急性肾损伤早期及预后标志物新进展
New Progress of Early and Prognostic Mark-ers of Acute Kidney Injury
DOI: 10.12677/ACM.2022.1281032, PDF, HTML, XML, 下载: 391  浏览: 665  科研立项经费支持
作者: 王白菊:济宁医学院临床医学院,山东 济宁;济宁医学院附属医院全科医学科,山东 济宁;刘 雷*, 王 娜:济宁医学院附属医院全科医学科,山东 济宁
关键词: 急性肾损伤生物标志物早期诊断预后Acute Kidney Injury Biomarkers Early Diagnosis Prognostic
摘要: 急性肾损伤(Acute kidney disease, AKI)是一种发病率高、自然病程多样、预后不一的临床急危重症。目前,AKI检测的标准诊断工具仍然是血肌酐浓度和尿量。然而,其在早期诊断AKI和评判预后等方面存在不足,因此寻找并获得有潜力的AKI生物标志物可对临床实践有诸多帮助。一些新型AKI生物标志物,如趋化因子、血管紧张素原、骨桥蛋白等在评估AKI早期和预后方面具有应用前景。本综述总结了近年AKI的早期诊断及预后标记物方面的进展。
Abstract: Acute kidney injury (AKI) is a clinical emergency with a high incidence, diverse natural history and variable prognosis. At present, the standard diagnostic tools for AKI detection remain serum creat-inine concentration and urine output. However, it is insufficient in early diagnosis of AKI and evalu-ation of prognosis, so finding and obtaining potential biomarkers of AKI can be of great help to clin-ical practice. Some novel AKI biomarkers, such as chemokines, angiotensinogen, osteopontin, etc., have application prospects in assessing the early stage and prognosis of AKI. This review summa-rizes the recent progress in early diagnosis and prognostic markers of AKI.
文章引用:王白菊, 刘雷, 王娜. 急性肾损伤早期及预后标志物新进展[J]. 临床医学进展, 2022, 12(8): 7154-7160. https://doi.org/10.12677/ACM.2022.1281032

1. 引言

急性肾损伤(AKI)是一种发病率高、自然病程多样、预后不一的临床急危重症。据统计,AKI的发病率约占住院患者总数的7%,重症监护病房的36%~67% [1] 。AKI的早期诊断是恢复肾功能和预防肾脏潜在损伤的关键。就AKI而言,理想的标志物既能识别肾脏早期损伤,又能识别和筛查AKI不良预后,能及早进行干预并逆转其自然病程,减少肾脏替代治疗并降低死亡率。在过去十年里,科学家尽管在开发新的AKI生物标志物方面取得了一定进展,然而在验证和标准化这些分子方面还存在许多不足,没有一种生物标记物对AKI具有真正的特异性,而且也没有足够的外部验证表明某一生物标志物的常规使用 [2] 。因此,本文对近几年AKI的早期诊断及预后标记物进行了综述。

2. 经典诊断AKI的生物标志物

2.1. 血肌酐(Serum Creatinine, SCr)

目前,AKI检测的标准诊断工具仍然是SCr浓度和尿量。1976年Rehberg首次提出用SCr来监测肾功能 [3] ,尽管SCr作为肾功能的标志物已被广泛使用,但其有自身的不足。首先,SCr的变化不够敏感,SCr与肾小球滤过率(Estimated Glomerular Filtration Rate, eGFR)不是线性的,SCr的指标并不能完全代替eGFR。当临床医生注意到SCr变化之前,eGFR可能已经降低50%以上 [4] 。其次,SCr对AKI并不是特异性的,它受到许多因素的影响,如肾脏储备程度、肾小管损伤严重性、患者的肌肉质量、血流动力学改变及某些药物等。

2.2. 胱抑素C (CystatinC, CysC)

