LINC00511调控miRNA促进癌症的进展
LINC00511 Regulates miRNAs to Promote Cancer Progression
DOI: 10.12677/ACM.2022.1271002, PDF, HTML, XML, 下载: 353  浏览: 460 
作者: 李 伟, 成 雨, 马维杰:滨州医学院烟台附属医院,山东 烟台
关键词: LINC00511肿瘤长链非编码RNA竞争性内源性RNALINC00511 Cancer lncRNA ceRNA
摘要: 癌症是全球第二大最常见的死亡原因,癌症的发生是由于改变细胞增殖、分化和死亡的正常程序的关键基因突变的积累,研究致癌基因将有助于寻找癌症早期诊断及治疗的新途径。长期以来,lncRNA被认为是RNA聚合酶转录过程中形成的非功能性产物,随着医学技术的发展,lncRNA在生理和病理过程中发挥着重要作用,受到了广泛的关注,lncRNA被认为是调控肿瘤微环境的关键因子,是肿瘤治疗的靶点。LINC00511是一种新发现的lncRNA,并作为致癌基因在癌症中有上调,具有调控mRNAs的功能并参与调控癌症的增殖、侵袭和转移并导致患者的预后不良。
Abstract: Cancer is the second most common causes of death in the world. Cancer occurs due to the accumula-tion of key gene mutations that change the normal process of cell proliferation, differentiation and death. Research on oncogenes will help find new ways of early diagnosis and treatment of cancer. For a long time, lncRNA has been regarded as a non-functional product formed during the tran-scription process of RNA polymerase. With the development of medical technology, lncRNA plays an important role in the physiological and pathological processes, and has received extensive atten-tion. lncRNA is considered to be a regulation. The key factor of tumor microenvironment is the tar-get of tumor treatment. LINC00511 is a newly discovered lncRNA and is up-regulated as an onco-gene in cancer. It may have the function of regulating mRNAs and participate in the regulation of cancer proliferation, invasion and metastasis and lead to poor prognosis of patients.
文章引用:李伟, 成雨, 马维杰. LINC00511调控miRNA促进癌症的进展[J]. 临床医学进展, 2022, 12(7): 6953-6962. https://doi.org/10.12677/ACM.2022.1271002

1. 引言

长链非编码RNA (long non-coding RNA, lncRNA)是一种总长度超过200个核苷酸,并且不参与编码蛋白质的RNA,它与微小RNA (microRNA, miRNA)共同组成了转录组中的大部分。由于不编码蛋白,lncRNA曾经被认为是“基因表达和转录的垃圾”。然而,越来越多的研究成果已经证实了lncRNA在染色质和基因组结构重塑、RNA稳定和转录调控中发挥着重要作用,是调控肿瘤微环境的关键因子和治疗的靶点 [1] [2] [3]。LncRNA主要负责基因的转录和转录后调控,在参与基因和表观遗传修饰的同时,lncRNA也充当海绵,与miRNA结合,协同调控信使RNA (messenger RNA, mRNA)的表达,参与调控癌症的增殖、侵袭和转移并导致患者的预后不良 [4] [5]。

长基因间非编码RNA00511 (long intergenic non-protein coding RNA 511, LINC00511)是一个长度为2265 bp的lncRNA,定位于染色体17q24.3,具有5个外显子。近期研究发现LINC00511通过调控miRNAs的表达及活性广泛参与肿瘤发生的调控 [6] [7] [8]。

2. LINC00511与癌症

LINC00511在多种癌症中过表达,比如肝癌、乳腺癌、胃癌、肺癌、胶质瘤等,LINC00511的表达量与肿瘤的分期、大小、淋巴结转移和不良预后呈正相关,LINC00511可能作为一种新的癌症患者预后生物标志物 [9]。在体内外实验中,过表达LINC00511可以促进肿瘤的增殖、侵袭、迁移和耐药性,而敲低LINC00511可以抑制癌症的进展 [8] [10]。

3. LINC00511作为ceRNA调控miRNA

2011年,Salmena提出了一种新的非编码RNA (non-coding RNA, ncRNA)与mRNA之间的调控机制,即竞争性内源性RNA (competing endogenous RNA, ceRNA)假说 [11]。LncRNA可以发挥ceRNA的功能,通过竞争miRNA与mRNA相互作用,lncRNA像“海绵”一样降低miRNA的丰富度,从而调控miRNA对下游靶基因的抑制作用 [12] [13]。LncRNA-miRNA-mRNA的ceRNA调控网络在多种癌症中被证实发挥关键作用,如肝癌、胰腺癌、宫颈癌、膀胱癌等 [14] [15] [16] [17]。

3.1. miR-424

MiR-424在多种癌症中被证实为抑癌因子 [18] [19],miR-424在肝癌中表达下调 [20] [21]。LINC00511野生型质粒和miR-424模拟物共转染可显著降低HepG2和Huh7细胞的荧光素酶活性;而在转染LINC00511突变型质粒和miR-424模拟物的细胞中,荧光素酶活性没有变化。RNA结合蛋白免疫沉淀实验(RNA Binding Protein Immunoprecipitation Assay, RIP)检测证实LINC00511和miR-424均富集于免疫沉淀中。通过实时荧光定量PCR (Quantitative real-time PCR, qRT-PCR)检测不同处理后肝癌细胞中miR-424的表达水平,增强LINC00511的表达可显著抑制miR-424的表达水平,而沉默LINC00511可显著促进miR-424的表达水平,这表明miR-424是LINC00511的靶基因,而且LINC00511与miR-424的表达呈负相关 [22]。在卵巢癌中,双肾上腺皮质激素样激酶1 (Doublecortin-like kinase 1, DCLK1)高表达并促进肿瘤细胞迁移、侵袭和上皮间质转化(epithelial mesenchymal transition, EMT),miR-424可下调DCLK1的表达发挥抗癌作用 [23],上调LINC00511可能通过干扰miR-424而增加癌基因的表达 [10]。

