多模态MR技术在糖尿病心肌病的研究进展
Research Progress of Multimodal MR Technology in Diabetic Cardiomyopathy
DOI: 10.12677/ACM.2022.1291164, PDF, HTML, XML, 下载: 223  浏览: 379 
作者: 李 旭:青海大学研究生院,青海 西宁;孟 莉*:青海大学附属医院,青海 西宁
关键词: 糖尿病糖尿病心肌病多模态CMR技术Diabetes Diabetic Cardiomyopathy Multimodal CMR Technology
摘要: 糖尿病心肌病是引起糖尿病患者心力衰竭的主要原因之一。早期诊断有助于在早期阶段正确识别疾病并实施适当的纠正治疗。心脏磁共振作为心肌病变无创诊断的“金标准”,具有多参数、多成像序列等特点。多模态CMR检查能够从不同角度定量对糖尿病患者心脏结构、功能及心肌组织特性进行全面评估,为病人的早期治疗及预后评估提供重要信息。
Abstract: Diabetic cardiomyopathy is one of the main causes of heart failure in diabetic patients. Early diag-nosis helps to correctly identify diseases at an early stage and implement appropriate corrective treatment. Cardiac magnetic resonance, as the “gold standard” for noninvasive diagnosis of cardio-myopathy, has the characteristics of multiple parameters and multiple imaging sequences. Multi-modal CMR can quantitatively evaluate cardiac structure, function and myocardial tissue charac-teristics of diabetic patients from different angles, and provide important information for early treatment and prognosis evaluation of patients.
文章引用:李旭, 孟莉. 多模态MR技术在糖尿病心肌病的研究进展[J]. 临床医学进展, 2022, 12(9): 8082-8087. https://doi.org/10.12677/ACM.2022.1291164

1. 前言

糖尿病患者中,在没有缺血性心脏病、高血压或其他心脏疾病的情况下心脏结构或功能的改变被称为糖尿病性心肌病(diabetic cardiomyopathy, DCM) [1]。糖尿病(diabetes mellitus, DM)是一种常见的慢性代谢性疾病,患病率在世界范围内持续上升。根据国际糖尿病联盟第九版地图显示,2021年全球20~79岁人群的糖尿病患病率估计为5.366亿人,预计到2045年上升到7.832亿人 [2]。心力衰竭是糖尿病患者死亡的主要原因 [3]。糖尿病心肌病是导致糖尿病患者心力衰竭的主要原因之一。DCM最初表现为临床上隐匿的心肌纤维化、功能失调的心脏重塑和相关的舒张功能障碍,后来发展为收缩功能障碍,最终发展为明显的心力衰竭。糖尿病患者的心衰预后尤其差,早期发现与进行性心肌功能障碍相关的亚临床心肌结构和功能改变,可能为在明显HF发作之前早期开始改善疾病的药物治疗提供机会。心脏磁共振(cardiovascular magnetic resonance, CMR)具有多参数、多成像序列等特点,可对心肌结构、功能及心肌组织特性进行全面评估,已成为评估心脏结构和功能的“金标准” [4] [5]。随着CMR成像技术的迅速发展,其在定性和定量评估心肌病变方面独具优势,可对DCM患者的早期治疗及预后评估提供重要信息 [6] [7]。

