EGFR T790M位点突变型非小细胞肺癌耐药机制及耐药后的综合治疗
EGFR T790M Site-Mutated Non-Small Cell Lung Cancer Drug Resistance Mechanism and Comprehensive Treatment after Drug Resistance
摘要: 肺癌是目前发生率和死亡率最高的恶性肿瘤之一。非小细胞肺癌(non-small cell lung cancer, NSCLC)占肺癌发病总数的85%左右,其中约40%左右的患者存在表皮生长因子受体(epidermal growth factor receptor, EGFR)突变。表皮生长因子受体(epidermal growth factor receptor, EGFR)–酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKIs)是具有表皮生长因子受体(epidermal growth factor recep-tor, EGFR)基因敏感突变的晚期非小细胞肺癌患者的一线治疗药物,但大多数患者不可避免地会出现耐药问题。本文对EGFR T790M位点突变型非小细胞肺癌的耐药机制及耐药后治疗的研究进展进行综述。
Abstract: Lung cancer is one of the malignant tumors with the highest incidence and mortality at present. Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancer cases, and about 40% of patients have epidermal growth factor receptor (EGFR) mutations. Epidermal growth factor recep-tor-tyrosine kinase inhibitors (EGFR-TKIs) are first-line therapy for patients with advanced non- small cell lung cancer (NSCLC) who have EGFR-sensitive mutations, but most patients inevitably develop resistance problems. In this review, we reviewed the research progress of drug resistance mechanism and post-drug resistance treatment of EGFR T790M mutant non-small cell lung cancer.
文章引用:武卉淇, 马金华. EGFR T790M位点突变型非小细胞肺癌耐药机制及耐药后的综合治疗[J]. 临床医学进展, 2022, 12(7): 6872-6881. https://doi.org/10.12677/ACM.2022.127991

1. 引言

根据2020年全球男性及女性十大最常见癌症的发病率及死亡率总结来看肺癌位居前位,肺癌大致分为小细胞肺癌和非小细胞肺癌(non-small cell lung cancer, NSCLC),其中约85%的患者为非小细胞肺癌 [1]。而在非小细胞肺癌患者中70%的患者在初诊时已失去手术机会 [2]。以往对于无法手术的晚期患者,是以铂类为基础的全身化疗为主。近年来,随着靶向药物的研发,靶向治疗和免疫治疗逐渐成熟。靶向治疗可作用于许多靶点,即我们常说的驱动基因。而表皮生长因子受体(epidermal growth factor receptor, EGFR)是NSCLC中最常见的驱动基因之一 [1]。其中表皮细胞生长因子受体(epidermal growth factor receptor, EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKIs)可显著延长患者的OS,给非小细胞肺癌患者的治疗带来了希望 [3]。

2. EGFR T790M突变的发生

EGFR是上皮生长因子(epidermal growth factor, EGF)细胞增殖和信号传导的受体。EGFR表达于正常上皮细胞表面,而在一些肿瘤细胞中常过表达,而EGFR的过表达和肿瘤细胞的转移、浸润、预后差有关。EGFR基因突变是NSCLC东亚人群中最常见的驱动基因突变,其发生率为30%~40% [4]。对于EGFR突变阳性的患者,多项研究表明第一代如吉非替尼、厄洛替尼或第二代埃克替尼、阿法替尼等EGFR-TKIs药物在EGFR突变型晚期NSCLC患者中疗效优于传统以铂类药物为基础的化疗 [5] [6],大多数患者服用一代或二代EGFR-TKIs 9~14月后会产生耐药,耐药机制包括EGFR依赖性和非依赖性耐药。EGFR的20号外显子T790M突变是最常见的EGFR依赖性耐药机制,发生率高达50% [7]。T790M突变实际上就是碱基序列中第2369位的c (胞嘧啶)转变为t (胸腺嘧啶),从而使第790位的苏氨酸(T)转变为甲硫氨酸(M),但这种突变约占继发性耐药的60%左右。

3. EGFR-TKIs药物导致T790M突变产生的机制

3.1. 一代TKIs药物耐药

目前有关EGFR-TKIs获得性耐药的机制主要包括EGFR T790M突变(占50%~60%)、PIK3CA、BRAF等促癌基因激活突变以及MET/HER2扩增(占10%~20%)、MAPK、PI3K/AKT/mTOR等旁路通路激活,但仍有约20%的TKIs获得性耐药的机制尚未明确 [8]。

对于一代TKIs药物来说,目前普遍认同的是二次点突变学说,主要是T790M突变,此类多见于不吸烟的肺腺癌患者。此学说认为EGFR第20外显子在用一代TKIs药物治疗过程中发生二次突变,最常见的突变是EGFR 790位上的苏氨酸(T)被甲硫氨酸(M)取代。表皮生长因子受体苏氨酸(T)790是一个重要的氨基酸残基,它位于酪氨酸激酶接触反应核心之外,与一代TKIs药物的苯胺基团形成有高度亲和力的氢键,保证药物与酪氨酸激酶紧密结合从而发挥抗肿瘤作用。一旦苏氨酸(T)被甲硫氨酸(M)所取代,使得该位点上引入了一条较大的氨基酸侧链,从而构成更大的空间位阻,进而影响了酪氨酸激酶与一代TKIs药物间氢键的形成,最终导致药物无法与之结合,进而产生耐药 [9] [10] [11]。