1981年CysC首次被发现并完成测序,应用于AKI的早期诊断。CysC是一种半胱氨酸蛋白酶抑制剂,通常由有核细胞产生,经肾小球滤过,在近端小管几乎被完全重吸收和分解。尿液中不会出现CysC,这使它成为比SCr更好的反映eGFR的评估指标。Koyner等人证明,在成人心脏手术后引起的AKI的早期诊断中,尿CysC优于SCr [5] 。在多名ICU患者的队列分析中,在检测AKI方面,血清CysC比SCr提早了约14小时,且CysC在肾脏功能恢复中早于Scr [6] 。与SCr相比,血清CysC对早期AKI更敏感,尿CysC对肾小管损伤有一定价值。然而,CysC的水平会受到年龄、性别、吸烟和饮酒等因素影响,这严重限制了它的广泛使用。

2.3. 中性粒细胞明胶酶相关脂质运载蛋白(Neutrophil Gelatinase-Associated Lipocalin, NGAL)

NGAL是脂质运载蛋白超家族的一种25 kDa糖蛋白,最初是在1993年从活化的中性粒细胞颗粒中分离和鉴定出来的 [7] 。在正常情况下,滤过的NGAL几乎完全被近端肾小管重吸收,尿中NGAL水平较低。在肾小管损伤后,尿NGAL可在2~3小时内被检测到,在损伤6小时后可达到峰值,该水平能持续约5天。血、尿NGAL水平均有预测AKI的价值,甚至具有判断是否需要透析及死亡的价值,也是随访AKI恢复情况的指标。NGAL也是危重病人、肾移植病人和心脏手术后AKI发生的一个预测因子 [8] 。Mishra等对心脏手术后患者的尿NGAL进行了评估,发现尿NGAL具有高度敏感性,最早可在术后2小时预测AKI,特异性为0.98,截止值为50 μg/L [9] 。然而,NGAL对肾损伤并不是特异性的,在应激时也可从其他组织中分泌。

2.4. 肾损伤分子-1 (Kidney Injury Molecule 1, KIM-1)

KIM-1是免疫球蛋白基因超家族的成员,是一种38.7 kDa的跨膜糖蛋白 [10] 。KIM-1于2002年首次被发现,正常肾脏中基础表达较低。在动物模型中,KIM-1已被证明与肾小管损伤的严重程度相关 [11] 。Han等研究发现,AKI患者的尿液中发现了KIM-1的表达 [12] 。Liangos等人研究了201例确诊AKI患者的尿KIM-1和N-乙酰-β-D-氨基葡萄糖苷酶(N-acetyl-beta-D-glucosaminidase, NAG),发现尿KIM-1和NAG水平升高与死亡或是否进行透析显著相关 [13] 。尿KIM-1被证明是近端肾小管损伤非常敏感和特异性的标记物,也可以区分缺血性急性肾小管坏死(Acute tubular necrosis, ATN)和肾前氮血症。然而,肾细胞癌患者也可以检出KIM-1水平升高,这可能会降低预测AKI的特异性。

2.5. 白细胞介素18 (Interleukin-18, IL-18)

IL-18是一种促炎细胞因子,有研究显示,尿IL-18是AKI的早期诊断标志物,可预测心脏手术后和ICU患者的死亡率 [14] 。在ATN患者的尿中IL-18浓度明显高于其他疾病患者(健康对照组、肾前氮质血症、尿路感染、CKD和肾病综合征患者) [15] 。然而,由于它是一种炎症标记物,在许多情况下,如败血症、内毒素血症和自身免疫性疾病等状态下均可迅速上升,其敏感性及特异性欠佳,这限制了临床运用。

2.6. 肝型脂肪酸结合蛋白(Liver-Fatty Acid-Binding Protein, L-FABP)

L-FABP是脂质结合蛋白超家族的成员,促进脂肪酸在细胞外膜和细胞内膜之间的转移。Susantitaphong等证实尿L-FABP可用于AKI诊断,敏感性为74.5%,特异性为77.6% [16] 。Noiri等研究表明,在不同动物AKI模型中,尿L-FABP优于BUN和尿NAG,缺血后1 h尿L-FABP就开始升高 [17] 。最近尿L-FABP在日本已被批准为AKI生物标志物 [18] 。虽然尿液L-FABP可能是早期检测AKI,预测透析需求和住院死亡率的一个有前途的生物标志物。但是,L-FABP作为AKI的标志物受一些已经存在的肾脏疾病,如糖尿病肾病,多囊肾,特发性局灶性肾小球硬化等影响。同时,L-FABP主要在肝脏产生,在合并肝脏疾病时L-FABP的表达同样受到影响,因此其特异性并不高。