2. 多模态MR技术在DCM中的应用

2.1. CMR电影序列(CMR cine)

平衡稳态自由进动序列基于其快速成像、较高信噪比以及较好的心肌和血池对比等优势,已成为CMR电影成像的首选序列。CMR cine可观察心室壁运动情况,测量心室腔大小;再通过软件后处理,可半定量心室容积、射血分数(Ejection Fraction EF)、心肌质量等常规心功能指标 [8]。Magnus等 [9] 利用CMR研究发现在左室射血分数(Left Ventricular Ejection Fraction, LVEF)或右室射血分数(Right Ventricular Ejection Fraction, RVEF)明显下降和出现症状明显的心力衰竭之前,可以监测到细微的早期糖尿病性心脏形态结构及功能的变化。Gao Y等 [10] 利用CMR cine分析了80名T2DM患者和20名健康受试者的左心室结构和功能,结果显示T2DM 患者出现左心室内径增大、射血分数下降、每搏输出量减小。Patscheider H等 [11] 对DM患者右心室容积和功能的CMR cine研究发现,DM前期组和DM组的右心室容积和每搏输出量较对照组减低。因此,利用CMR cine可以全面而准确地评估DM患者心脏结构和功能的改变。

2.2. 心脏磁共振特征追踪技术(CMR-FT)

近年来,心肌应变被认为是评估各种心肌疾病中左室功能细微变化的可靠指标 [12] [13]。常用的左心室射血分数(Left Ventricular Ejection Fraction, LVEF)不能提供心脏力学的详细评估,并且已被证明是收缩损伤的不敏感和晚期标志物 [14]。最近,基于常规平衡稳态自由进动电影序列的心血管磁共振特征跟踪(CMR-FT)可评估整体和局部心肌变形程度,被认为是全面评估左心室舒张和收缩功能的更灵敏的技术 [15] [16]。Xie等 [17] 研究表明,保留LVEF组和对照组的全球径向峰值应变和周向应变无显着差异。然而,值得注意的是,保留LVEF组的纵向应变显着低于对照组。因此,2型糖尿病患者左室心肌应变的减少可能先于明显的LVEF。CMR-FT可量化2型糖尿病患者的整体和局部左心室心肌应变,并确定心肌应变参数评估心肌变形的能力。而且,CMR-FT还可以量化2型糖尿病患者右室心肌变形并识别RVEF正常的亚临床右室功能障碍。Hu等 [18] 研究发现糖尿病患者右室功能(三向应变)明显受损,且相对于射血分数保留型患者,非射血分数保留型患者的右室功能也出现了损伤异常,表明右室应变指标是比右室射血分数更加灵敏的指标区识别右室功能异常。CMR-FT只需要相对快速和简单的序列及后处理方法,可识别亚临床疾病所引起的心脏功能改变,能够早于射血分数降低之前识别心脏功能改变 [19]。在2型糖尿病患者中使用CMR组织追踪可以成功地进行心脏变形的早期定量评估。

2.3. 心肌延迟强化

延迟钆增强扫描(Late gadolinium enhancement, LGE),是无创的显示心肌瘢痕组织的金标准,是目前运用最广泛评估心肌组织活性的CMR技术。该技术主要用于识别由于间质间隙扩大而引起的替代性纤维化的病灶区域 [20]。一项对DM患者的观察性研究显示,LGE在评估DCM患者心肌纤维化预后方面起决定性作用,没有任何潜在的CHD证据,已发现患有隐匿性心肌纤维化的DM患者是未来CVD事件的高风险 [21]。另一项关于糖尿病性心脏病的横断面磁共振成像研究中,264名大型T2DM患者中有10.6%患有晚期钆增强病变 [22]。并非所有LGE病变都是缺血性的;Bojeret等 [23] 报道了>20%的DM患者LGE,其中9.5%仅有非缺血性LGE病变。在Stroz [24] 等人的一项研究中,包括LGE在内的心血管磁共振成像是在一个较小的47岁的T2DM人群中进行的,所有这些都没有已知的心血管疾病。在47名患者中,3名患者(4.2%)患有LGE病变,因此,这些发现表明非缺血性LGE与不良结构重塑有关。尽管LGE是T2DM患者临床预后的良好预测指标,但是LGE成像是使用正常心肌作为参考,并且在弥漫性心肌纤维化的情况下变得不太准确,为了克服这个问题,已经创建了称为T1 mapping的CMR成像技术,T1 mapping可识别早期心肌纤维化。

