经典原位肝移植术中目标导向液体治疗对术后早期呼吸及肾功能的影响
Goal-Directed Therapy during Classical Orthotopic Liver Transplantation and Its Effect on Respiratory and Renal Functions in the Early Postoperative Period
摘要: 目的:观察基于每搏变异毒(stroke volume variation, SVV)及心指数(cardiac index, CI)的目标导向液体治疗在经典原位肝移植术的作用与价值。方法:择期选择行经典原位肝移植患者32例,按照随机数字表法分为常规组(C组)及目标导向液体治疗组(G组)。两组患者均监测心电图、动脉血氧饱和度、动脉血压及CVP。但G组同时连接高端Swan-Ganz漂浮导管及Vigilance II监测系统以监测CI及SVV。C组患者术中维持CVP 8~12 mmHg,mABP ≥ 65 mmHg。G组患者根据目标导向液体治疗原则使SVV ≤ 10%、CI ≥ 3 L/min•m2且mABP ≥ 65 mmHg。记录两组患者的一般临床资料,术中记录切皮前(T0)、无肝前期(T1)、门静脉及下腔静脉阻断30 min (T2)、门静脉及下腔静脉开放30 min (T3)、术毕(T4)时两组患者的HR、mABP、CVP,并记录手术时间、术中红细胞输入量、血浆输入量、胶体输入量、晶体输入量、出血量及尿量。同时记录术后机械通气时间、再插管发生率、术后3天总尿量、术后CRRT发生率及ICU总住院日。结果:与C组相比,G组T1~T4 CVP较低(P < 0.05),术中胶体输入量及尿量明显减少(P < 0.05),术后机械通气时间较短(P < 0.05),再插管率较低(P < 0.05)。两组术中T0~T4的HR、mABP;手术时间、红细胞输入量、血浆输入量、晶体输入量、出血量;术后3天总尿量、术后CRRT发生率及ICU总住院日差异均无显著性(P > 0.05)。结论:基于SVV及CI的目标导向液体治疗可安全应用于经典原位肝移植手术,在不增加肾脏并发症基础上降低术后早期肺部并发症发生。
Abstract: Objective: To observe the effect and value of Goal-directed therapy with stroke volume variation (stroke volume variation, SVV) and cardiac index (cardiac index, CI) in classical orthotopic liver transplantation. Methods: 32 patients underwent classical orthotopic liver transplantation were randomly divided into routine group (group C) and Goal-directed therapy group (group G) according to random number table. ECG, arterial oxygen saturation, arterial blood pressure and CVP were monitored in 2 groups. However, group G was simultaneously connected with high-end Swan- Ganz floating catheter and Flotrac monitoring sensor to monitor CI and SVV. Patients in group C received fluid based on CVP (8~12 mmhg) and mABP (≥65 mmHg). Patients in group G were treated under GDFT strategy with a target of SVV ≤ 10%, CI ≥ 3 L/min•m2 and mABP ≥ 65 mmHg. General clinical data of patients in the two groups were recorded. Intraoperative HR, mABP and CVP of patients were recorded before skin resection (T0), pre-hepatic (T1), portal vein and inferior vena occlusion for 30 min (T2), portal vein and inferior vena reperfusion for 30 min (T3), and after operation (T4). Operation time, erythrocyte input, plasma input, colloid input, crystal input, blood loss and urine volume were recorded. The duration of postoperative mechanical ventilation, the incidence of rein-tubation, the total urine volume 3 days after surgery, the incidence of postoperative CRRT and the total length of stay in ICU were recorded. Results: Compared with group C, group G had lower CVP at T1~T4 (P < 0.05), less intraoperative colloid input and less urine volume during the operation (P < 0.05). Moreover, shorter postoperative mechanical ventilation time (P < 0.05) and lower reintuba-tion rate (P < 0.05) were happened in group G. While, there were no significant differences in HR and mABP of intraoperative T0~T4, Operation time, erythrocyte input, plasma input, crystal input, blood loss, total urine volume 3 days after surgery, incidence of postoperative CRRT and total length of ICU stay (P > 0.05). Conclusion: Goal-directed therapy based on SVV and CI can be safely applied in classical orthotopic liver transplantation and reduce the incidence of early postoperative pulmo-nary complications without increasing renal complications.
文章引用:杨晓丹, 王萍萍, 祝琳, 董河. 经典原位肝移植术中目标导向液体治疗对术后早期呼吸及肾功能的影响[J]. 临床医学进展, 2022, 12(5): 4537-4543. https://doi.org/10.12677/ACM.2022.125656