3.2. miR-195

MiR-195作为抑癌基因,在多种癌症中的表达量减低 [24] [25]。在肝癌中,LINC00511作为ceRNA作用于miR-195而调控眼缺失家族蛋白1 (EYA transcriptional coactivator and phosphatase 1, EYA1)的表达。与正常肝脏相比,miR-195在肝癌表达量明显降低。OS曲线显示,高表达miR-195的患者有更好的生存率。相反,在肝癌组织中EYA1表达水平较高,且EYA1表达上调与预后不良相关。在体外实验中,下调miR-195促进了肝癌细胞扩散、集落形成,上调miR-195明显抑制增殖和集落形成。此外,在LINC00511基因敲除的基础上,下调miR-195或上调EYA1的表达使肝癌细胞行为恢复到正常水平。这表明LINC00511/miR-195对通过调控EYA1影响肝癌细胞的恶性侵袭性 [26]。富亮氨酸重复激酶1 (leucine-rich repeat kinase 1, LRRK1)是miR-195-5p的靶基因,在T细胞急性淋巴白血病中高表达,miR-195-5p通过弱化增殖和加速细胞凋亡来缓解白血病的进展,过表达LINC00511可引起LRRK1的表达量增高。下调LINC00511后,白血病细胞凋亡增强,LRRK1过表达抵消了LINC00511缺失对细胞凋亡的促进作用。LINC00511通过miR-195-5p/LRRK1轴促进T细胞急性淋巴白血病细胞增殖并抑制细胞凋亡 [5]。

3.3. miR-29b

MiR-29b和miR-29c也是LINC00511的潜在靶点 [15]。血管内皮生长因子A (vascular endothelial growth factor A, VEGFA)对肿瘤的增殖、侵袭和转移至关重要,miR-29b在癌症中作为肿瘤抑制因子,抑制VEGFA的表达 [27] [28]。在胰腺癌中,沉默LINC00511可显著降低VEGFA的蛋白表达,而下调miR-29b-3p可抵消沉默LINC00511引起的VEGFA的下调。这表明,LINC00511和VEGFA之间存在miR-29b-3p的竞争。LINC00511可抑制miR-29b-3p表达进而上调VEGFA。LINC00511/miR-29b-3p/VEGFA轴在胰腺癌的发生发展中起着关键作用 [29]。在胃癌中,转染si-LINC00511后miR-29b的表达量增高,并抑制胃癌细胞的增殖、侵袭和转移,下调miR-29b或上调赖氨酸去甲基化酶(lysine (K)-specific demethylase 2A, KDM2A)可以抵消si-LINC00511对胃癌细胞的影响,LINC00511竞争性结合miR-29b后上调KDM2A的表达,LINC00511通过靶向miR-29b/KDM2A轴促进胃癌的进展 [30]。不仅在癌症中,LINC00511/miR-29b同样参与非肿瘤疾病的进展。在子痫前期病人的胎盘组织中,LINC00511的表达量明显减少,LINC00511通过抑制miR-29b-3p增加高半胱氨酸蛋白61 (Cysteine-rich61, Cyr61)的表达,从而影响滋养层细胞的增殖、迁移和侵袭 [31]。

3.4. miR-29c

肝癌组织中LINC00511与miRNA-29c表达呈负相关。过表达LINC00511显著下调了Hep3B和Huh7细胞中miRNA-29c的水平,在肝癌细胞中过表达miRNA-29c下调了LINC00511的表达,并且部分逆转了LINC00511对肝癌的影响。从而明确了LINC00511与miRNA-29c在肝癌中的相互负向调节,miRNA-29c可能是LINC00511调控的肝癌恶性进展的关键基因 [8]。核因子1A (Nuclear Factor I A, NFIA)是miR-29c-3p在结直肠癌细胞中的下游靶基因,在多种肿瘤中具有致癌作用 [32] [33],沉默LINC00511后可导致结直肠癌细胞中miR-29c的表达量增高和NFIA的表达量减低,过表达NFIA抵消了沉默LINC00511对肿瘤的抑制作用。LINC00511-miR-29c-3p-NFIA轴参与调节结直肠癌细胞的干细胞性、活力、增殖、迁移和侵袭 [32]。周期蛋白激酶6 (cyclin-dependent kinases 6, CDK6)是miR-29c的靶点,在乳腺癌组织和细胞中,LINC00511和CDK6表达上调,而miR-29c表达下调,miR-29c与LINC00511、CDK6表达呈负相关,而LINC00511与CDK6表达呈正相关。上调miR-29c或下调LINC00511后CDK6表达量增高,紫杉醇对乳腺癌细胞的细胞毒性增强,下调CDK6可减弱抗miR-29c对乳腺癌细胞紫杉醇毒性的作用 [6]。