2.4. T1 mapping、ECV

T1 mapping作为新兴的定量MR技术,能够通过量化心肌T1值克服心肌LGE成像难以分辨弥漫性心肌纤维化的缺点。目前应用最为广泛的测量T1的MR序列为改良的Look-Locker反转恢复(modified Look-Locker inversion recovery, MOLLI)序列 [25]。T1 mapping包括平扫T1 mapping及增强T1 mapping,平扫T1 mapping最近已成为评估心肌纤维化的非造影成像技术 [26] [27],可量化DCM局灶性或弥漫性心肌纤维化的程度。平扫T1 mapping在不使用钆的情况下获取心肌T1值。大多数研究表明,在间质水肿和纤维化中,平扫T1值增加。Arnold最近的一项研究旨在检测LVEF正常的糖尿病患者的纤维化。相对于健康对照组,由于心肌间质纤维化负担增加,糖尿病患者的增强后T1值显着降低 [28]。但Native T1 mapping对不同纤维化量的相应变化似乎有限。相反,细胞外容积(extracellular volume, ECV)分数,利用增强前、后T1 mapping技术得出的参数,可反映细胞外间质容积占整个心肌组织容积的百分比。ECV不受许多外部因素的影响,因此可以更准确地比较弥漫性心肌纤维化定量 [29]。病理结果证实,ECV是心肌弥漫性纤维化负担的有效替代指标,并且与舒张功能障碍密切相关。ECV能够准确实现细胞外基质或间质纤维化的组织学定量,在糖尿病病人和其他病人群体的研究中,已证明ECV升高与心肌疾病不良结果密切相关 [30]。Cao等人 [31] 研究50名T2DM患者,发现糖尿病组病人心肌ECV及Native T1值均显著高于对照组,且ECV的检查效能明显优于Native T1。Khan等 [32] 也进行了类似的研究,研究表明糖尿病伴ECV增高者预后较ECV正常者差,表明ECV升高是糖尿病病人死亡率的独立预测因子,对评估DCM临床进展阶段及评价远期预后具有重要价值。

2.5. 心肌灌注成像(Myocardial Perfusion Imaging, MPI)

CMR心肌灌注成像类似于PET,可以无创性定性评估心肌有无缺血,定量和半定量评价心肌灌注情况。首过心肌灌注CMR非侵入性使用能够以高可靠性和可重复性评估冠状动脉微血管功能 [33] [34]。首过心肌灌注CMR不仅可以早期检测冠状动脉微循环受损,还可以定量评估微循环损伤的程度。Larghat等发现DM患者较正常对照组心肌MPR值减低,而且左室扭转值增加与心肌MPR值减低相关,说明DM患者心肌微循环异常可能影响心肌功能。Liu X等 [35] 利用CMR cine和心肌灌注评价2型糖尿病患者患者左心室亚临床心肌功能受损与冠脉微血管灌注的关系,研究结果表明,对2型糖尿病患者心肌功能障碍与冠状动脉微血管灌注受损存在相关性,通过心肌灌注成像可以发现临床前期的心肌微血管灌注异常。利用心肌灌注评价DCM心肌微循环功能障碍,有利于患者预后的危险分层 [36]。

3. 小结

在未来几十年中,糖尿病患病率的上升预计会显着增加死亡率。在2型糖尿病患者早期常常忽视潜在的心血管并发症,尽管LVEF传统上用于监测心脏功能,但由于整体和局部心脏变形和功能障碍的发展,LVEF通常在糖尿病的早期阶段被保留。因此,使用CMR早期评估心肌损伤对于早期诊断,及时开始治疗以及有望预防2型糖尿病患者预后不良极为重要。早期发现2型糖尿病患者的亚临床心肌功能障碍对于推荐有针对性的治疗策略来逆转或缓解这一过程以及预测预后至关重要。