1. 引言

肝移植作为终末期肝病(end-stage liver disease, ESLD)最有效的治疗方式,已经被广泛应用在临床实践中 [1] [2]。因术前患者特殊病理生理状态、术中门静脉及下腔静脉的阻断和开放、供肝保存液的冲击及缺血再灌注等影响,肝移植术中血流动力学极易产生波动。因而术中液体管理对维持术中生命体征平稳及术后各脏器功能的恢复就显得更为重要。既往多采用监测中心静脉压(central venous pressure, CVP)、平均动脉压(mean arterial blood pressure, mABP)等作为术中容量监测的指标,但仍存在液体容量超负荷或不足的问题。近年来每搏变异度(stroke volume variation, SVV)的突起使目标导向液体治疗有了新的标的,结合心指数(cardiac index, CI)等其他容量指标可以更精确、连续地反应术中患者液体容量状态 [3] [4]。本研究旨在探讨SVV结合CI等指标指导肝移植术中液体管理对患者术后早期呼吸及肾功能的影响,以期减少患者术后急性呼吸及肾功能不全的发生。

2. 资料与方法

2.1. 研究对象

选择2019年9月至2021年6月我院行经典原位肝移植患者32例,纳入标准:进行经典原位肝移植患者。排除标准:① 年龄 ≥ 70岁或<18岁的患者;② 行背驼式肝移植术的患者;③ 术前患有肺动脉高压、呼吸衰竭、肝肾综合征、肾功能衰竭的患者;④ 术中行肝肾联合移植的患者。本研究已获得医院伦理委员会批准,并与患者及家属签署知情同意书。

2.2. 麻醉方法

患者入室后常规监测心电图、无创血压、脉搏血氧饱和度,局麻下行桡动脉穿刺监测有创动脉血压,并连接Flotrac压力感受器监测每搏变异度(SVV)。给予咪达唑仑、丙泊酚、舒芬太尼、顺苯磺酸阿曲库铵行麻醉诱导,诱导后超声引导下经右颈内静脉置入三腔中心静脉导管及高端Swan-Ganz漂浮导管,并连接VigilanceII监测系统监测术中相关血流动力学指标。同时于鼻咽部置入温度探头监测术中体温,术中留置导尿管导尿。术中给予静吸复合全身麻醉,BIS维持在40~60,术中利用自体血回收仪回收自体血备用,给予变温毯、暖风机、输血加温仪保温,术中间断泵注多巴胺、去甲肾上腺素、硝酸甘油维持血流动力学平稳,给予补液、输血维持血容量,根据血气分析维持内环境稳定。

2.3. 分组及液体疗法

将32例患者按照随机数字表法分为常规组(C组)及目标导向液体治疗组(G组)。两组患者入室时均给予补液4 ml/kg·h。C组患者在无肝前期及新肝期时根据患者mABP、CVP指导补液,具体方案如下:若mABP ≥ 65 mmHg且CVP ≥ 12 mmHg,则不予处理;若mABP ≤ 65 mmHg且CVP ≤ 8 mmHg,则给予5%浓度白蛋白溶液200 ml于15分钟输注完毕,输液结束后再次评估,直至达标;若CVP ≥ 14 mmHg但mABP ≤ 65 mmHg,则给予去甲肾上腺素或多巴胺维持动脉压。G组患者在无肝前期及新肝期时根据患者SVV、CI及mABP指导补液,具体方案如下:若SVV ≤ 10%、CI ≥ 3 L/min·m2且mABP ≥ 65 mmHg,则不予处理;若SVV > 10%且CI ≤ 3 L/min·m2,则给予5%浓度白蛋白溶液200 ml于15分钟输注完毕,输液结束后再次评估,直至达标;若SVV ≤ 10%但CI ≤ 3 L/min·m2,则给予去甲肾上腺素或多巴胺直至CI ≥ 3 L/min·m2。两组患者在无肝期根据生命体征进行维持性输液。两组患者术中均根据血流动力学变化及时应用相应血管活性药物,并根据动脉血气分析、电解质、肝肾功、血凝等及时调整电解质,输注浓缩红细胞、血浆、血小板、冷沉淀等血液制品维持血流动力学平稳及内环境稳定。