3.2. 二代TKIs药物耐药

为克服T790M突变引起的继发性耐药,第二代EGFR-TKIs药物相继问世。它们的研发思路是进一步促进药物与ErbB受体网络形成共价结合,从而不可逆地、完全中断信号转导,带来持续且广谱的抗癌活性 [12] [13]。近年来许多学者为探究二代TKIs药物是否可预防T790M突变导致耐药的产生,进行了一系列的临床试验。这些临床试验证实,虽然阿法替尼在T790M突变NSCLC患者中获得更长的无病生存时间、更好的疾病缓解率等,但患者的总生存时间(overall survival, OS)却没有显著差异,这可能是因为一些T790M突变的NSCLC患者也会形成阿法替尼耐药,从而使阿法替尼的疗效明显降低 [14] [15]。Byong [16] 等人发现2-脱氧-D-葡萄糖(2-DEOXY-D-GLUCOSE, 2-DG)抑制糖酵解可提高阿法替尼在T790M突变NSCLC原代细胞的抑制作用,两药联合能导致肿瘤细胞内ATP耗竭,从而发挥协同抗肿瘤作用。该研究指出腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)的激活抑制哺乳动物雷帕毒素靶蛋白(mammalian target of rapamycin, mTOR)能下调MCL-1的表达,可能是2-DG增强阿法替尼抗EGFR T790M非小细胞肺癌细胞生长的潜在机制。

3.3. 三代TKIs药物耐药

第三代TKIs药物,对于EGFR阳性及EGFR T790M突变患者表现出优异的临床效果,但耐药性的发展也是不可避免的。其耐药机制可以为:表皮生长因子受体依赖性耐药机制,如:EGFR C797S突变、T790M减少或消失和EGFR基因扩增。非表皮生长因子受体依赖性耐药机制,如:旁路途径的激活和细胞表型的转变等 [13]。

3.3.1. EGFR C797S突变

靶向基因的持续突变是靶向治疗的主要耐药机制之一。EGFR C797S突变是目前报道最多的第三代EGFR-TKIs耐药机制之一 [17] [18],也是EGFR依赖性耐药机制之一。C797S是EGFR20号外显子797位点上丝氨酸(S)取代了半胱氨酸(C)的错义突变,C797S的突变使得EGFR-TKIs无法在ATP结合域内继续形成共价键,失去抑制EGFR激活的效果,导致耐药的发生。奥希替尼作为一线药物治疗NSCLC时,7%的奥希替尼耐药患者可检测出EGFR C797S突变;奥希替尼作为二线药物治疗NSCLC时,10%~26%的奥希替尼耐药患者可检测出EGFR C797S突变。在细胞中构建EGFR C797S突变也证实了该突变与奥希替尼耐药有关 [17] [19] [20]。同时一项奥希替尼治疗晚期EGFR突变NSCLC的患者进行的多中心回顾性研究中证实 [21],应用奥希替尼治疗后疾病进展的病例中,最常见的分子改变是C797S突变。

3.3.2. MET基因扩增

旁路激活是EGFR-TKIs获得性耐药的机制之一,MET基因扩增是旁路激活最常见的原因。MET基因扩增会使EGFR下游通路持续活化,如由丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)、信号转导和转录激活因子(signal transducer and activator of transcription, STAT)、磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase, PI3K)介导的与EGFR激活和信号传导无关的通路,从而导致奥希替尼获得性耐药 [22] [23] [24]。当奥希替尼作为一线药物治疗时,MET基因扩增是最常见的奥希替尼耐药机制,通过循环肿瘤DNA检测有15%的患者可出现MET基因扩增。利用组织检测估计会有更高的比例。当奥希替尼作为二线药物治疗时,MET基因扩增可以单独发生也可以与EGFR T790M突变同时发生 [24]。

3.3.3. HER2基因扩增

人表皮生长因子受体-2 (human epidermal growth factor receptor 2, HER2/ERBB2)属于表皮生长因子受体家族,通过与EGFR形成更加稳定的二聚体

激活PI3K/AKT和Ras/Raf/MEK/MAPK通路的相互关联的信号转导,参与调节细胞的生长、存活和分化。HER2和EGFR间接激活PI3K,并且HER2基因的扩增与获得性与EGFR-TKIs耐药有关,在产生耐药的EGFR突变的NSCLC患者中的发生率为12%。通过对奥希替尼耐药患者进行基因检测分析发现了HER2基因的扩增 [25],在PC9GR细胞系中过表达的HER2基因会降低细胞对奥希替尼的敏感性 [22]。