3.5. miR-185

MiR-185是LINC00511的潜在靶点 [34] [35] [36] [37],荧光素酶报告基因检测发现miR-185-3p与LINC00511之间存在很强的相关性。MiR-185-3p在乳腺癌MDA-MB-231和MCF-7细胞中的表达下降,miR-185-3p在沉默LINC00511后过表达,而在上调LINC00511后表达减少。转录因子E2F1 (E2F transcription factor 1, E2F1)的mRNA水平在乳腺癌细胞MDA-MB-231和MCF-7中表达增加,在抑制miR-185-3p或上调LINC00511后表达上调。提示LINC00511在乳腺癌细胞中以ceRNA的形式靶向miR-185-3p/E2F1 [35]。这一lncRNA-miRNA-mRNA ceRNA网络在骨肉瘤中也同样成立,qRT-PCR检测miR-185-3p和LINC00511在不同处理下的表达,miR-185-3p在转染si-LINC00511的骨肉瘤SW1353和U2OS细胞中的表达水平几乎是阴性对照组的3倍。转染miR-185-3p后骨肉瘤细胞中LINC00511和E2F1的表达量均明显低于对照组,转染si-LINC00511后,骨肉瘤细胞中E2F1的表达量降低了一半。双荧光素酶报告基因实验再次验证miR-185-3p与LINC00511的相关性,并明确了miR-185-3p与E2F1的3’-UTR之间的结合亲和力 [34]。TargetScan预测突触融合蛋白结合蛋白4 (syntaxin binding protein 4, STXBP4)是miR-185的下游靶点。在乳腺癌MDAMB-231和MDA-MB-436细胞中,LINC00511沉默后STXBP4的转录水平高度下调 [36]。此外,还有1项研究对乳腺癌患者血液的血液进行了检测,患者血清LINC00511过表达,而miR-185-3p表达量下调。并且LINC00511的表达与TNM临床分期和组织学分级之间存在显著差异,LINC00511的表达量与淋巴结转移、肿瘤更晚期分级以及肿瘤的侵袭性呈正相关 [37]。

3.6. miR-150

生物信息学分析表明miR-150是LINC00511的直接靶点 [38] [39] [40] [41]。双荧光素酶报告检测验证了miR-150与LINC00511之间的联系,并且提示基质金属蛋白酶13 (matrix metallopeptidase 13, MMP13)是miR-150的靶点。敲低LINC00511显著降低了MMP13蛋白水平,下调miR-150抵消了敲低LINC00511对MMP13的影响。沉默MMP13和过表达miR-150都可以降低乳腺癌细胞的增殖。提示LINC00511是乳腺癌的致癌基因,LINC00511-miR-150-MMP13轴参与调控乳腺癌的进展 [38]。在肺癌中,LINC00511表达量增高,miR-150-5p表达量减低,敲低LINC00511后,miR-150-5p的表达量显著增高。荧光素酶报告基因检测结果显示,miR-150-5p的过表达会降低野生型LINC00511的荧光素酶活性,而对突变型LINC00511没有影响。转录受体1 (Transcriptional Adaptor 1, TADA1)是miR-150-5p的下游靶点,两者的表达量呈负相关,敲低LINC00511后,TADA1的蛋白质水平显著下降,进一步过表达TADA1可以恢复被抑制的细胞增殖和迁移 [39]。在食管癌中,LINC00511与miR-150-5p的负向调节同样成立,LINC00511能够增强肿瘤细胞的侵袭能力,加速细胞复制,而miRNA-150-5p则具有相反的作用 [40]。在非肿瘤疾病中,LINC00511和miRNA还参与骨关节炎中软骨细胞的凋亡和增殖。LINC00511在白介素1β (Interleukin-1β, IL-1β)诱导的骨关节炎模型中表达量增高。在软骨细胞ATDC5中,给药IL-1β后可降低细胞增值、诱导细胞凋亡、降低II型胶原的表达,并加速MMP13和ADAMTS-5蛋白的表达;下调LINC00511可逆转IL-1β对软骨细胞的影响,增强了细胞的增殖能力,抑制细胞凋亡和细胞外基质合成 [41]。转录因子SP1 (Transcription factor SP1, SP1)是骨关节炎发病机制中的关键因素,参与调节软骨细胞增殖和软骨修复,SP1通过上调小鼠胶原α1 (XI)基因抑制软骨细胞的增殖 [42]。在敲除LINC00511后,miR-150-5p的表达量增高,同时SP1 mRNA表达量减少。此外,SP1可以靶向结合LINC00511的启动子位点1,过表达的SP1可加速其转录 [41]。

3.7. miR-124

MiR-124-3p在胃癌中表达量下调,具有抑制细胞增殖、加速细胞凋亡的功能 [4] [43] [44]。转染si-LINC00511的胃癌细胞中miR-124-3p表达增高,荧光素酶实验显示,LINC00511可以结合并负向调节miR-124-3p。过表达miR-124-3p可以在mRNA和蛋白质水平抑制丙酮酸脱氢酶激酶(Pyruvate Dehydrogenase Kinase 4, PDK4)的表达,miR-124-3p抑制剂逆转了LINC00511敲低后对胃癌细胞中PDK4的抑制。CCK-8实验和集落形成实验表明,过表达PDK4或下调miR-124-3p可部分逆转LINC00511下调对细胞增殖的抑制作用和对细胞凋亡的促进作用。表明LINC00511通过调控miR-124-3p/PDK4轴促进胃癌的进展 [4]。EZH2 (Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit)是一个致癌基因,在胃癌中过表达,并且其表达量与肿瘤分期、大小和转移呈正相关,miR-124-3p可以直接与EZH2结合,抑制其在胃癌中的蛋白表达。抑制EZH2可抑制细胞增殖和侵袭能力,抑制miR-124-3p得到相反的结果。LINC00511与EZH2的表达量呈正相关,敲低LINC00511后,EZH2的表达量也减低。表明LINC00511通过miR-124-3p/EZH2轴调控胃癌患者的增殖和侵袭 [43]。细胞周期蛋白D2 (Cyclin D2, CCND2)基因可能与miR-124-3p具有互补位点。将荧光素酶载体CCND2野生型和miR-124-3p转染到胶质瘤细胞后,荧光素酶活性降低。Western blot分析显示,miR-124-3p抑制剂转染后,CCND2在蛋白水平增加。此外,转染LINC00511 siRNA可以降低CCND2 mRNA水平,但LINC00511质粒激活了CCND2 mRNA的表达量。同时,与2.6中实验结果相同的是,转录因子SP1加速了LINC00511在胶质瘤细胞中的转录,SP1诱导LINC00511通过靶向miR-124-3p/CCND2轴加速胶质瘤的进展 [44]。