2.4. 观察指标

记录两组患者的一般临床资料,术中记录切皮前(T0)、无肝前期(T1)、门静脉及下腔静脉阻断30 min (T2)、门静脉及下腔静脉开放30 min (T3)、术毕(T4)时两组患者的心率(heart rate, HR)、mABP、CVP,并记录手术时间、红细胞输入量、血浆输入量、胶体输入量、晶体输入量、出血量及尿量。同时记录术后机械通气时间、再插管发生率、术后3天总尿量、术后CRRT (continuous renal replacement therapy)发生率及ICU (intensive care unit)总住院日。

2.5. 统计学处理

采用SPSS22.0软件进行数据处理。正态分布连续资料以均数±标准差(±s)表示,组间比较采用成组t检验,非正态性连续资料以中位数(四分位间距(IQR))表示,两组间的差异性采用Mann-Whitney U检验,组内不同时间点参数比较采用重复测量方差分析。分类资料以频数(百分数)表示,组间比较采用卡方检验或Fisher确切概率法。P < 0.05表明差异存在统计学意义。

3. 结果

3.1. 一般资料

Table 1.Comparison of general data between the two groups (n = 16)

表1. 两组患者一般资料比较(n = 16)

注:MELD评分:终末期肝病模型;BMI:体质指数。

两组患者在年龄、性别、BMI、术前MELD评分及肌酐水平上未见明显统计学差异(P > 0.05),见表1

3.2. 术中血流动力学指标

Table 2. Comparison of intraoperative hemodynamic indexes between the two groups ( x ¯ ± s , n = 16)

表2. 两组患者术中血流动力学指标比较( x ¯ ± s , n = 16)

注:与T0相比,aP < 0.05;与A组相比,bP < 0.05。

两组患者的HR均在T2及T3上升(P < 0.05),至术毕恢复至术前水平。两组患者mABP术中未见明显波动(P > 0.05),较为平稳。两组患者CVP在T0未见明显差异;在T1时G组患者CVP明显低于C组患者;在T2时两组CVP均显著低于T0 (P < 0.05),且G组患者CVP明显低于A组(P < 0.05);在T3及T4时,C组患者CVP明显高于T0,G组患者CVP与T0无明显差别,且显著低于C组(P < 0.05),见表2

3.3. 术中出入量、手术时间

与C组相比,G组患者术中胶体输入量、术中尿量均较少,差异具有统计学意义(P < 0.05);两组患者术中红细胞输入量、血浆输入量、晶体输入量、出血量及手术时长未见明显差异(P > 0.05),见表3

Table 3. Comparison of intraoperative volume and operative time between the two groups ( x ¯ ± s , n = 16)

表3. 两组患者术中出入量、手术时间比较( x ¯ ± s , n = 16)

3.4. 术后情况

Table 4. Comparison of postoperative conditions between the two groups (n = 16)

表4. 两组患者术后情况比较(n = 16)

注:CRRT:连续肾脏替代治疗;ICU:重症监护病房。

与C组相比,G组患者术后机械通气时间较短,再插管率较低(P < 0.05),两组患者术后3天尿量、术后CRRT发生率及ICU住院时间未见明显差异(P > 0.05),见表4

