TSHR基因突变所致先天性甲状腺功能异常的临床研究
Clinical Study of Congenital Thyroid Dysfunction Caused by TSHR Gene Mutation
DOI: 10.12677/ACM.2022.125558, PDF, HTML, XML, 下载: 274  浏览: 444 
作者: 陈永琴, 朱 岷:重庆医科大学附属儿童医院,重庆
关键词: TSHR基因突变先天性甲状腺功能亢进先天性甲状腺功能减退TSHR Gene Mutation Congenital Hyperthyroidism Congenital Hypothyroidism
摘要: 研究发现,促甲状腺激素受体(thyroid stimulating hormone receptor, TSHR)基因突变可导致甲状腺结构或功能异常。TSHR基因突变所致先天性甲状腺功能异常临床表型与突变类型高度异质,重者可危及生命或遗留不可逆后遗症;轻者可无临床症状,仅表现为生化水平的甲状腺功能异常。为避免严重并发症或后遗症发生,需做到早发现、早诊断、早治疗。为了增强对TSHR基因突变所致先天性甲状腺功能异常疾病的认识,本文将从甲状腺激素(thyroid hormone, TH)的产生与功能、TSHR的结构、突变类型及TSHR基因突变所致原发性先天性甲状腺功能异常的临床表现、诊断及治疗等方面进行综述。
Abstract: Studies have found that mutations in the thyroid stimulating hormone receptor (TSHR) gene can lead to abnormal thyroid structure or function. The clinical phenotype and mutation type of con-genital thyroid dysfunction caused by TSHR gene mutation are highly heterogeneous; severe cases may be life-threatening or have irreversible sequelae; mild cases may be asymptomatic, only showing thyroid dysfunction at the biochemical level. In order to avoid serious complications or se-quelae, it is important to detect, diagnose and treat these diseases as early as possible. The synthe-sis and function of thyroid hormone, the structure and mutation types of TSHR, and the clinical manifestations, diagnosis and treatments of thyroid dysfunction caused by TSHR gene mutations were reviewed, to enhance the understanding of these diseases.
文章引用:陈永琴, 朱岷. TSHR基因突变所致先天性甲状腺功能异常的临床研究[J]. 临床医学进展, 2022, 12(5): 3861-3865. https://doi.org/10.12677/ACM.2022.125558

1. TH的产生与主要功能

TH是由甲状腺在下丘脑分泌的促甲状腺激素释放激素(thyrotropin-releasing hormone, TRH)和垂体分泌的促甲状腺激素(thyroid stimulating hormone, TSH)调节下合成和释放的激素。TSH通过与TSHR结合,激活腺苷酸环化酶介导的c-AMP信号通路等一系列级联反应 [1],促进TH的合成和分泌。TH在产热、促进细胞组织的生长发育和成熟,促进钙、磷在骨质中的合成代谢,促进骨、软骨的生长,特别是促进脑的发育、分化和成熟等方面具有重要作用 [2] [3]。

2. TSHR的结构与突变类型

TSHR是糖蛋白激素受体家族成员,亦属G蛋白偶联受体。TSHR基因位于人类染色体14q31,长约190 kb,含10个外显子和9个内含子。编码一种含765个氨基酸的主要分布于甲状腺滤泡细胞基底膜侧的甲状腺滤泡细胞表面跨膜受体蛋白,由7个跨膜片段、3个细胞外环、3个细胞内环、1个细胞外氨基末端区域和1个胞内的羧基末端尾部结构组成 [4],其中受体的细胞外区域由前9个外显子和部分第10外显子编码,跨膜区和细胞内区域由第10外显子编码。

TSHR基因突变可分为生殖细胞突变、体细胞突变和肿瘤细胞突变;也可分为激活突变和失活突变:儿童生殖细胞激活突变可导致家族性非自身免疫性常染色体显性甲状腺功能亢进(familial non-autoimmune autosomal dominant hyperthyroidism, FNAH)或持续性散发性非自身免疫性甲状腺功能亢进(persistent sporadic non-autoimmune hyperthyroidism, PSNAH) [5];部分激活突变与甲状腺腺瘤及甲状腺癌相关 [6],但多为体细胞突变。失活突变可导致先天性甲状腺功能减退(congenital hypothyroidism, CH)或TSH抵抗(thyrotropin resistance) [1] [3] [7] [8]。建立于1999年的TSHR突变数据库,包括1999年至2020年所有已知的TSHR突变及其临床特征(https://tsh-receptor-mutation-database.org)。数据库包含183种突变类型的728例TSHR基因突变:激活突变64种,共计504例,其中生殖细胞突变69例,家族性较散发性多见;体细胞突变414例,肿瘤细胞突变21例;失活突变99种,共计202例,全为生殖细胞突变所致;剩余包含22例病例的20种突变不能归于上述类别;收录肿瘤相关TSHR基因突变15种,共计262例,生殖细胞突变12例,体细胞突变229例,肿瘤细胞突变21例。TSHR基因突变似乎没有热点突变基因,绝大多数突变位于第10外显子上,多数位于跨膜区 [9];突变包括纯合突变、杂合突变、复合杂合突变等类型 [8] [10],主要为碱基置换所致错义突变,少数为缺失、插入、终止等突变 [11]。