3.8. miR-625

MiR-625-5p作为一个抑癌基因在多种癌症中低表达。通过生物信息学分析LINC00511和miR-625-5p之间可能存在结合位点。qRT-PCR试验表明转染sh-LINC00511后miR-625-5p的表达上调。荧光素酶报告基因检测发现LINC00511靶向并负调控miR-625-5p [45] [46] [47] [48]。将miR-625-5p模拟物和miR-625-5p抑制剂分别转染到胃癌细胞中,核因子I/X (nuclear factor I/X, NFIX)的表达被miR-625-5p抑制剂增强,被miR-625-5p模拟物降低,表明NFIX是miR-625-5p的下游靶点,并且受到miR-625-5p的负调控。在体内外实验中,敲除LINC00511后,胃癌细胞凋亡增加、增殖减弱,过表达NFIX可以抵消敲除LINC00511对胃癌细胞的影响 [45]。免疫组化表明,信号传导及转录激活蛋白3 (signal transducer and activator of transcription 3, STAT3)在胃癌中高表达,且表达量与LINC00511呈正相关,高表达STAT3的患者预后不良。荧光素酶报告基因检测证实STAT3是miR-625-5p的下游靶基因,miR-625-5p模拟物下调STAT3的表达,miR-625-5p抑制剂促进STAT3的表达;而过表达LINC00511显著提高了STAT3的表达,敲除LINC00511则相反。提示LINC00511-miR-625-5p-STAT3轴参与调控胃癌的细胞凋亡、增殖和迁移 [46]。Targetscan和荧光素酶报告基因检测均证实丙酮酸激酶同工酶2 (Pyruvate kinase isozyme typeM2, PKM2)的3’UTR是miR-625-5p的直接靶点,PKM2的表达量与miR-625-5p负相关,与LINC00511正相关,且PKM2的表达量受到LINC00511和miR-625-5p的调控。转染si-LINC00511后,肺腺癌的增殖和侵袭受到抑制,PDL-1的表达量减低,进一步转染miR-625-5p抑制物和pcDNA-PKM2后,细胞增殖、侵袭和PDL-1的表达量均增强。这表明LINC00511作为ceRNA吸附miR-625-5p调控PKM2的表达来促进肺癌的进展 [47]。细胞周期蛋白D1 (Cyclin D1, CCND1)的3’UTR与miR-625的序列相匹配,荧光素酶报告基因检测表明,CCND1的3’-UTR可以被miR-625直接靶向。CCND1在肾透明细胞癌组织中上调,与miR-625表达呈负相关,miR-625可降低CCND1的mRNA和蛋白水平。过表达CCND1的抵消了上调miR-625后对肿瘤抑制作用 [48]。

3.9. miR-182

对顺铂有反应的肺癌患者获得的血样中LINC00511的表达水平低于无反应者,表明LINC00511介导肺癌患者对顺铂耐药。MiR-182在肺癌中低表达,过表达miR-182会延缓肺癌细胞的侵袭、迁移和对顺铂的耐药性。生物信息学分析、亚细胞分离试验、RNA下拉试验和启动子活性试验均表明,LINC00511作为ceRNA与miR-182相互作用。BIRC5 (Baculoviral IAP Repeat Containing 5)是一种凋亡相关因子,影响肺癌细胞的顺铂耐药性,并被miR-182靶向。LINC00511可以作为ceRNA,通过竞争共享的miR-182来促进BIRC5的表达,从而促进肺癌对顺铂的耐药 [49]。

3.10. miR-15a

MiR-15a-5p作为抑癌基因抑制胶质瘤和膀胱癌细胞的增殖和迁移,利用StarBase数据库进行生物信息学分析和双荧光素酶检测实验表明LINC00511靶向下调miR-15a-5p在肿瘤中的表达,LINC00511可通过抑制miR-15a-5p并加速肿瘤的恶性进展 [50] [51]。AE结合蛋白1 (AE Binding Protein 1, AEBP1)是miR-15a-5p的靶基因,其表达与胶质瘤的不良预后呈正相关,下调AEBP1会抑制胶质瘤细胞的增殖和侵袭。EMT是肿瘤转移的关键过程,AEBP1可以激活p65磷酸化,促进胶质瘤细胞中EMT相关蛋白的表达。AEBP1表达上调可部分逆转miR-15a-5p模拟物对胶质瘤细胞的影响,LINC00511通过miR-15a-5p/ AEBP1轴影响胶质瘤的发生发展 [50]。

3.11. miR-524

利用StarBase数据库进行生物信息学分析和双荧光素酶检测实验表明,LINC00511靶向下调miR-524-5p在多形性胶质母细胞瘤中的表达。沉默LINC00511显著降低了肿瘤细胞活力,与miR-524-5p抑制剂共转染后,细胞活力有一定恢复。转染si-LINC00511后肿瘤细胞中EMT相关蛋白的表达量、肿瘤迁移和侵袭均受抑制,并且可以通过共转染miR-524-5p抑制剂来恢复。证实LINC00511通过抑制miR-524-5p来增强多形性胶质母细胞瘤的进展 [52]。

3.12. miR-324

生物信息学分析、双荧光素酶报告和RIP检测均表明,miR-324-5p是LINC00511的一个靶点,而DNA 损伤调节自噬调节蛋白1 (DNA Damage Regulated Autophagy Modulator 1, DRAM1)是miR-324-5p的直接靶点。在宫颈癌中miR-324-5p表达下调,而DRAM1表达上调。LINC00511的表达量与宫颈癌组织中miR-324-5p呈负相关,与DRAM1呈正相关。过表达DRAM1可促进宫颈癌细胞的增殖和侵袭,并可被miR-324-5p模拟物或si-LINC00511逆转。LINC00511作为吸附miR-324-5p的ceRNA,调控DRAM1的表达,促进宫颈癌的增殖和侵袭 [53]。