2.7. N-乙酰-β-D-氨基葡萄糖苷酶(N-Acetyl-Beta-D-Glucosaminidase, NAG)

NAG是一种水解溶酶体酶,主要存在于近端肾小管中。因分子量较大不能从肾小球滤过,在肾近曲小管中浓度较高,尿液中浓度极低。当肾小管细胞受损时NAG从肾小管上皮细胞释放,使尿NAG浓度显著升高。因此,它可作为AKI的早期标志物。范亚平等研究发现体外循环心脏手术伴发AKI的患者术后18 h后即有尿NAG的升高,早于SCr的30~54 h [19] 。Westhuyzen等研究结果显示,NAG的测量有助于AKI的早期检测。尽管NAG的升高主要提示肾小管损伤,但各种病因的AKI均可检出NAG的分泌增加,比如在慢性肾脏病患者中NAG同样升高。

3. 新发现的早期诊断AKI的生物标志物

3.1. 肿瘤坏死因子受体(Tumor Necrosis Factor Receptor Type, TNFR)

肿瘤坏死因子-α有两个受体:TNFR1和TNFR2,其在细胞因子网络中有重要的调节作用 [20] 。研究表明,在1型和2型糖尿病患者和载脂蛋白风险变异患者中,TNFR1和TNFR2水平升高与进展性CKD和终末期肾病相关。有学者对心脏手术后患者进行研究,发现血浆中较高的TNFR-1与AKI后发生CKD和CKD进展的较高风险相关 [21] 。TNFR-1是一种非常敏感的标志物,研究表明TNFR-1在肾脏的肾小球和肾小管周围毛细血管内皮中表达,在内皮细胞功能障碍和炎症的发展中发挥作用,sTNFR-1浓度与肾脏疾病进展显著相关(95% CI) [22] 。它可能是一种比SCr上升更快更敏感的肾脏炎症标志物。

3.2. 尿调素(Uromodulin, UMOD)

UMOD又称tam-horsfall蛋白,由分布于肾Henle袢厚升支的肾小管上皮细胞表达,是健康个体尿液中最丰富的蛋白质 [23] 。有研究表明术前UMOD降低与术后AKI风险增加相关 [24] 。Bennett等人测量了101名接受心脏手术的术前UMOD指标,发现其对术后是否发生AKI的AUC为0.90 [25] 。此外,有研究显示UMOD可通过抑制单核细胞和巨噬细胞趋化性对近端肾小管的损伤有潜在保护作用 [26] 。

3.3. 骨桥蛋白(Osteopontin, OPN)

OPN是一种参与炎症反应的细胞外基质蛋白,在炎症环境下调节白细胞活化、迁移、分化以及细胞因子分泌 [27] 。OPN主要位于正常肾组织的髓袢和远端小管,但在损伤后可在所有肾小管和部分肾小球中表达上调,被认为是更普遍的肾小管损伤标志 [28] 。OPN可通过减少细胞凋亡,参与适应性修复,减少一氧化氮合酶和促进缺氧时的细胞存活在肾小管损伤中起保护作用。最近,Castello等人研究报告说,OPN血浆浓度是脓毒症的独立预测因子,血浆OPN水平与SCr呈正相关。OPN还可以预测低出生体重新生儿、移植排斥患者或应用肾毒性药物患者是否发生AKI [29] 。

3.4. 趋化因子(Chemokine)

