMT in Colo-rectal Cancer: A Culprit in Metastasis. Cancers (Basel), 9, 171-193.
https://doi.org/10.3390/cancers9120171
[26] Liu, M., Shi, Y., Hu, Q., et al. (2021) SETD8 Induces Stemness and Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells by Regulating ROR1 Expression. Acta Biochimica et Bio-physica Sinica (Shanghai), 53, 1614-1624.
https://doi.org/10.1093/abbs/gmab140
[27] Shi, X.L., Guo, Z.J., Wang, X.L., et al. (2015) SET8 Expression Is Associated with Overall Survival in Gastric Cancer. Genetics and Molecular Research, 14, 15609-15615.
https://doi.org/10.4238/2015.December.1.12
[28] Piao, L., Che, N., Li, H., et al. (2020) SETD8 Promotes Stem-ness Characteristics and Is a Potential Prognostic Biomarker of Gastric Adenocarcinoma. Experimental and Molecular Pathology, 117, Article ID: 104560.
https://doi.org/10.1016/j.yexmp.2020.104560
[29] Wu, J., Qiao, K., Du, Y., et al. (2020) Downregulation of His-tone Methyltransferase SET8 Inhibits Progression of Hepatocellular Carcinoma. Scientific Reports, 10, Article No. 4490.
https://doi.org/10.1038/s41598-020-61402-7
[30] Qi, J., Chen, X., Wu, Q., et al. (2020) Fasting Induces Hepato-cellular Carcinoma Cell Apoptosis by Inhibiting SET8 Expression. Oxidative Medicine and Cellular Longevity, 2020, Ar-ticle ID: 3985089.
https://doi.org/10.1155/2020/3985089
[31] Wada, M., Kukita, A., Sone, K., et al. (2020) Epigenetic Modifier SETD8 as a Therapeutic Target for High-Grade Serous Ovarian Cancer. Biomolecules, 10, Article No. 1686.
https://doi.org/10.3390/biom10121686
[32] Zhang, S., Guo, Z., Xu, J., et al. (2017) miR-502-Mediated Histone Methyltransferase SET8 Expression Is Associated with Clear Cell Renal Cell Carcinoma Risk. Oncology Letters, 14, 7131-7138.
https://doi.org/10.3892/ol.2017.7115
[33] Ma, Z. (2018) Downregulation of SETD8 by miR-382 Is Involved in Glioma Progression. Pathology Research and Practice, 214, 356-360.
https://doi.org/10.1016/j.prp.2018.01.004
[34] Li, X., Liu, Z., Xia, C., et al. (2022) SETD8 Stabilized by USP17 Epigenetically Activates SREBP1 Pathway to Drive Lipogenesis and Oncogenesis of ccRCC. Cancer Letters, 527, 150-163.
https://doi.org/10.1016/j.canlet.2021.12.018
[35] Milite, C., Feoli, A., Viviano, M., et al. (2016) Progress in the Development of Lysine Methyltransferase SETD8 Inhibitors. ChemMedChem, 11, 1680-1685.
https://doi.org/10.1002/cmdc.201600272
[36] Valente, S., Lepore, I., Dell’aversana, C., et al. (2012) Identification of PR-SET7 and EZH2 Selective Inhibitors Inducing Cell Death in Human Leukemia U937 Cells. Biochimie, 94, 2308-2313.
https://doi.org/10.1016/j.biochi.2012.06.003
[37] Ma, A., Yu, W., Xiong, Y., et al. (2014) Structure-Activity Rela-tionship Studies of SETD8 Inhibitors. MedChemComm, 5, 1892-1898.
https://doi.org/10.1039/C4MD00317A
[38] Ma, A., Yu, W., Li, F., et al. (2014) Discovery of a Selective, Sub-strate-Competitive Inhibitor of the Lysine Methyltransferase SETD8. Journal of Medicinal Chemistry, 57, 6822-6833.
https://doi.org/10.1021/jm500871s
[39] Veschi, V., Liu, Z., Voss, T.C., et al. (2017) Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell, 31, 50-63.
https://doi.org/10.1016/j.ccell.2016.12.002
[40] Blum, G., Ibanez, G., Rao, X., et al. (2014) Small-Molecule Inhib-itors of SETD8 with Cellular Activity. ACS Chemical Biology, 9, 2471-2478.
https://doi.org/10.1021/cb500515r