3.3.4. PI3K旁路激活

磷脂酰肌醇-3激酶/蛋白激酶B/哺乳动物雷帕霉素靶(phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin, PI3K/AKT/mTOR)信号通路在细胞自噬中起关键调控作用,调节细胞增殖、生长、细胞大小、代谢和运动,该通路的组成基因已被广泛研究,并发现在人类癌症中普遍被激活 [26]。PI3K途径的旁路激活可以通过PIK3CA基因突变或扩增和PTEN基因(gene of phosphate and tension homology deleted on chromosome ten, PTEN)缺失而发生 [27] [28]。在NSCLC中,与大多数致癌驱动基因突变的互斥性相反,PIK3CA突变与其他致癌驱动基因的突变并存 [28]。在已知的PIK3CA突变中,E545K、E524K、R88Q、N345K、E418K突变的发生频率为4%~11%,与奥希替尼二线治疗产生耐药有关,而且体外试验已经验证PIK3CA E545K可介导奥希替尼耐药 [29] [30]。

3.3.5. MAPK通路的改变

Ras/Raf/MEK/MAPK通路是EGFR重要的下游通路,近膜信号活化Ras,随后诱导Raf、MEK特异性激活MAPK,最终通过调节转录因子提高基因的表达水平。原癌基因Ras基因突变广泛存在于各种癌症的发生、发展之中,一直以来它都是癌症不良预后的预测指标。Ras的异常表达早已被证实是第一代EGFR-TKIs耐药的重要原因 [31] [32]。BRAF基因位于染色体7q34,编码丝氨酸/苏氨酸蛋白激酶,是RAF家族成员。BRAF蛋白与KRAS蛋白同为RAS-RAF-MEK-ERK信号通路中上游调节因子,使MEK蛋白磷酸化,随后的ERK蛋白磷酸化,激活参与细胞增殖和生存的相关基因。突变的BRAF蛋白增强了激酶的活性,可在体外转化。BRAF的突变或扩增也是EGFR-TKIs耐药的原因之一。胞外信号调节激酶(extracellular signal regulated kinase, ERK)作为MAPK家族的重要一员,ERK的磷酸化可以激活多种下游底物进入细胞核,并激活一系列核转录因子调节细胞增殖、凋亡相关因子转录。Ercan [33] 等提出,在EGFR T790M阳性的肿瘤细胞中,ERK信号异常激活是EGFR-TKIs耐药的可能机制。

3.3.6. 组织学的改变

从NSCLC到小细胞肺癌(small cell lung cancer, SCLC)的组织学转化是目前已知的导致第一代EGFR-TKIs产生耐药的机制,同时也是奥希替尼耐药的重要原因,4%~15%的患者可出现这种组织学转化,严重影响患者预后 [34] [35] [36] [37] [38]。有研究表明,NSCLC向SCLC转化时,抑癌基因RB1和TP53完全失活,提示失活的RB1和TP53基因是组织学转化的潜在诱因,因此,携带RB1失活基因的NSCLC患者接受治疗时应重点关注向SCLC转化的可能性 [39] [40]。同时,SCLC转化被认为可能是奥希替尼原发性耐药的一种机制 [34]。在接受奥希替尼或吉非替尼治疗产生耐药的患者细胞中发现了上皮间质化转变(Epithelial-mesenchymal transition, EMT)的特征,上皮细胞连接蛋白(如上皮钙黏素)减少,间充质(如波形蛋白)增加,而没有发现任何EGFR继发性突变 [41] [42]。奥希替尼的获得性耐药可能与EMT转录因子TWIST-1的过表达有关 [43]。

4. 三代TKIs药物治疗后耐药应对方案

4.1. EGFR-TKIs治疗C797S基因突变

C797S突变所在染色体的基因状态会影响后续治疗,临床前研究为制定后续治疗策略提供了指导。

4.1.1. C797S单突变

一线使用奥希替尼产生的耐药基因突变主要是C797S单突变(即仅有C797S突变,而没有T790M突变),C797S单突变对第三代TKIs药物耐药,但仍对一代或二代药物敏感 [20]。有病案报道,一名患者使用奥西替尼治疗后病情出现进展,再次行基因检测示19外显子及C797S突变,给予患者更换奥希替尼为吉非替尼后患者达到部分缓解。表示一线接受第三代TKIs治疗的C797S单突变患者,如产生耐药后,后续治疗可更换为第一代或第二代TKIs [3]。