趋化因子是一类在人体生理机能中发挥着重要作用的小分子蛋白,由免疫细胞和神经胶质细胞等分泌,具有化学趋化活性。单核细胞趋化蛋白-1 (monocyte chemotactic protein-1, MCP-1)是趋化因子CC亚家族(又称β亚家族)成员之一,可招募单核细胞,释放生长因子并促进血管内皮的粘附。Moledina等人测量了心脏手术术前和术后MCP-1水平,以评估围手术期MCP-1水平与AKI和死亡的关系,发现较高的MCP-1与心脏手术后AKI的发生和死亡风险具有相关性 [30] 。同时,在顺铂诱导的肾毒性动物模型中发现,尿MCP-1与AKI密切相关 [30] 。因此,建议MCP-1可作为一种生物标志物用于识别潜在AKI的高危患者。

3.5. DKK-3 (Dickkopf 3)

DKK-3是应激诱导的、唯一由近端小管上皮细胞分泌的Wnt/β-catenin通路的控制器,其在尿液中的浓度可以作为肾损伤早期阶段的生物标志物。Luft等调查了心脏手术后患者的DKK-3与AKI的关联,发现尿中高DKK-3对肾功能显著降低和中位随访820天后GFR降低独立相关。因此,结论是DKK-3是一个独立的预测AKI风险和肾功能进一步损伤的指标 [31] 。DKK-3可以在事件之前预测AKI,这是与其他标志物相比具有独一无二的优势。

3.6. MicroRNAs (miRNAs)

miRNAs是内源性的约19~23个核苷酸的单链非编码mRNA,对各种细胞生物学功能(增殖、分化、代谢和凋亡)的转录后调控至关重要。在过去的几年里研究人员发现,miRNA不仅是AKI的新型生物标志物,还能成为AKI治疗的潜在靶点。Aguado-Fraile等在AKI患者和健康对照的血清样本中鉴定出10多种差异表达的miRNA,具有作为AKI未来生物标志物的巨大潜力 [32] 。有研究显示,AKI患者中miRNA-210和miRNA-320上调,且miRNA-210能够预测死亡率。Gaede等研究表明,miRNA-21的术前基线值可预测心脏手术后AKI [33] 。由此可见,miRNAs是AKI潜在的诊断和治疗工具,但将miRNAs应用于临床实践还需进一步的实验研究,以获得更加简单、快速的检测方法。

3.7. 血管紧张素原(Angiotensinogen, AGT)

AGT是肾素-血管紧张素系统最上游的物质,正常情况下,AGT不能通过肾小球滤过,因此,其指标的升高是反映肾脏肾素-血管紧张素系统活化的有效指标。有动物研究证明,缺血性AKI早期尿AGT水平显著升高,而持续激活的肾素-血管紧张素系统是诱发AKI发展的重要因素 [34] 。Yang等研究表明,尿AGT可预测急性失代偿性心力衰竭患者的AKI,AUC值为0.84,优于尿NGAL,且尿AGT可独立预测患者出院后1年死亡和再住院的风险,但其对其他类型AKI (如缺血性AKI、药物性AKI等的预测价值尚不明确 [35] 。在一项对急性失代偿性心力衰竭患者的前瞻性研究发现,尿AGT对AKI进展的预测优于NGAL、IL-18和KIM-1,AUC值为0.78,预测死亡的AUC为0.85 [35] 。另一项研究表明尿AGT/肌酐比值可预测心脏手术患者的预后(AKI III期或死亡),AUC值为0.75。尿AGT还可动态监测ATN患者肾脏恢复情况,并作为AKI慢性肾脏病进展和治疗的早期预测因子。

3.8. 细胞周期生物标志物如胰岛素样生长因子结合蛋白-7 (Insulin Like Growth Factor Binding Protein 7, IGFBP-7)和基质金属蛋白酶组织抑制剂-2 (Tissue Inhibitor of Matrix Metalloproteinases 2, TIMP-2)