3.13. miR-765

MiRbase数据库进行生物信息学分析和双荧光素酶检测证实miR-765是LINC00511的下游靶基因 [54] [55],miR-765对舌鳞状细胞癌细胞增殖、侵袭及细胞周期分布具有抑制作用,过表达LINC00511可以消除miR-765对肿瘤的抑制。层粘连蛋白亚基γ2 (Laminin Subunit Gamma 2, LAMC2)是miR-765的下游靶点,可被miR-765负调控,被LINC00511正向调控。沉默LAMC2可以显著抑制肿瘤细胞的迁移和侵袭,增加G0/G1细胞周期,LINC00511通过吸附miR-765、增加LAMC2的表达来促进舌鳞癌的进展 [54]。骨肉瘤细胞中,LINC00511表达的增高抑制了miR-765的表达,从而促进了脱嘌呤/脱嘧啶核酸内切酶1 (apurinic/apyrimidinic endonuclease 1, APE1)的表达。MiR-765在骨肉瘤细胞和样本中表达下调,过表达miR-765可以抑制骨肉瘤细胞的生长和迁移。LINC00511通过调控miR-765的表达促进骨肉瘤细胞生长、集落形成和迁移 [55]。但是APE1与miR-765是否具有相关性并不明确,LINC00511-miR-765-APE1能否构建ceRNA网络还需进一步明确。

3.14. miR-515

胃癌患者的miR-515-5p水平显著降低,并与总生存期负相关,miR-515-5p过表达显著抑制了LINC00511的荧光素酶活性,敲低LINC00511显著上调了胃癌细胞中的miR-515-5p,LINC00511可能与miR-515-5p相互作用并影响胃癌进展 [56]。一项研究表明,LINC00511的表达量会在心肌缺血再灌注损伤后呈时间依赖性减低,而miR-515-5p的表达量显著升高,双荧光素酶检测实验证实LINC00511和miR-515-5p的互相负向作用在心机缺血再灌注损伤中同样成立,LINC00511通过负向调节miRNA-515-5p水平,促进缺血再灌注后心肌细胞增殖 [7]。

4. 小结与展望

LINC00511是一种新发现的lncRNA,据报道在肺癌、乳腺癌、胰腺癌、宫颈癌、肝癌、卵巢癌和胶质瘤等多种癌症中均有上调并具有致癌功能。其作用机制包括促进增殖、调控细胞周期、促进癌细胞的侵袭、迁移、转移、诱导化疗耐药和抑制凋亡。本文共整理总结了14个LINC00511的靶基因,LINC00511作为ceRNA可以调控下游miRNA的表达量和活性,影响多种蛋白和因子的合成,进而促进癌症的进展。尽管LINC00511-miRNA-mRNA轴已经在癌症领域和部分非肿瘤疾病中得到证实,为癌症的早期诊断和诊疗提供了新的思路,但是很多肿瘤发生、发展的具体分子机制仍是未知,以及还没有特定的ceRNA互作网络被广泛应用到临床工作中,这些都需要我们进一步深入研究。