NOTES

*通讯作者。

参考文献

[1] Voulgari, C., Papadogiannis, D. and Tentolouris, N. (2010) Diabetic Cardiomyopathy: From the Pathophysiology of the Cardiac Myocytes to Current Diagnosis and Management Strategies. Vascular Health and Risk Management, 6, 883-903.
https://doi.org/10.2147/VHRM.S11681
[2] Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C.N., Mbanya, J.C., Pavkov, M.E., Ramachandaran, A., Wild, S.H., James, S., Herman, W.H., Zhang, P., Bommer, C., Kuo, S., Boyko, E.J. and Magliano, D.J. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119.
https://doi.org/10.1016/j.diabres.2021.109119
[3] Bertoni, A.G., Hundley, W.G., Massing, M.W., Bonds, D.E., Burke, G.L. and Goff, D.C. (2004) Heart Failure Prevalence, Incidence, and Mortality in the Elderly with Diabetes. Dia-betes Care, 27, 699-703.
https://doi.org/10.2337/diacare.27.3.699
[4] Leiner, T., Bogaert, J., Friedrich, M.G., Mohiaddin, R., Muthurangu, V., Myerson, S., et al. (2020) SCMR Position Paper (2020) on Clinical Indications for Cardiovascular Magnetic Reso-nance. Journal of Cardiovascular Magnetic Resonance, 22, Article No. 76.
https://doi.org/10.1186/s12968-020-00682-4
[5] Vasquez, M. and Nagel, E. (2019) Clinical Indications for Car-diovascular Magnetic Resonance. Heart (British Cardiac Society), 105, 1755-1762.
https://doi.org/10.1136/heartjnl-2018-312971
[6] Khan, S., Ahmad, S.S. and Kamal, M.A. (2021) Diabetic Car-diomyopathy: From Mechanism to Management in a Nutshell. Endocrine, Metabolic & Immune Disorders—Drug Tar-gets, 21, 268-281.
https://doi.org/10.2174/1871530320666200731174724
[7] Mordi, I.R. (2019) Non-Invasive Imaging in Diabetic Cardiomyopathy. Journal of Cardiovascular Development and Disease, 6, Article No. 18.
https://doi.org/10.3390/jcdd6020018
[8] Dean, J., Cruz, S.D., Mehta, P.K., et al. (2015) Coronary Microvascular Dysfunction: Sex-Specific Risk, Diagnosis, and Therapy. Nature Reviews Cardiology, 12, 406-414.
https://doi.org/10.1038/nrcardio.2015.72
[9] Jensen, M.T., Fung, K., Aung, N., Sanghvi, M.M., et al. (2019) Changes in Cardiac Morphology and Function in Individuals with Diabetes Mellitus: The UK Biobank Cardiovascular Magnetic Resonance Substudy. Circulation: Cardiovascular Imaging, 12, e009476.
https://doi.org/10.1161/CIRCIMAGING.119.009476
[10] Gao, Y., Yang, Z., Ren, Y., et al. (2019) Evaluation of Myocardial Fibrosis in Diabetes with Cardiac Magnetic Resonance T1-Mapping: Correlation with the High-Level Hemo-globin A1c. Diabetes Research and Clinical Practice, 150, 72-80.
https://doi.org/10.1016/j.diabres.2019.03.004
[11] Patscheider, H., Lorbeer, R., Auweter, S., et al. (2018) Subclin-ical Changes in MRI-Determined Right Ventricular Volumes and Function in Subjects with Prediabetes and Diabetes. European Radiology, 28, 3105-3113.
https://doi.org/10.1007/s00330-017-5185-1
[12] Shenoy, C., Romano, S., Hughes, A., et al. (2020) Cardiac Mag-netic Resonance Feature Tracking Global Longitudinal Strain and Prognosis after Heart Transplantation. JACC: Cardio-vascular Imaging, 13, 1934-1942.
https://doi.org/10.1016/j.jcmg.2020.04.004