TIMP-2和IGFBP-7均为G1细胞周期阻滞蛋白,通过阻断细胞周期蛋白依赖性蛋白激酶复合物的作用,在G1细胞周期停滞的早期细胞应激中起作用,可以在24小时内检测引起AKI的缺血或毒性细胞损伤,被称为肾肌钙蛋白。有研究发现,TIMP-2和IGFBP-7在缺血性和肾毒性AKI发生的24小时内表达就开始升高,以防止进一步的细胞分裂和DNA损伤。因此,Kashani等将TIMP-2和IGFBP-7作为AKI标记物 [36] 。

4. 结论

综上所述,越来越多的生物标志物用于AKI患者的早期诊断及进展或恢复的预测,这在精准医学时代具有极其重要的意义;但是没有一种生物标记物对AKI具有真正的特异性。并且,没有足够的外部验证或临床预测模型表明某一生物标志物的使用前景。因此寻找更好的生物标记物并通过大型临床研究彻底验证其适当用途和临床意义仍是一项持续的探索。

基金项目

济宁医学院附属医院博士科研基金(2020-BS-014)。

NOTES

*通讯作者。

参考文献

[1] Amaral Pedroso, L., Nobre, V., Dias Carneiro de Almeida, C., et al. (2020) Acute Kidney Injury Biomarkers in the Crit-ically Ill. Clinica Chimica Acta, 508, 170-178.
https://doi.org/10.1016/j.cca.2020.05.024
[2] Lombi, F., Muryan, A., Canzonieri, R. and Trimarchi, H. (2016) Biomarkers in Acute Kidney Injury: Evidence or Paradigm? Nefrologia, 36, 339-346.
[3] Rule, A.D., Larson, T.S., Bergstralh, E.J., Slezak, J.M., Jacobsen, S.J. and Cosio, F.G. (2004) Using Serum Creatinine to Estimate Glomerular Filtration Rate: Accuracy in Good Health and in Chronic Kidney Disease. An-nals of Internal Medicine, 141, 929-937.
https://doi.org/10.7326/0003-4819-141-12-200412210-00009
[4] Zhou, C., Chen, Y., He, X. and Xue, D. (2022) The Value of Cystatin C in Predicting Perioperative and Long-Term Prognosis of Renal Transplantation. Scandinavian Journal of Clinical and Laboratory Investigation, 82, 1-5.
[5] Zhang, Z., Lu, B., Sheng, X. and Jin, N. (2011) Cystatin C in Prediction of Acute Kidney Injury: A Systemic Review and Me-ta-Analysis [Published Correction Appears in Am J Kidney Dis. 2012 Apr; 59(4): 590-2]. American Journal of Kidney Diseases, 58, 356-365.
https://doi.org/10.1053/j.ajkd.2011.02.389
[6] Hoste, E.A., Clermont, G., Kersten, A., et al. (2006) RIFLE Criteria for Acute Kidney Injury Are Associated with Hospital Mortality in Critically Ill Patients: A Cohort Analysis. Critical Care, 10, R73.
[7] Mao, S., Jiang, T., Shang, G., Wu, Z. and Zhang, N. (2011) Increased Expression of Neutrophil Gelatinase-Associated Lipocalin Receptor by Interleukin-1β in Human Mesangial Cells via MAPK/ERK Activation. International Journal of Molecular Medicine, 27, 555-560.
[8] Matsa, R., Ashley, E., Sharma, V., Walden, A.P. and Keating, L. (2014) Plasma and Urine Neutrophil Gelatinase-Associated Lipocalin in the Diagnosis of New Onset Acute Kidney Injury in Critically Ill Patients. Critical Care, 18, R137.
[9] Liebetrau, C., Dörr, O., Baumgarten, H., et al. (2013) Neutrophil Gelatinase-Associated Lipocalin (NGAL) for the Early Detection of Cardiac Surgery Associated Acute Kidney Injury. Scandinavian Journal of Clinical and Laboratory Investigationt, 73, 392-399.
https://doi.org/10.3109/00365513.2013.787149
[10] Ghasemi, H., Einollahi, B., Kheiripour, N., Hosseini-Zijoud, S.R. and Farhadian Nezhad, M. (2019) Protective Effects of Curcumin on Diabetic Nephropathy via Attenuation of Kid-ney Injury Molecule 1 (KIM-1) and Neutrophil Gelatinase-Associated Lipocalin (NGAL) Expression and Alleviation of Oxidative Stress in Rats with Type 1 Diabetes. Iranian Journal of Basic Medical Sciences, 22, 376-383.