参考文献

参考文献

[1] Arun, G., Diermeier, S.D. and Spector, D.L. (2018) Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends in Molecular Medicine, 24, 257-277.
https://doi.org/10.1016/j.molmed.2018.01.001
[2] Patel, J.S., Hu, M., Sinha, G., Walker, N.D., Sherman, L.S., Gallagher, A., et al. (2016) Non-Coding RNA as Mediators in Microenvi-ronment-Breast Cancer Cell Communication. Cancer Letters, 380, 289-295.
https://doi.org/10.1016/j.canlet.2015.11.016
[3] Qiu, L., Wang, T., Xu, X., Wu, Y., Tang, Q. and Chen, K. (2017) Long Non-Coding RNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Regulation, Functions, and Underlying Mechanisms. International Journal of Molecular Sciences, 18, Article No. 2505.
https://doi.org/10.3390/ijms18122505
[4] Sun, C.B., Wang, H.Y., Han, X.Q., Liu, Y.N., Wang, M.C., Zhang, H.X., et al. (2020) LINC00511 Promotes Gastric Cancer Cell Growth by Acting as a ceRNA. World Journal of Gastro-intestinal Oncology, 12, 394-404.
https://doi.org/10.4251/wjgo.v12.i4.394
[5] Li, S., Guo, W., Geng, H., Wang, C., Yang, S. and Xu, X. (2020) LINC00511 Exacerbated T-Cell Acute Lymphoblastic Leukemia via miR-195-5p/LRRK1 Axis. Bioscience Reports, 40, BSR20193631.
https://doi.org/10.1042/BSR20193631
[6] Zhang, H., Zhao, B., Wang, X., Zhang, F. and Yu, W. (2019) LINC00511 Knockdown Enhances Paclitaxel Cytotoxicity in Breast Cancer via Regulating miR-29c/CDK6 Axis. Life Sciences, 228, 135-144.
https://doi.org/10.1016/j.lfs.2019.04.063
[7] Zhang, X., Liu, M.M., Guan, M.X., Li, T.T., Mei, L.L. and Cong, H.L. (2020) LINC00511 Accelerates the Proliferation of Cardiomyocytes after Myocardial Ischemia Reperfusion Injury by Absorbing miRNA-515-5p. European Review for Medical and Pharmacological Sciences, 24, 2062-2069.
[8] Hu, P., Cui, H., Lei, T., Li, S., Mai, E. and Jia, F. (2019) Linc00511 Indicates A Poor Prognosis Of Liver Hepatocellular Carcinoma. OncoTargets and Therapy, 12, 9367-9376.
https://doi.org/10.2147/OTT.S228231
[9] Agbana, Y.L., Abi, M.E., Ni, Y., Xiong, G., Chen, J., Yun F et al. (2020) LINC00511 as a Prognostic Biomarker for Human Cancers: a Systematic Review and Meta-Analysis. BMC Cancer, 20, Article No. 682.
https://doi.org/10.1186/s12885-020-07188-3
[10] Wang, K., Zhu, G., Bao, S. and Chen, S. (2019) Long Non-Coding RNA LINC00511 Mediates the Effects of ESR1 on Proliferation and Invasion of Ovarian Cancer Through miR-424-5p and miR-370-5p. Cancer Management and Research, 11, 10807-10819.
https://doi.org/10.2147/CMAR.S232140
[11] Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P.P. (2011) A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 146, 353-358.
https://doi.org/10.1016/j.cell.2011.07.014
[12] Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., et al. (2011) A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA. Cell, 147, 358-369.
https://doi.org/10.1016/j.cell.2011.09.028
[13] Karreth, F.A. and Pandolfi, P.P. (2013) CeRNA Cross-Talk in Cancer: When Ce-Bling Rivalries Go Awry. Cancer Discovery, 3, 1113-1121.
https://doi.org/10.1158/2159-8290.CD-13-0202
[14] Yao, J., Li, Z., Yang, Z., Xue, H., Chang, H., Zhang, X., et al. (2018) Long Noncoding RNA TOB1-AS1, an Epigenetically Silenced Gene, Functioned as a Novel Tumor Suppres-sor by Sponging miR-27b in Cervical Cancer. American Journal of Cancer Research, 8, 1483-1498.
[15] Wang, W., Lou, W., Ding, B., Yang, B., Lu, H., Kong, Q., et al. (2019) A Novel mRNA-miRNA-lncRNA Competing Endogenous RNA Triple Sub-Network Associated with Prognosis of Pancreatic Cancer. Aging, 11, 2610-2627.
https://doi.org/10.18632/aging.101933
[16] Jiao, D., Li, Z., Zhu, M., Wang, Y., Wu, G. and Han, X. (2018) LncRNA MALAT1 Promotes Tumor Growth and Metastasis by Targeting miR-124 foxq1 in Bladder Transitional Cell Carcinoma (BTCC). American Journal of Cancer Research, 8, 748-760.
[17] Yan, H., Wang, Q., Shen, Q., Li, Z., Tian, J., Jiang, Q., et al. (2018) Identification of Potential Transcription Factors, Long Noncoding RNAs, and Mi-croRNAs Associated with Hepatocellular Carcinoma. Journal of Cancer Research and Therapeutics, 14, S622-S627.
https://doi.org/10.4103/0973-1482.204846
[18] Zhang, J., Liu, H., Hou, L., Wang, G., Zhang, R., Huang, Y., et al. (2017) Circular RNA_LARP4 Inhibits Cell Proliferation and Invasion of Gastric Cancer by Sponging miR-424-5p and Regulating LATS1 Expression. Molecular Cancer, 16, 151.
https://doi.org/10.1186/s12943-017-0719-3
[19] Dastmalchi, N., Baradaran, B., Banan Khojasteh, S.M., Hosse-inpourfeizi, M. and Safaralizadeh, R. (2021) MiR-424: A Novel Potential Therapeutic Target and Prognostic Factor in Malignancies. Cell Biology International, 45, 720-730.
https://doi.org/10.1002/cbin.11530
[20] Teng, F., Zhang, J.X., Chang, Q.M., Wu, X.B., Tang, W.G., Wang, J.F., et al. (2020) LncRNA MYLK-AS1 Facilitates Tumor Progression and Angiogenesis by Targeting miR-424-5p/E2F7 Axis and Activating VEGFR-2 Signaling Pathway in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 39, 235.
https://doi.org/10.1186/s13046-020-01739-z