[13] Maceira, A.M., Guardiola, S., Ripoll, C., Cosin-Sales, J., Belloch, V. and Salazar, J. (2020) Detection of Subclinical Myocardial Dysfunction in Cocaine Addicts with Feature Tracking Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 22, 70.
https://doi.org/10.1186/s12968-020-00663-7
[14] Morris, D.A., Otani, K., Bekfani, T., Takigiku, K., Izumi, C., Yuda, S., et al. (2014) Multidirectional Global Left Ventricular Systolic Function in Normal Subjects and Patients with Hypertension: Multicenter Evaluation. Journal of the American Society of Echocardiography, 27, 493-500.
https://doi.org/10.1016/j.echo.2014.01.017
[15] Halliday, B.P., Senior, R. and Pennell, D.J. (2021) Assessing Left Ventricular Systolic Function: From Ejection Fraction to Strain Analysis. European Heart Journal, 42, 789-797.
https://doi.org/10.1093/eurheartj/ehaa587
[16] Jiang, L., Wang, J., Liu, X., et al. (2020) The Combined Effects of Cardiac Geometry, Microcirculation, and Tissue Characteristics on Cardiac Systolic and Diastolic Function in Subclinical Diabetes Mellitus-Related Cardiomyopathy. International Journal of Cardiology, 320, 112-118.
https://doi.org/10.1016/j.ijcard.2020.07.013
[17] Xie, L.J., Dong, Z.H., Yang, Z.G., Deng, M.Y., Gao, Y., Jiang, L., Hu, B.Y., Liu, X., Ren, Y., Xia, C.C., Li, Z.L., Zhang, H.P., Zhou, X.Y. and Guo, Y.K. (2020) Assessment of Left Ventricular Deformation in Patients with Type 2 Diabetes Mellitus by Cardiac Magnetic Resonance Tissue Tracking. Scientific Reports, 10, Article No. 13126.
https://doi.org/10.1038/s41598-020-69977-x
[18] Hu, B.Y., Wang, J. and Yang, Z.G. (2019) Cardiac Magnetic Resonance Feature Tracking for Quantifying Right Ventricular Deformation in Type 2 Diabetes Mellitus Patients. Scien-tific Reports, 9, Article No. 11148.
https://doi.org/10.1038/s41598-019-46755-y
[19] 何健, 赵世华, 陆敏杰. 心脏磁共振特征追踪技术及其研究进展[J]. 磁共振成像, 2020, 11(6): 469-473.
[20] 万俊义, 赵世华. 心脏磁共振钆对比剂延迟强化的临床意义及判断预后的价值[J]. 中国医学影像技术, 2012, 28(8): 1600-1603.
[21] Kwong, R.Y., et al. (2008) Incidence and Prognostic Implication of Unrecognized Myocardial Scar Characterized by Cardiac Magnetic Resonance in Diabetic Pa-tients without Clinical Evidence of Myocardial Infarction. Circulation, 118, 1011-1020.
https://doi.org/10.1161/CIRCULATIONAHA.107.727826
[22] Tahir, E., Starekova, J., Muellerleile, K., von Stritzky, A., Munch, J., Avanesov, M., et al. (2018) Myocardial Fibrosis in Competitive Triathletes Detected by Con-trast-Enhanced CMR Correlates with Exercise-Induced Hypertension and Competition History. JACC: Cardiovascular Imaging, 11, 1260-1270.
https://doi.org/10.1016/j.jcmg.2017.09.016
[23] Bojer, A.S., Sørensen, M.H., Vejlstrup, N., Goetze, J.P., Gæde, P. and Madsen, P.L. (2020) Distinct Non-Ischemic Myocardial Late Gadolinium Enhancement Lesions in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 19, 184.
https://doi.org/10.1186/s12933-020-01160-y