4.1.2. C797S和T790M为顺式突变

若C797S和T790M突变为顺式结构(位于同一等位基因),没有TKIs单独或联合使用能抑制EGFR激活。最近的临床前研究表明,Brigatinib联合抗EGFR抗体克服了顺式C797S突变。Xiaofei Wang [44] 等人报告了第一个使用Brigatinib和西妥昔单抗联合治疗EGFR T790M和C797S顺式突变疗效的临床证据。该患者前期治疗进展后再次行基因检测示EGFR T790M/C797S (顺式)共突变,给予Brigatinib (90 mg QD)联合西妥昔单抗(600 mg/月)的治疗方案,1个月后患者疲劳和呼吸困难等症状明显改善,CA125水平明显下降。虽然在2018年4月患者出现脑转移灶,但在2018年9月,患者的胸部病灶依旧得到很好的控制。故Brigatinib联合抗EGFR抗体治疗可以克服因C797S和T790M顺式突变引起的耐药。

4.1.3. C797S和T790M为反式突变

若C797S和T790M突变为反式结构(位于不同等位基因),肿瘤对第三代TKIs耐药,但对第一代和第三代TKIs联合治疗敏感。Wu, Y.-L [45] 教授及其团队在全球首次在临床上证实了一代联合三代可以有效克制C797S反式突变。该研究中记录患者前期治疗进展后,再次行基因检测示19del、T790M、C797S共突变,C797S同时存在顺式突变及反式突变。因为C797S反式丰度较高,采用“厄洛替尼(150 mg/d)联合奥希替尼(160 mg/d)”治疗,第二天头痛及呕吐立马缓解。故第一代和第三代TKIs联合治疗可克服因C797S和T790M反式突变引起的耐药。

4.2. 第三代TKIs联合其他通路抑制剂

4.2.1. MET或HER2抑制剂

对MET或HER2基因扩增所致耐药的患者来说,可单独使用MET或HER2抑制剂,也可与第三代TKIs药物联合使用。临床前研究发现加用MET抑制剂后可提高患者对奥西替尼的敏感度 [46]。如G.R. Oxnard [47] 等人报道的TATTON研究旨在评估奥希替尼与其他靶向疗法如Savolitinib (MET-TKI; AZD6094, HMPL-504, volitinib)联合使用的安全性和耐受性,这可能会增强获得性EGFR-TKIs 的耐药性。Monica [48] 等人用曲妥珠单抗与奥希替尼连用后延缓了奥西替尼的耐药。

4.2.2. MEK抑制剂

使用MEK抑制剂总是不可避免的出现耐药。由于单一MEK抑制剂使用的局限性,耐药不可避免。目前新型MEK抑制剂和双通路抑制剂短缺,故联合用药较为可行。MEK抑制剂经常与AKT抑制剂或BRAF抑制剂联用,并在实验中取得了良好效果 [49]。虽然目前对于MEK抑制剂的研究取得了一定的效果,但对于个体化用药也提出了更高的要求。

4.2.3. BRAF抑制剂

BRAF为RAS-RAF-MEK-ERK信号通路中上游调节因子,突变的BRAF蛋白增强了激酶的活性,其中具有致癌以及治疗价值的是V600的突变,主要包括V600E和V600K突变。点的突变可引起下游活化致癌,占整体BRAF突变的一半。BRAF突变与EGFR、KRAS等突变相互独立和排斥,并不同时出现。已有临床研究证实在具有BRAFV600突变的肺癌患者中,双药联合方案达拉菲尼联合曲美替尼的疗效要优于单药。如经济无法承受或不良事件无法承担的情况下可以尝试单药治疗。

4.2.4. VEGFR抑制剂

血管内皮生长因子(vascular endothelial growth factor, VEGF)为血管抑制剂靶向药物,这类药物是通过抑制肿瘤细胞周围的血管生成,改变肿瘤生长的微环境,减少肿瘤细胞的营养获取,最终达到治疗的目的。目前对于非小细胞肺癌患者来说,获批的药物仅有贝伐珠单抗、雷莫芦单抗等,而贝伐珠单抗及雷莫芦单抗在实验中取得了良好的效果 [50]。目前对于VEGFR抑制剂更多临床试验正在进行中。

4.3. SCLC转化后治疗

SCLC转化可以在病程中的任何时间出现,Marcoux N [51] 指出患者SCLC转化最早在转移性肺癌诊断后2个月和最晚5年可见,但转化的中位时间为17.8个月。转化后临床行为在许多层面上与经典(EGFR 野生型)SCLC相似,对铂–依托泊苷有频繁但短暂的反应,患者中位总生存期为10.9个月。

4.4. EGFR 20外显子插入突变

Exon20insNSCLC患者对于目前常见的TKIs反应率很低,约0%~9%。Park K [52] 等人开展了CHRYSALIS研究,评估EGFR 20外显子插入突变的患者使用Amivantamab治疗的安全性和疗效。结果显示Amivantamab治疗EGFR 20外显子插入突变非小细胞肺癌(NSCLC)患者呈现出良好的抗肿瘤活性以及安全性。目前,这款双特异性抗体已经被我国国家药监局(NMPA)纳入突破性治疗品种,正在内地展开多项临床试验。EGFR20外显子耐药突变的治疗仍在不断探索中。

