一类具有植化相克的捕食模型的最优收获
Optimal Harvest of a Predation Model with Allelopathy
DOI: 10.12677/AAM.2022.116424, PDF, HTML, 下载: 216  浏览: 303 
作者: 袁雅静:西北师范大学数学与统计学院,甘肃 兰州
关键词: 浮游生物捕食者-食饵模型植化相克稳定性最优收获策略Plankton Prey-Predator Model Allelopathy Stability Optimal Harvest Strategy
摘要: 通过引入捕食者-食饵模型中的非线性捕获函数,研究了一类具有植化相克的捕食模型,得到了该模型平衡点的存在性和局部稳定性的条件,通过构造 Lyapunov 函数来判断正平衡点周围的全局稳定性。 确定了非线性收获下的生态经济平衡点,使用 Pontryagin 极大值原理得到了最优收获策略, 从而揭示了在保证浮游生物种群不灭绝的情况下,对渔业资源进行利用和开发的同时,不仅给渔民提供了最大的经济利润,而且维持了海洋生态系统的平衡。
Abstract: By introducing the nonlinear capture function in the predator-prey model, a kind of predator-prey model with planting phase is studied. The conditions for the existence and local stability of the equilibrium point of the model are obtained. The global stability around the positive equilibrium point is judged by constructing Lyapunov function, the ecological and economic equilibrium point under nonlinear harvesting is determined, and the optimal harvesting strategy is obtained by using Pontryagin maximum principle, which reveals that while ensuring the non extinction of plankton population, the utilization and development of fishery resources not only provides fishermen with the maximum economic profit, but also maintains the balance of marine ecosystem.
文章引用:袁雅静. 一类具有植化相克的捕食模型的最优收获[J]. 应用数学进展, 2022, 11(6): 3955-3964. https://doi.org/10.12677/AAM.2022.116424

参考文献

[1] Mukhopadhyay, A., Chattopadhyay, J. and Tapaswi, P.K. (1998) A Delay Differential Equa- tions Model of Plankton Allelopathy. Mathematical Biosciences, 149, 167-189.
https://doi.org/10.1016/S0025-5564(98)00005-4
[2] 陈兰蒜, 宋新宇, 陆征一. 数学生态学模型与研究方法[M]. 北京: 北京科学出版社, 1998.
[3] Smith, M. (1974) Models in Ecology. University Press.
[4] Rice, E.L. (1984) Manipulated Ecosystems: Roles of Allelopathy in Agriculture. In: Allelopa- thy, 2nd Edition, Academic Press, Cambridge, MA, 8-73.
https://doi.org/10.1016/B978-0-08-092539-4.50006-X
[5] Gupta, R.P., Banerjee, M. and Chandra, P. (2012) The Dynamic of Two-Species Allelopathic Competition with Optimal Harvesting. Journal of Biological Dynamics, 6, 674-694.
https://doi.org/10.1080/17513758.2012.677484
[6] Abbas, S., Banerjee, M. and Hungerblihler, N. (2010) Existence, Uniqueness and Stability Analysis of Allelopathic Stimulatory Phytoplankton Model. Journal of Mathematical Analysis and Applications, 367, 249-259.
https://doi.org/10.1016/j.jmaa.2010.01.024
[7] Tian, C., Lai, Z. and Lin, Z. (2011) Pattern Formation for a Model of Plankton Allelopathy with Cross-Diffusion. Journal of the Franklin Institute, 348, 1947-1964.
https://doi.org/10.1016/j.jfranklin.2011.05.013
[8] Tian, C. and Ruan, S. (2019) Pattern Formation and Synchronism in an Allelopathic Plankton Model with Delay in a Network. SIAM Journal on Applied Dynamical Systems, 18, 531-557.
https://doi.org/10.1137/18M1204966
[9] Holling, C.S. (1959) Some Characteristics of Simple Types of Predation and Parasitism. Cana- dian Entomologist, 91, 385-398.
https://doi.org/10.4039/Ent91385-7
[10] Gupta, R.P., Chandra, P. and Banerjee, M. (2015) Dynamical Complexity of a Prey-Predator Model with Nonlinear Predator Harvesting. Discrete and Continuous Dynamical Systems—Series B (DCDS-B), 20, 423-443.
https://doi.org/10.3934/dcdsb.2015.20.423
[11] Lv, Y., Rong, Y. and Pei, Y. (2013) A Prey-Predator Model with Harvesting for Fishery Resource with Reserve Area. Applied Mathematical Modelling, 37, 3048-3062.
https://doi.org/10.1016/j.apm.2012.07.030
[12] Manna, D., Maiti, A. and Samanta, G.P. (2018) Analysis of a Predator-Prey Model for Ex- ploited Fish Populations with Schooling Behavior. Applied Mathematics and Computation, 317, 35-48.
https://doi.org/10.1016/j.amc.2017.08.052
[13] 李雅芝, 刘利利. 登革热传播模型的最优综合控制研究[J]. 应用数学和力学, 2022, 43(4):445-452.
[14] Hale, J.K. (1969) Ordinary Differential Equations. American Mathematical Monthly, 23, 82-122.
[15] 邢继样, 张春态, 徐洪泽. 最优控制策略应用基础[M]. 北京: 科学出版社, 2003.