[21] Zhao, Y., Zhu, C., Chang, Q., Peng, P., Yang, J., Liu, C., et al. (2020) MiR-424-5p Regulates Cell Cycle and Inhibits Proliferation of Hepatocellular Carcinoma Cells by Targeting E2F7. PLOS ONE, 15, e0242179.
https://doi.org/10.1371/journal.pone.0242179
[22] Wang, R.P., Jiang, J., Jiang, T., Wang, Y. and Chen, L.X. (2019) Increased Long Noncoding RNA LINC00511 Is Correlated with Poor Prognosis and Contributes to Cell Prolif-eration and Metastasis by Modulating miR-424 in Hepatocellular Carcinoma. European Review for Medical and Phar-macological Sciences, 23, 3291-3301.
[23] Wu, X., Ruan, Y., Jiang, H. and Xu, C. (2017) MicroRNA-424 Inhibits Cell Migration, Invasion, and Epithelial Mesenchymal Transition by Downregulating Doublecortin-Like Kinase 1 in Ovarian Clear Cell Carcinoma. The International Journal of Biochemistry & Cell Biology, 85, 66-74.
https://doi.org/10.1016/j.biocel.2017.01.020
[24] Lin, X., Wang, S., Sun, M., Zhang, C., Wei, C., Yang, C., et al. (2019) MiR-195-5p/NOTCH2-Mediated EMT Modulates IL-4 Secretion in Colorectal Cancer to Affect M2-Like TAM Polarization. Journal of Hematology & Oncology, 12, 20.
https://doi.org/10.1186/s13045-019-0708-7
[25] Yang, R., Xing, L., Zheng, X., Sun, Y., Wang, X. and Chen, J. (2019) The circRNA circAGFG1 Acts as a Sponge of miR-195-5p to Promote Triple-Negative Breast Cancer Progression through Regulating CCNE1 Expression. Molecular Cancer, 18, 4.
https://doi.org/10.1186/s12943-018-0933-7
[26] Hu, W.Y., Wei, H.Y., Li, K.M., Wang, R.B., Xu, X.Q. and Feng, R. (2020) LINC00511 as a ceRNA Promotes Cell Malignant Behaviors and Correlates with Prognosis of Hepatocellular Carcinoma Patients by Modulating miR-195/ EYA1 Axis. Biomedicine & Pharmacotherapy, 121, Article ID: 109642.
https://doi.org/10.1016/j.biopha.2019.109642
[27] Szczyrba, J., Nolte, E., Hart, M., Doll, C., Wach, S., Taubert, H., et al. (2013) Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as Targets for MicroRNAs that Are Down-regulated in Prostate Carcinoma. International Journal of Cancer, 132, 775-784.
https://doi.org/10.1002/ijc.27731
[28] Chou, J., Lin, J.H., Brenot, A., Kim, J.W., Provot, S. and Werb, Z. (2013) GATA3 Suppresses Metastasis and Modulates the Tumour Microenvironment by Regulating MicroRNA-29b Expres-sion. Nature Cell Biology, 15, 201-213.
https://doi.org/10.1038/ncb2672
[29] Zhao, X., Liu, Y., Li, Z., Zheng, S., Wang, Z., Li, W., et al. (2018) Linc00511 Acts as a Competing Endogenous RNA to Regulate VEGFA Expression through Sponging Hsa-miR-29b-3p in Pancreatic Ductal Adenocarcinoma. Journal of Cellular and Molecular Medicine, 22, 655-667.
https://doi.org/10.1111/jcmm.13351
[30] Zhao, Y., Chen, X., Jiang, J., Wan, X., Wang, Y. and Xu, P. (2020) Ep-igallocatechin Gallate Reverses Gastric Cancer by Regulating the Long Noncoding RNA LINC00511/miR-29b/KDM2A Axis. Biochimica et Biophysica Acta—Mo- lecular Basis of Disease, 1866, Article ID: 165856.
https://doi.org/10.1016/j.bbadis.2020.165856
[31] Quan, X., Zhao, M., Yang, X., Zhu, Y. and Tian, X. (2019) AP2gamma Mediated Downregulation of lncRNA LINC00511 as a ceRNA Suppresses Trophoblast Invasion by Regu-lating miR-29b-3p/Cyr61 Axis. Biomedicine & Pharmacotherapy, 120, Article ID: 109269.
https://doi.org/10.1016/j.biopha.2019.109269
[32] Hu, Y., Zhang, Y., Ding, M. and Xu, R. (2020) LncRNA LINC00511 Acts as an Oncogene in Colorectal Cancer via Sponging miR-29c-3p to Upregulate NFIA. OncoTargets and Therapy, 13, 13413-13424.
https://doi.org/10.2147/OTT.S250377
[33] Yang, B., Zhou, Z.H., Chen, L., Cui, X., Hou, J.Y., Fan, K.J., et al. (2018) Prognostic Significance of NFIA and NFIB in Esophageal Squamous Carcinoma and Esophagogastric Junction Adenocarcinoma. Cancer Medicine, 7, 1756-1765.
https://doi.org/10.1002/cam4.1434
[34] Xu, J., Chen, G., Zhang, Y., Huang, Z., Cheng, X., Gu, H., et al. (2020) LINC00511 Promotes Osteosarcoma Tumorigenesis and Invasiveness through the miR-185-3p/E2F1 Axis. BioMed Re-search International, 2020, Article ID: 1974506.
https://doi.org/10.1155/2020/1974506
[35] Lu, G., Li, Y., Ma, Y., Lu, J., Chen, Y., Jiang, Q., et al. (2018) Long Noncoding RNA LINC00511 Contributes to Breast Cancer Tumour-igenesis and Stemness by Inducing the miR-185-3p/E2F1/Nanog Axis. Journal of Experimental & Clinical Cancer Re-search, 37, 289.
https://doi.org/10.1186/s13046-018-0945-6
[36] Liu, L., Zhu, Y., Liu, A.M., Feng, Y. and Chen, Y. (2019) Long Noncoding RNA LINC00511 Involves in Breast Cancer Recurrence and Radioresistance by Regulating STXBP4 Expression via miR-185. European Review for Medical and Pharmacological Sciences, 23, 7457-7468.
[37] Mahmoud, M.M., Sanad, E.F., Elshimy, R.A.A. and Hamdy, N.M. (2021) Competitive Endogenous Role of the LINC00511/miR-185-3p Axis and miR-301a-3p From Liquid Biopsy as Molecular Markers for Breast Can-cer Diagnosis. Frontiers in Oncology, 11, Article ID: 749753.
https://doi.org/10.3389/fonc.2021.749753