4.5. 其他治疗方案

4.5.1. 化疗 ± 奥希替尼

化疗 ± 奥希替尼用于奥希替尼一线治疗后进展、EGFR突变阳性NSCLC患者。COMPEL研究是一项随机、双盲的临床III期研究,旨在评估化疗 + 奥希替尼或化疗 + 安慰剂方案,用于奥希替尼一线治疗后病情进展(非中枢神经系统进展) EGFR突变阳性晚期NSCLC患者的有效性和安全性。研究主要终点为无进展生存期(progression-free survival, PFS),其它次要终点包括总生存期(OS)等。首例患者入组已完成,研究结果预计于2024年9月报告。Marcoux [51] 等发现对于耐药后没有可靶向的突变或耐药机制不详的患者,可选择顺铂/卡铂加紫杉醇/白蛋白紫杉醇/培美曲塞,加或不加贝伐珠单抗,持续4到6周期后,再使用培美曲塞、多西他赛或厄洛替尼单药维持治疗。联合治疗最终效果如何目前尚缺乏充分研究。

4.5.2. 免疫治疗的应用

免疫治疗单药能否成为患者对第三代TKIs耐药后的治疗策略仍需进一步研究。既往有回顾性分析表明,给有EGFR位点突变的患者使用单药抗PD-1抑制剂治疗后,患者预后仍不理想 [53]。随着免疫治疗的研究进展,对于第三代TKIs耐药的患者来说,免疫联合化疗也许是一种新的治疗思路。IMpower150研究免疫检查点抑制剂 + 化疗 + 抗血管生成药物的首个III期临床研究,2020年4月美国癌症研究协会(AACR)公布了该研究的最终结果,在标准治疗贝伐珠单抗 + 卡铂 + 紫杉醇中加用阿替利珠单抗似乎可以改善未经化疗转移性非鳞状NSCLC患者的总生存期(overall survival, OS),这是首个在经治EGFR突变和基线肝转移患者中显示潜力的治疗方案。该四药联合方案可能是关键亚组的潜在新疗法,尤其在EGFR TKIs治疗进展的敏感EGFR突变患者中。Oh [54] 等人报道了1名C797S耐药突变的患者使用2周期吉西他滨和顺铂化疗联合6周期帕博利珠单抗免疫治疗后,反复活检提示C797S突变消失。