[11] Vaidya, V.S., Ozer, J.S., Dieterle, F., et al. (2010) Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney In-jury in Preclinical Biomarker Qualification Studies. Nature Biotechnology, 28, 478-485.
https://doi.org/10.1038/nbt.1623
[12] Jin, Y., Shao, X., Sun, B., Miao, C., Li, Z. and Shi, Y. (2017) Urinary Kid-ney Injury Molecule-1 as an Early Diagnostic Biomarker of Obstructive Acute Kidney Injury and Development of a Rapid Detection Method. Molecular Medicine Reports, 15, 1229-1235.
https://doi.org/10.3892/mmr.2017.6103
[13] Yin, W., Kumar, T., Lai, Z., et al. (2019) Kidney Injury Molecule-1, a Sensitive and Specific Marker for Identifying Acute Proximal Tubular Injury, Can Be Used to Predict Renal Functional Recovery in Native Renal Biopsies. International Urology and Nephrology, 51, 2255-2265.
https://doi.org/10.1007/s11255-019-02311-1
[14] Zheng, J., Xiao, Y., Yao, Y., et al. (2013) Comparison of Uri-nary Biomarkers for Early Detection of Acute Kidney Injury after Cardiopulmonary Bypass Surgery in Infants and Young Children. Pediatric Cardiology, 34, 880-886.
https://doi.org/10.1007/s00246-012-0563-6
[15] Malyszko, J., Lukaszyk, E., Glowinska, I. and Durlik, M. (2015) Biomarkers of Delayed Graft Function as a Form of Acute Kidney Injury in Kidney Transplantation. Scientific Reports, 5, Article No. 11684.
https://doi.org/10.1038/srep11684
[16] Bhosale, S.J. and Kulkarni, A.P. (2020) Biomarkers in Acute Kidney Injury. Indian Journal of Critical Care Medicine, 24, S90-S93.
[17] Doi, K., Katagiri, D., Negishi, K., et al. (2012) Mild Eleva-tion of Urinary Biomarkers in Prerenal Acute Kidney Injury. Kidney International, 82, 1114-1120.
https://doi.org/10.1038/ki.2012.266
[18] Asada, T., Isshiki, R., Hayase, N., et al. (2016) Impact of Clinical Context on Acute Kidney Injury Biomarker Performances: Differences between Neutrophil Gelatinase-Associated Lipocalin and L-Type Fatty Acid-Binding Protein. Scientific Reports, 6, Article No. 33077.
https://doi.org/10.1038/srep33077
[19] 范亚平, 俞燕. 急性肾损伤生物学标志物的研究进展[J]. 中华肾脏病杂志, 2008(7): 517-521.
[20] Zhang, Q. and Steinle, J.J. (2014) IGFBP-3 Inhibits TNF-α Production and TNFR-2 Signaling to Protect against Retinal Endothelial Cell Apoptosis. Microvascular Research, 95, 76-81.
https://doi.org/10.1016/j.mvr.2014.07.009
[21] Schrauben, S.J., Shou, H., Zhang, X., et al. (2021) Association of Multiple Plasma Biomarker Concentrations with Progression of Prevalent Diabetic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Journal of the American Society of Nephrology, 32, 115-126.
https://doi.org/10.1681/ASN.2020040487
[22] Bhatraju, P.K., Zelnick, L.R., Shlipak, M., Katz, R. and Kestenbaum, B. (2018) Association of Soluble TNFR-1 Concentrations with Long-Term Decline in Kidney Function: The Multi-Ethnic Study of Atherosclerosis. Journal of the American Society of Nephrology, 29, 2713-2721.
https://doi.org/10.1681/ASN.2018070719
[23] Stringer, S., Basnayake, K., Hutchison, C. and Cockwell, P. (2011) Recent Advances in the Pathogenesis and Management of Cast Nephropathy (Myeloma Kid-ney). Bone Marrow Research, 2011, Article ID: 493697.