4. 讨论

ESLD患者多存在高心排量、低循环阻力的病理生理特点,加之为缓解低蛋白血症、胸腹水等并发症多给予患者补充白蛋白、利尿、抽取胸腹水等治疗措施,患者术前多存在有效循环血容量不足的情况。同时,ESLD患者因去甲肾上腺素、血管加压素等神经体液持续激活 [5],对血管活性药物敏感性降低,为维持生命体征平稳术前可能会存在大量输血输液等情况。这种“过干”或“过湿”的术前容量状态都为肝移植术中液体管理提出了挑战。除此之外,为预防无肝期阻断下腔静脉及门静脉所带来的回心血量急剧减少,常需要在无肝前期输入足量的液体以维持有效的组织灌注。而新肝期因下腔静脉及门静脉的开放,大量淤积于下肢及内脏器官的血液回心,不仅会引起容量超负荷,其内包含的缺血缺氧物质及供肝保存液更会引起再灌注综合征(post reperfusion syndrome, PRS)的发生 [6]。这些术前及术中因素都给肝移植术中液体管理带来困难。围术期液体容量超负荷会引起急性肺水肿、肺部感染、呼吸衰竭等肺部并发症 [7],但若严格限制液体入量势必会引起围术期生命体征不平稳甚至急性肾功能衰竭等并发症 [8]。因此,肝移植术中应在确保血流动力学稳定的基础上实行相对精准的液体管理。既往肝移植术中液体管理多采用基于mABP、CVP等经验性液体治疗,而CVP因易受心功能、体位、胸腔内压力、液体输注速度等因素的影响而敏感性较低。近年来基于SVV、CI的目标导向液体治疗能够准确、连续、敏感地反应患者容量状态,从而指导术中液体及血管活性药物的应用,提高患者术后早期的生存质量 [9] [10] [11]。

SVV是近些年评价心脏前负荷的重要指标 [12]。当血容量较低时,Frank-Starling曲线处于上升阶段,左心前负荷对每搏量影响较大,此时SVV数值较大;当血容量充足时,曲线处于平台期,左心前负荷对每搏量影响较小,此时SVV较小。许多研究显示,当SVV > 10%时,一般提示前负荷不足,其特异性达95%,敏感性达100%,此时需对患者进行相应的液体治疗 [12] [13] [14]。CI作为反应心功能的重要指标,与SVV结合可除外由于心功能异常而造成的动脉压下降,更精确地指导临床液体复苏治疗 [15]。本研究中,G组患者因较早使用血管活性药物而与C组患者术中基本生命体征如HR、mABP等无明显差异,但G组患者因术中输入相对较少的胶体而导致术中尿量较少(P < 0.05),但术后早期尿量及术后CRRT发生率并没有明显增高(P > 0.05),且患者术后早期机械通气时间及再插管率明显下降(P < 0.05)。这说明,基于SVV及CI的目标导向液体治疗虽然术中输入液体量较少,但仍能维持围术期生命体征平稳,在降低术后早期肺部并发症的同时不至因前负荷过少而增加术后肾功能不全的发生率。