5. 小结

根据目前研究进展来看EGFR-TKIs药物耐药机制较为复杂,第一代、二代、三代药物耐药机制大不相同,尤以第三代TKIs耐药机制为著,耐药机制复杂且仍有部分机制尚未完全明确。随着第三代TKIs奥希替尼的出现,三代TKIs在临床使用过程中较为广泛,故对于第三代TKIs的更多耐药机制及耐药后治疗仍在不断探索中,相信会有更多更好的药物不断出现。目前对于临床上使用EGFT-TKIs后进展的患者,我们仍建议患者再次行基因检测明确是否再次突变及突变位点,对于后续治疗我们要根据患者有无症状、进展模式及分子机制维度来考虑,才能制定出更合理的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Wu, Y.L., Zhong, W.Z., Li, L.Y., et al. (2007) Epidermal Growth Factor Receptor Mutations and Their Correlation with Gefitinib Therapy in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis Based on Updated Individual Patient Data from Six Medical Centers in Mainland China. Journal of Thoracic Oncology, 2, 430-439.
https://doi.org/10.1097/01.JTO.0000268677.87496.4c
[2] Siegel, R.L., Miller, K.D. and Jemal, A. (2016) Cancer Statistics, 2016. CA: A Cancer Journal for Clinicians, 66, 7-30.
https://doi.org/10.3322/caac.21332
[3] 何婧怡, 吴芳, 胡春宏. 第三代EGFR-TKIs治疗晚期非小细胞肺癌的耐药机制及应对策略研究进展[J]. 肿瘤防治研究, 2019, 46(10): 938-945.
[4] 中国临床肿瘤学会肿瘤生物标志物专家委员会, 《中国非小细胞肺癌患者EGFRT T790M基因突变检测专家共识》制定专家组. 中国非小细胞肺癌患者EGFR T790M基因突变检测专家共识[J]. 中华医学杂志, 2018, 98(32): 2544-2551.
[5] Nagano, T., Tachihara, M. and Nishimura, Y. (2018) Mechanism of Resistance to Epidermal Growth Factor Receptor- Tyrosine Ki-nase Inhibitors and a Potential Treatment Strategy. Cells, 7, Article No. 212.
https://doi.org/10.3390/cells7110212
[6] Lynch, T.J., Bell, D.W., Sordella, R., et al. (2020) Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. The New England Journal of Medicine, 350, 2129- 2139.
https://doi.org/10.1056/NEJMoa040938
[7] Mok, T.S., Wu, Y.L., Ahn, M.J., et al. (2017) Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. The New England Journal of Medicine, 376, 629-640.
https://doi.org/10.1056/NEJMoa1612674
[8] Matikas, A., Mistri-otis, D., Georgoulias, V., et al. (2015) Current and Future Approaches in the Management of Non- Small-Cell Lung Cancer Patients with Resistance to EGFR TKIs. Clinical Lung Cancer, 16, 252-261.
https://doi.org/10.1016/j.cllc.2014.12.013
[9] 赵佳, 陈建业, 汤建才. 非小细胞肺癌吉非替尼耐药机制及治疗研究进展[J]. 中国现代应用药学, 2017, 34(6): 923-927.
[10] Kobayashi, S., Boggon, T.J., Dayaram, T., et al. (2005) EGFR Mutation and Resistance of Non-Small-Cell Lung Cancer to Gefitinib. The New England Journal of Medi-cine, 352, 786-792.
https://doi.org/10.1056/NEJMoa044238
[11] Lin, L. (2010) Mechanisms of Drug Resistance to Gefifinib and Erlotinib. International Journal of Oncology, 37, 734-736.
[12] Park, K., Tan, E.H., O’Byrne, K., et al. (2016) Afatinib versus Gefitinib as First-Line Treatment of Patients with EGFR Mutation-Positive Non-Small-Cell Lung Cancer (LUX-Lung 7): A Phase 2B, Open-Label, Randomised Controlled Trial. The Lancet Oncology, 17, 577-589.
https://doi.org/10.1016/S1470-2045(16)30033-X
[13] 侯冉, 胡泊, 史健. EGFR T790M突变在非小细胞肺癌中的研究进展[J]. 肿瘤防治研究, 2020, 47(6): 471-476.
[14] Mukohara, T., Engelman, J.A., Hanna, N.H., et al. (2005) Differential Effects of Gefitinib and Cetuximab on Non- Small-Cell Lung Cancers Bearing Epidermal Growth Factor Receptor Mutations. Journal of the National Cancer Institute, 97, 1185-1194.
[15] Okabe, T., Okamoto, I., Tsu-kioka, S., et al. (2009) Addition of S-1 to the Epidermal Growth Factor Receptor Inhibitor Gefitinib Overcomes Gefitinib Resistance in Non-Small Cell Lung Cancer Cell Lines with MET Amplification. Clinical Cancer Research, 15, 907-913.
[16] Cho, B.C., Kim, H.J. and Sun, M.L. (2013). Abstract 5408: Enhancement of the Anti-Tumor Activity of Afatinib by Inhibition of Glycolysis in Non-Small Cell Lung Cancer Harboring the EGFR T790M Mutation. Cancer Re-search, 73, 5408.
https://doi.org/10.1158/1538-7445.AM2013-5408
[17] Thress, K.S., Paweletz, C.P., Felip, E., Cho, B.C., Stetson, D., Dougherty, B., Lai, Z., Markovets, A., Vivancos, A., Kuang, Y., Ercan, D., Matthews, S.E., Cantarini, M., Barrett, J.C., Jänne, P.A. and Oxnard, G.R. (2015) Acquired EGFR C797S Mutation Mediates Resistance to AZD9291 in Non-Small Cell Lung Cancer Harboring EGFR T790M. Nature Medicine, 21, 560-562.
https://doi.org/10.1038/nm.3854
[18] Yu, H.A., Tian, S.K., Drilon, A.E., et al. (2015) Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M- Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. JAMA Oncology, 1, 982-984.
https://doi.org/10.1001/jamaoncol.2015.1066
[19] Ercan, D., Choi, H.G., Yun, C.H., et al. (2015) EGFR Mutations and Resistance to Irreversible Pyrimidine-Based EGFR Inhib-itors. Clinical Cancer Research, 21, 3913-3923.