https://doi.org/10.1155/2011/493697
[24] Garimella, P.S., Jaber, B.L., Tighiouart, H., et al. (2017) Association of Preoperative Urinary Uromodulin with AKI after Cardiac Surgery. Clinical Journal of the American Society of Nephrol-ogy, 12, 10-18.
https://doi.org/10.2215/CJN.02520316
[25] Bennett, M.R., Pyles, O., Ma, Q. and Devarajan, P. (2018) Preopera-tive Levels of Urinary Uromodulin Predict Acute Kidney Injury after Pediatric Cardiopulmonary Bypass Surgery. Pedi-atric Nephrology, 33, 521-526.
https://doi.org/10.1007/s00467-017-3823-0
[26] Wen, Y. and Parikh, C.R. (2021) Current Concepts and Advances in Biomarkers of Acute Kidney Injury. Critical Reviews in Clinical Laboratory Sciences, 58, 354-368.
https://doi.org/10.1080/10408363.2021.1879000
[27] Bonnans, C., Chou, J. and Werb, Z. (2014) Remodelling the Extracellular Matrix in Development and Disease. Nature Reviews Molecular Cell Biology, 15, 786-801.
https://doi.org/10.1038/nrm3904
[28] Pais, G.M., Avedissian, S.N., O’Donnell, J.N., et al. (2019) Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Time-Line of Injury. Antimi-crobial Agents and Chemotherapy, 63, e00079-19.
[29] Ibrahim, M.E., Chang, C., Hu, Y., et al. (2019) Pharmacokinet-ic Determinants of Cisplatin-Induced Subclinical Kidney Injury in Oncology Patients. European Journal of Clinical Pharmacology, 75, 51-57.
https://doi.org/10.1007/s00228-018-2552-z
[30] Moledina, D.G., Isguven, S., McArthur, E., et al. (2017) Plasma Monocyte Chemotactic Protein-1 Is Associated with Acute Kidney Injury and Death after Cardiac Operations. The An-nals of Thoracic Surgery, 104, 613-620.
https://doi.org/10.1016/j.athoracsur.2016.11.036
[31] Luft, F.C. (2021) Biomarkers and Predicting Acute Kidney Injury. Acta Physiologica, 231, e13479.
[32] Aguado-Fraile, E., Ramos, E., Conde, E., Rodríguez, M., Liaño, F. and García-Bermejo, M.L. (2013) MicroRNAs in the Kidney: Novel Biomarkers of Acute Kidney Injury. Nefrologia, 33, 826-834.
[33] Gaede, L., Liebetrau, C., Blumenstein, J., et al. (2016) Plasma microRNA-21 for the Early Prediction of Acute Kidney Injury in Patients Undergoing Major Cardiac Surgery. Nephrology Dialysis Transplantation, 31, 760-766.
https://doi.org/10.1093/ndt/gfw007
[34] Kim, K.S., Yang, H.Y., Song, H., et al. (2017) Identification of a Sensitive Urinary Biomarker, Selenium-Binding Protein 1, for Early Detection of Acute Kidney Injury. Journal of Toxicology and Environmental Health, Part A, 80, 453-464.
https://doi.org/10.1080/15287394.2017.1299655
[35] Kashani, K., Cheungpasitporn, W. and Ronco, C. (2017) Biomarkers of Acute Kidney Injury: The Pathway from Discovery to Clinical Adoption. Clinical Chemistry and Labor-atory Medicine, 55, 1074-1089.
https://doi.org/10.1515/cclm-2016-0973
[36] Wetz, A.J., Richardt, E.M., Wand, S., et al. (2015) Quantification of Urinary TIMP-2 and IGFBP-7: An Adequate Diagnostic Test to Predict Acute Kidney Injury after Cardiac Surgery? Critical Care, 19, 3.
https://doi.org/10.1186/s13054-014-0717-4