[38] Shi, G., Cheng, Y., Zhang, Y., Guo, R., Li, S. and Hong, X. (2021) Long Non-Coding RNA LINC00511/miR-150/ MMP13 Axis Promotes Breast Cancer Proliferation, Migration and Invasion. Biochimica et Biophysica Acta—Mole- cular Basis of Disease, 1867, Article ID: 165957.
https://doi.org/10.1016/j.bbadis.2020.165957
[39] Wu, Y., Li, L., Wang, Q., Zhang, L., He, C., Wang, X., et al. (2020) LINC00511 Promotes Lung Squamous Cell Carcinoma Proliferation and Mi-gration via Inhibiting miR-150-5p and Activating TADA1. Translational Lung Cancer Research, 9, 1138-1148.
https://doi.org/10.21037/tlcr-19-701
[40] Han, D., Yuan, R.X. and Su, F. (2020) LINC00511 Can Promote the Proliferation, Migration and Invasion of Esophageal Cancer Cells through Regulating MicroRNA-150-5p. European Re-view for Medical and Pharmacological Sciences, 24, 2462-2469.
[41] Zhang, Y., Dong, Q. and Sun, X. (2020) Positive Feedback Loop LINC00511/miR-150-5p/SP1 Modulates Chondrocyte Apoptosis and Proliferation in Osteoarthritis. DNA and Cell Biology, 39, 1506-1512.
https://doi.org/10.1089/dna.2020.5718
[42] Watanabe, K., Hida, M., Sasaki, T., Yano, H., Kawano, K., Yoshioka, H., et al. (2016) Sp1 Upregulates the Proximal Promoter Activity of the Mouse Collagen Alpha1(XI) Gene (Col11a1) in Chondrocytes. In Vitro Cellular & Developmental Biology, 52, 235-242.
https://doi.org/10.1007/s11626-015-9959-y
[43] Huang, H.G., Tang, X.L., Huang, X.S., Zhou, L., Hao, Y.G. and Zheng, Y.F. (2020) Long Noncoding RNA LINC00511 Promoted Cell Proliferation and Invasion via Regulating miR-124-3p EZH2 Pathway in Gastric Cancer. European Review for Medical and Pharmacological Sciences, 24, 4232-4245.
[44] Li, C., Liu, H., Yang, J., Yang, J., Yang, L., Wang, Y., et al. (2019) Long Noncoding RNA LINC00511 Induced by SP1 Accelerates the Glioma Progression through Targeting miR-124-3p/CCND2 Axis. Journal of Cellular and Molecular Medicine, 23, 4386-4394.
https://doi.org/10.1111/jcmm.14331
[45] Chen, Z., Wu, H., Zhang, Z., Li, G. and Liu, B. (2019) LINC00511 Accelerated the Process of Gastric Cancer by Targeting miR-625-5p/NFIX Axis. Cancer Cell International, 19, Article No. 351.
https://doi.org/10.1186/s12935-019-1070-0
[46] Cui, N., Sun, Q., Liu, H., Li, L., Guo, X., Shi, Y., et al. (2021) Long Non-Coding RNA LINC00511 Regulates the Expression of MicroRNA-625-5p and Activates Signal Transducers and Activators of Transcription 3 (STAT3) to Accelerate the Progression of Gastric Cancer. Bioengineered, 12, 2915-2927.
https://doi.org/10.1080/21655979.2021.1940611
[47] Xue, J. and Zhang, F. (2020) LncRNA LINC00511 Plays an Oncogenic Role in Lung Adenocarcinoma by Regulating PKM2 Expression via Sponging miR-625-5p. Thoracic Cancer, 11, 2570-2579.
https://doi.org/10.1111/1759-7714.13576
[48] Deng, H., Huang, C., Wang, Y., Jiang, H., Peng, S. and Zhao, X. (2019) LINC00511 Promotes the Malignant Phenotype of Clear Cell Renal Cell Carcinoma by Sponging MicroRNA-625 and Thereby Increasing Cyclin D1 Expression. Aging, 11, 5975-5991.
https://doi.org/10.18632/aging.102156
[49] Zhu, Z., Shi, Y., Gong, X., Li, J. and Zhang, M. (2022) LINC00511 Knockdown Suppresses Resistance to Cisplatin in Lung Adenocarcinoma by Interacting with miR-182-3p and BIRC5. Molecular Biotechnology, 64, 252-262.
https://doi.org/10.1007/s12033-021-00400-0
[50] Liu, Z., Tao, B., Li, L., Liu, P., Xia, K. and Zhong, C. (2021) LINC00511 Knockdown Suppresses Glioma Cell Malignant Progression through miR-15a-5p/AEBP1 Axis. Brain Re-search Bulletin, 173, 82-96.
https://doi.org/10.1016/j.brainresbull.2021.05.010
[51] Li, J., Li, Y., Meng, F., Fu, L. and Kong, C. (2018) Knockdown of Long Non-Coding RNA linc00511 Suppresses Proliferation and Promotes Apoptosis of Bladder Cancer Cells via Suppressing Wnt/Beta-Catenin Signaling Pathway. Bioscience Reports, 38, BSR20171701.
https://doi.org/10.1042/BSR20171701
[52] Du, X., Tu, Y., Liu, S., Zhao, P., Bao, Z., Li, C., et al. (2020) LINC00511 Contributes to Glioblastoma Tumorigenesis and Epithelial-Mesenchymal Transition via LINC00511/miR-524-5p/YB1/ZEB1 Positive Feedback Loop. Journal of Cellular and Molecular Medicine, 24, 1474-1487.
https://doi.org/10.1111/jcmm.14829
[53] Zhang, X., Wang, Y., Zhao, A., Kong, F., Jiang, L. and Wang, J. (2020) Long Non-Coding RNA LINC00511 Accelerates Proliferation and Invasion in Cervical Cancer through Targeting miR-324-5p/DRAM1 Axis. OncoTargets and Therapy, 13, 10245-10256.
https://doi.org/10.2147/OTT.S255067
[54] Ding, J., Yang, C. and Yang, S. (2018) LINC00511 Interacts with miR-765 and Modulates Tongue Squamous Cell Carcinoma Progression by Targeting LAMC2. Journal of Oral Pathol-ogy & Medicine, 47, 468-476.
https://doi.org/10.1111/jop.12677
[55] Yan, L., Wu, X., Liu, Y. and Xian, W. (2018) LncRNA Linc00511 Pro-motes Osteosarcoma Cell Proliferation and Migration through Sponging miR-765. Journal of Cellular Biochemistry, 120, 7248-7256.
https://doi.org/10.1002/jcb.27999
[56] Wang, D., Liu, K. and Chen, E. (2020) LINC00511 Promotes Proliferation and Invasion by Sponging miR-515-5p in Gastric Cancer. Cellular & Molecular Biology Letters, 25, 4.
https://doi.org/10.1186/s11658-020-0201-x