https://doi.org/10.1158/1078-0432.CCR-14-2789
[20] Niederst, M.J., Hu, H., Mulvey, H.E., et al. (2015) The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clinical Cancer Research, 21, 3924-3933.
https://doi.org/10.1158/1078-0432.CCR-15-0560
[21] Mehlman, C., Cadranel, J., Rous-seau-Bussac, G., et al. (2019) Resistance Mechanisms to Osimertinib in EGFR-Mutated Advanced Non-Small-Cell Lung Cancer: A Multicentric Retrospective French Study. Lung Cancer, 137, 149-156.
https://doi.org/10.1016/j.lungcan.2019.09.019
[22] Ortiz-Cuaran, S., Scheffler, M., Plenker, D., et al. (2016) Het-erogeneous Mechanisms of Primary and Acquired Resistance to Third-Generation EGFR Inhibitors. Clinical Cancer Re-search, 22, 4837-4847.
https://doi.org/10.1158/1078-0432.CCR-15-1915
[23] Xu, C., Wang, W., Zhu, Y., et al. (2019) Potential Re-sistance Mechanisms Using Next Generation Sequencing from Chinese EGFR T790M+ Non-Small Cell Lung Cancer Patients with Primary Resistance to Osimertinib: A Multicenter Study. Annals of Oncology, 30, II48.
https://doi.org/10.1093/annonc/mdz063.012
[24] 刘超, 刘明辉, 刘红雨, 陈军. 奥希替尼在非小细胞肺癌中的耐药机制研究进展[J]. 中国医学前沿杂志(电子版), 2020, 12(7): 7-11.
[25] Planchard, D., Loriot, Y., André, F., et al. (2015) EGFR-Independent Mechanisms of Acquired Resistance to AZD9291 in EGFR T790M-Positive NSCLC Patients. Annals of Oncology, 26, 2073-2078.
https://doi.org/10.1093/annonc/mdv319
[26] Alzahrani, A.S. (2019) PI3K/Akt/mTOR Inhibitors in Cancer: At the Bench and Bedside. Seminars in Cancer Biology, 59, 125-132.
https://doi.org/10.1016/j.semcancer.2019.07.009
[27] Kim, T.M., Song, A., Kim, D.W., et al. (2015) Mechanisms of Acquired Resistance to AZD9291: A Mutation-Selective, Irreversible EGFR Inhibitor. Journal of Thoracic Oncology, 10, 1736-1744.
https://doi.org/10.1097/JTO.0000000000000688
[28] Barnes, T.A., O’Kane, G.M., Vincent, M.D., et al. (2017) Third-Generation Tyrosine Kinase Inhibitors Targeting Epidermal Growth Factor Receptor Mutations in Non-Small Cell Lung Cancer. Frontiers in Oncology, 7, Article No. 113.
https://doi.org/10.3389/fonc.2017.00113
[29] Le, X., Puri, S., Negrao, M.V., et al. (2018) Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy beyond Progres-sion in EGFR-Mutant NSCLC. Clinical Cancer Research, 24, 6195-6203.
https://doi.org/10.1158/1078-0432.CCR-18-1542
[30] Oxnard, G.R., Hu, Y., Mileham, K.F., et al. (2018) As-sessment of Resistance Mechanisms and Clinical Implications in Patients with EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncology, 4, 1527- 1534.
https://doi.org/10.1001/jamaoncol.2018.2969
[31] 裴清华, 孙建立. 奥希替尼获得性耐药的研究进展[J]. 中国临床药理学与治疗学, 2021, 26(1): 105-112.
[32] Lim, S.M., Kim, H.R., Cho, E.K., et al. (2016) Targeted Sequencing Identifies Genetic Alterations that Confer Primary Resistance to EGFR Tyrosine Kinase Inhibitor (Korean Lung Cancer Consortium). Oncotarget, 7, 36311-36320.
https://doi.org/10.18632/oncotarget.8904
[33] Ercan, D., Xu, C., Yanagita, M., et al. (2012) Reactivation of ERK Signaling Causes Resistance to EGFR Kinase Inhibitors. Cancer Discovery, 2, 934-947.
https://doi.org/10.1158/2159-8290.CD-12-0103
[34] Minari, R., Bordi, P., Del Re, M., et al. (2018) Primary Re-sistance to Osimertinib Due to SCLC Transformation: Issue of T790M Determination on Liquid Re-Biopsy. Lung Can-cer, 115, 21-27.
https://doi.org/10.1016/j.lungcan.2017.11.011
[35] Li, L., Wang, H., Li, C., et al. (2017) Transformation to Small-Cell Carcinoma as an Acquired Resistance Mechanism to AZD9291: A Case Report. Oncotarget, 8, 18609-18614.
https://doi.org/10.18632/oncotarget.14506
[36] Ham, J.S., Kim, S., Kim, H.K., et al. (2016) Two Cases of Small Cell Lung Cancer Transformation from EGFR Mutant Adenocarcinoma during AZD9291 Treatment. Journal of Thorac-ic Oncology, 11, E1-E4.
https://doi.org/10.1016/j.jtho.2015.09.013
[37] Taniguchi, Y., Horiuchi, H., Morikawa, T., et al. (2018) Small-Cell Carcinoma Transformation of Pulmonary Adenocarcinoma after Osimertinib Treatment: A Case Report. Case Reports in Oncology, 11, 323-329.
https://doi.org/10.1159/000489603
[38] Sequist, L.V., Waltman, B.A., Dias-Santagata, D., et al. (2011) Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors. Science Translational Medicine, 3, 75ra26.
https://doi.org/10.1126/scitranslmed.3002003