[24] Storz, C., Hetterich, H., Lorbeer, R., Heber, S.D., Schafnitzel, A., Patscheider, H., et al. (2018) Myocardial Tissue Characterization by Contrast-Enhanced Cardiac Magnetic Resonance Imaging in Subjects with Prediabetes, Diabetes, and Normal Controls with Preserved Ejection Fraction from the General Population. European Heart Journal—Cardiovascular Imaging, 19, 701-708.
https://doi.org/10.1093/ehjci/jex190
[25] 陆敏杰, 赵世华. 我国心血管磁共振成像三十年发展历程[J]. 磁共振成像, 2019, 10(10): 727-731.
[26] Bull, S., White, S.K., Piechnik, S.K., et al. (2013) Human Non-Contrast T1 Values and Correlation with Histology in Diffuse Fibrosis. Heart, 99, 932-937.
https://doi.org/10.1136/heartjnl-2012-303052
[27] Puntmann, V.O., Voigt, T., Chen, Z., et al. (2013) Native T1 Mapping in Differentiation of Normal Myocardium from Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 6, 475-484.
https://doi.org/10.1016/j.jcmg.2012.08.019
[28] Paul, D., Su, R., Romain, M., et al. (2017) Feature Selection for Outcome Prediction in Oesophageal Cancer Using Genetic Algorithm and Random Forest Classifier. Computerized Medical Imaging and Graphics, 60, 42-49.
https://doi.org/10.1016/j.compmedimag.2016.12.002
[29] Kellman, P. and Hansen, M.S. (2014) T1-Mapping in the Heart: Accuracy and Precision. Journal of Cardiovascular Magnetic Resonance, 16, Article No. 2.
https://doi.org/10.1186/1532-429X-16-2
[30] Tadic, M., Cuspidi, C., Calicchio, F., et al. (2020) Diabetic Cardio-myopathy: How Can Cardiac Magnetic Resonance Help. Acta Diabetologica, 57, 1027-1034.
https://doi.org/10.1007/s00592-020-01528-2
[31] Cao, Y., Zeng, W., Cui, Y., Kong, X., Wang, M., Yu, J., Zhang, S., Song, J., Yan, X., Greiser, A., et al. (2018) Increased Myocardial Extracellular Volume Assessed by Cardiovascular Magnetic Resonance T1 Mapping and Its Determinants in Type 2 Diabetes Mellitus Patients with Normal Myocardial Systolic Strain. Cardiovascular Diabetology, 17, 7.
https://doi.org/10.1186/s12933-017-0651-2
[32] Khan, M.A., Yang, E.Y., Nguyen, D.T., et al. (2020) Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance. Circulation: Cardiovascular Imaging, 13, e011000.
[33] Cheng, A.S., Pegg, T.J., Karamitsos, T.D., Searle, N., Jerosch-Herold, M., Choudhury, R.P., et al. (2007) Cardiovascular Magnetic Resonance Perfusion Imaging at 3-Tesla for the Detection of Coronary Artery Disease: A Comparison with 1.5 Tesla. JACC: Journal of the American College of Cardiology, 49, 2440-2449.
https://doi.org/10.1016/j.jacc.2007.03.028
[34] Jerosch-Herold, M. (2010) Quantification of Myocardial Perfusion by Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 12, Article No. 57.
https://doi.org/10.1186/1532-429X-12-57
[35] Liu, X., Yang, Z.G., Gao, Y., et al. (2018) Left Ventricular Sub-clinical Myocardial Dysfunction in Uncomplicated Type 2 Diabetes Mellitus Is Associated with Impaired Myocardial Perfusion: A Contrast-Enhanced Cardiovascular Magnetic Resonance Study. Cardiovascular Diabetology, 17, Article No. 139.
https://doi.org/10.1186/s12933-018-0782-0
[36] Murthy, V.L., Naya, M. and Foster, C.R. (2011) Improved Car-diac Risk Assessment with Noninvasive Measures of Coronary Flow Reserve. Circulation, 124, 2215-2224.
https://doi.org/10.1161/CIRCULATIONAHA.111.050427