综上所述,在经典原位肝移植术中应用基于SVV及CI的目标导向液体治疗,可以优化术中液体管理,在不增加肾功能不全并发症基础上减少术后早期肺部并发症发生。

NOTES

*通讯作者Email: donghe1122332019@163.com

参考文献

[1] Bodzin, A.S. and Baker, T.B. (2018) Liver Transplantation Today: Where We Are Now and Where We Are Going. Liver Transplantation, 24, 1470-1475.
https://doi.org/10.1002/lt.25320
[2] Goldaracena, N., Gorgen. A. and Sapisochin, G. (2018) Current Status of Liver Transplantation for Cholangiocarcinoma. Liver Transplantation, 24, 294-303.
https://doi.org/10.1002/lt.24955
[3] Kendrick, J.B., Kaye, A.D., Tong, Y., Belani, K., Urman, R.D., Hoffman, C., et al. (2019) Goal-Directed Fluid Therapy in the Perioperative Setting. Journal of Anaesthesiology Clinical Pharmacolo-gy, 35, S29-S34.
https://doi.org/10.4103/joacp.JOACP_26_18
[4] Mishra, N., Rath, G.P., Bithal, P.K., Chaturvedi, A., Chandra, P.S. and Borkar, S.A. (2022) Effect of Goal-Directed Intraoperative Fluid Therapy on Duration of Hospital Stay and Postoperative Complications in Patients Undergoing Excision of Large Supratentorial Tumors. Neurology India, 70, 108-114.
[5] De Wolf, A.M. (2006) 6/2/06 Perioperative Assessment of the Cardiovascular System in ESLD and Transplantation. International Anesthesiology Clinics 44, 59-78.
https://doi.org/10.1097/01.aia.0000210818.85287.de
[6] Manning, M.W., Kumar, P.A., Maheshwari, K. and Arora, H. (2020) Post-Reperfusion Syndrome in Liver Transplantation—An Overview. Journal of Cardiothoracic and Vascular Anesthesia, 34, 501-511.
https://doi.org/10.1053/j.jvca.2019.02.050
[7] Bednarczyk, J.M., Fridfinnson, J.A., Kumar, A., Blanchard, L., Rabbani, R., Bell, D., et al. (2017) Incorporating Dynamic Assessment of Fluid Responsiveness into Goal-Directed Therapy: A Systematic Review and Meta-Analysis. Critical Care Medicine, 45, 1538-1545.
https://doi.org/10.1097/CCM.0000000000002554
[8] Umbro, I., Tinti, F., Scalera, I., Evison, F., Gunson, B., Sharif, A., et al. (2016) Acute Kidney Injury and Post-Reperfusion Syndrome in Liver Transplantation. World Journal of Gastroenterology, 22, 9314-9323.
https://doi.org/10.3748/wjg.v22.i42.9314
[9] Tang, W., Qiu, Y., Lu, H., Xu, M. and Wu, J. (2021) Stroke Vol-ume Variation-Guided Goal-Directed Fluid Therapy Did Not Significantly Reduce the Incidence of Early Postoperative Complications in Elderly Patients Undergoing Minimally Invasive Esophagectomy: A Randomized Controlled Trial. Frontiers in Surgery, 8, Article ID: 794272.
https://doi.org/10.3389/fsurg.2021.794272
[10] Rass, V., Bogossian, E.G., Ianosi, B.A., Peluso, L., Kofler, M., Lindner, A., et al. (2021) The Effect of the Volemic and Cardiac Status on Brain Oxygenation in Patients with Subarach-noid Hemorrhage: A Bi-Center Cohort Study. Annals of Intensive Care, 11, Article No. 176.
https://doi.org/10.1186/s13613-021-00960-z
[11] Prabhu, S.P., Nileshwar, A., Krishna, H.M. and Prabhu, M. (2021) Changes in Stroke Volume Variation and Cardiac Index during Open Major Bowel Surgery. Nigerian Journal of Clinical Practice, 24, 1682-1688.
https://doi.org/10.4103/njcp.njcp_30_20
[12] Zhang, Z., Lu, B., Sheng, X. and Jin, N. (2011) Accuracy of Stroke Volume Variation in Predicting Fluid Responsiveness: A Systematic Review and Meta-Analysis. Journal of Anesthesia, 25, 904-916.
https://doi.org/10.1007/s00540-011-1217-1
[13] Weinberg, L., Mackley, L., Ho, A., Mcguigan, S., Ianno, D., Yii, M., et al. (2019) Impact of a Goal Directed Fluid Therapy Algorithm on Postoperative Morbidity in Patients Undergoing Open Right Hepatectomy: A Single Centre Retrospective Observational Study. BMC Anesthesiology, 19, Article No. 135.
https://doi.org/10.1186/s12871-019-0803-x
[14] Choi, S.S., Jun, I.-G., Cho, S.-S., Kim, S.-K., Hwang, G.-S. and Kim, Y.-K. (2015) Effect of Stroke Volume Variation-Directed Fluid Management on Blood Loss during Living-Donor Right Hepatectomy: A Randomised Controlled Study. Anaesthesia, 70, 1250-1258.
https://doi.org/10.1111/anae.13155
[15] Shaik, Z. and Mulam. S.S. (2019) Efficacy of Stroke Volume Variation, Cardiac Output and Cardiac Index as Predictors of Fluid Responsiveness using Minimally Invasive Vigileo Device in In-tracranial Surgeries. Anesthesia, Essays and Researches, 13, 248-253.
https://doi.org/10.4103/aer.AER_10_19