[39] Lee, J.K., Lee, J., Kim, S., et al. (2017) Clonal History and Ge-netic Predictors of Transformation into Small-Cell Carcinomas from Lung Adenocarcinomas. Journal of Clinical Oncol-ogy, 35, 3065-3074.
https://doi.org/10.1200/JCO.2016.71.9096
[40] Niederst, M.J., Sequist, L.V., Poirier, J.T., et al. (2015) RB Loss in Resistant EGFR Mutant Lung Adenocarcinomas that Transform to Small-Cell Lung Cancer. Nature Communications, 6, Article No. 6377.
https://doi.org/10.1038/ncomms7377
[41] Weng, C.H., Chen, L.Y., Lin, Y.C., et al. (2019) Epitheli-al-Mesenchymal Transition (EMT) beyond EGFR Mutations Per Se Is a Common Mechanism for Acquired Resistance to EGFR TKI. Oncogene, 38, 455-468.
https://doi.org/10.1038/s41388-018-0454-2
[42] Ichihara, E., Westover, D., Meador, C.B., et al. (2017) SFK/FAK Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-Resistant Models of EGFR-Mutant Lung Cancer. Cancer Research, 77, 2990-3000.
https://doi.org/10.1158/0008-5472.CAN-16-2300
[43] Yochum, Z.A., Cades, J., Wang, H., et al. (2019) Targeting the EMT Transcription Factor TWIST1 Overcomes Resistance to EGFR Inhibitors in EGFR-Mutant Non-Small-Cell Lung Cancer. Oncogene, 38, 656-670.
https://doi.org/10.1038/s41388-018-0482-y
[44] Wang, X., Zhou, L., Yin, J.C., et al. (2019) Lung Adenocarci-noma Harboring EGFR 19del/C797S/T790M Triple Mutations Responds to Brigatinib and Anti-EGFR Antibody Com-bination Therapy. Journal of Thoracic Oncology, 14, E85-E88.
https://doi.org/10.1016/j.jtho.2019.01.015
[45] Wang, Z. and Wu, Y.L. (2019) Re-Emerging C797S in Trans and Rechallenge of Osimertinib with Erlotinib. Journal of Thoracic Oncology, 14, E81-E82.
https://doi.org/10.1016/j.jtho.2018.12.015
[46] Shi, P., Oh, Y.T., Zhang, G., et al. (2016) Met Gene Amplification and Protein Hyperactivation Is a Mechanism of Resistance to Both First and Third Generation EGFR Inhibitors in Lung Cancer Treatment. Cancer Letters, 380, 494-504.
https://doi.org/10.1016/j.canlet.2016.07.021
[47] Oxnard, G.R., Yang, J.C.H., Yu, H., et al. (2020) TATTON: A Multi-Arm, Phase Ib Trial of Osimertinib Combined with Selumetinib, Savolitinib, or Durvalumab in EGFR-Mutant Lung Cancer. Annals of Oncology, 31, 507-516.
https://doi.org/10.1016/j.annonc.2020.01.013
[48] La Monica, S., Cretella, D., Bonelli, M., et al. (2017) Trastuzumab Emtansine Delays and Overcomes Resistance to the Third-Generation EGFR-TKI Osimertinib in NSCLC EGFR Mutated Cell Lines. Journal of Experimental & Clinical Cancer Research, 36, 174.
https://doi.org/10.1186/s13046-017-0653-7
[49] Nakatani, K., Yamaoka, T., Ohba, M., et al. (2019) KRAS and EGFR Amplifications Mediate Resistance to Rociletinib and Osimertinib in Acquired Afatinib-Resistant NSCLC Har-boring Exon 19 Deletion/T790M in EGFR. Molecular Cancer Therapeutics, 18, 112-126.
https://doi.org/10.1158/1535-7163.MCT-18-0591
[50] Yang, D., Dai, R., Zhang, Q., et al. (2018) Apatinib for Heavily Treated Patients with Non-Small Cell Lung Cancer: Report of a Case Series and Literature Review. Saudi Jour-nal of Biological Sciences, 25, 888-894.
https://doi.org/10.1016/j.sjbs.2017.12.011
[51] Marcoux, N., Gettinger, S.N., O’Kane, G., et al. (2019) EGFR-Mutant Adenocarcinomas that Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. Journal of Clinical Oncology, 37, 278-285.
https://doi.org/10.1200/JCO.18.01585
[52] Park, K., Haura, E.B., Leighl, N.B., et al. (2021) Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results from the CHRYSALIS Phase I Study. Journal of Clinical Oncology, 39, 3391-3402.
https://doi.org/10.1200/JCO.21.00662
[53] Lisberg, A., Cummings, A., Goldman, J.W., Bornazyan, K., Reese, N., Wang, T., Coluzzi, P., Ledezma, B., Mendenhall, M., Hunt, J., Wolf, B., Jones, B., Madrigal, J., Horton, J., Spiegel, M., Carroll, J., Gukasyan, J., Williams, T., Sauer, L., Wells, C., Hardy, A., Linares, P., Lim, C., Ma, L., Adame, C. and Ga-ron, E.B. (2018) A Phase II Study of Pembrolizumab in EGFR-Mutant, PD-L1+, Tyrosine Kinase Inhibitor Naïve Pa-tients with Advanced NSCLC. Journal of Thoracic Oncology, 13, 1138-1145.
https://doi.org/10.1016/j.jtho.2018.03.035
[54] Piotrowska, Z., Niederst, M.J., Karlovich, C.A., et al. (2015) Het-erogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor. Cancer Discovery, 5, 713-722.
https://doi.org/10.1158/2159-8290.CD-15-0399