2020年之后仍有TSHR基因突变所致原发性先天性甲状腺功能异常相关文章发表,但多数突变类型数据库已收录,新发现的突变类型对丰富数据库更有价值;例如,Jasna Suput Omladic等报道了1例发生在生殖细胞的新型杂合突变,p.Arg418Lys (c. 1253G > A),患儿及其母亲、外祖母均携带此显性突变基因,临床诊断为FNAH [12];Leman Kayas等报道了1例发生于生殖细胞的杂合p.Val656Phe (c.1966G > T)突变所致PSNAH,该基因既往仅限于体细胞突变所致相关报道 [13]。目前对于TSHR基因突变所致原发性先天性甲状腺功能异常的具体发病机制大多不明,期待更多关于TSHR基因突变的报道,以丰富TSHR突变基因库,为TSHR基因突变患者的诊断、治疗及预后提供参考、依据;亦寄希望于更进一步的蛋白结构预测、免疫印迹分析及体外功能研究协助明确基因型与临床表型之间的关联性;为优化诊断及治疗提供思路及证据 [14]。

3. TSHR基因突变所致先天性甲状腺功能异常临床表现、诊断及治疗

TSHR基因突变所致原发性先天性甲状腺功能异常的临床表型与基因型高度异质,由于密码子的简并性、种族等个体因素及地理环境、生活方式等环境因素的影响 [15],不同基因突变临床表型多有不同,同一基因突变的临床表型亦可不同 [11] [16]。

TSHR基因突变所致原发性先天性甲状腺功能亢进呈常染色体显性遗传 [5];可导致全身多系统受累,临床表现及体征主要包括中枢神经系统症状、心血管系统症状、消化系统症状、甲状腺形态结构改变及高代谢征象等。具体可表现为早产、低出生体重 [17]、宫内发育迟缓、生长发育迟缓、智能发育迟滞、颅缝早闭 [18]、多动、矮小、早熟 [19];可有烦躁、入睡困难、注意力不集中、心悸、心慌、心动过速、黄疸、食欲亢进、腹泻、体重减低、甲状腺肿大、甲状腺结节、合并先天性心脏病等先天畸形等。延误诊治可导致甲亢危象、发育迟滞、肺动脉高压、心脏衰竭等严重后果。诊断主要通过家族史、临床表现及激素水平检查、影像学检查及基因检查等辅助检查确诊。FNAH有阳性家族史。临床可无症状或呈轻度到重度的甲状腺机能亢进;发病年龄不等,介于新生儿及老年之间 [11]。血清学检测无抗促甲状腺激素受体抗体(TRAb) [20];免疫组织学分析无甲状腺自身免疫标志物,即TGAb、TPOAb阴性 [13] (少数病例报道存在TPO和TG抗体,但与这些抗体在健康人群中的患病率一致 [21] );TSH可长时间处于抑制状态;甲状腺组织影像学检查可有甲状腺弥漫性肿大或甲状腺结节,但超声检查及组织病理学检查未见淋巴细胞浸润,亦无眼部及皮肤浸润,但非炎症性眼部征象不能排除诊断。大多通过基因检查可确诊。治疗上,部分患者通过口服抗甲状腺功能亢进药物、非消融放射性碘治疗、甲状腺次全切除等治疗可达到临床治愈,但易复发,最终推荐甲状腺全切联合放射性碘消融治疗,辅以口服甲状腺激素终生治疗 [5] [12]。

TSHR基因突变所致原发性先天性甲状腺功能减退症呈常染色体隐性遗传 [22];临床可表现为没有症状的高TSH血症或不同程度的甲状腺功能减低症 [7] [14]。严重程度与甲状腺激素合成不足的程度有关,重者在新生儿期发病,轻者则可延迟发病,甚至在幼儿或儿童期才开始出现症状。常见临床表现及体征包括过期产、巨大儿、先天畸形、持续性黄疸、喂养困难、睡眠增加、脐疝、巨舌、便秘、皮肤湿冷、肌张力下降、囟门晚闭、生长迟缓、智能发育迟滞、全身器官代谢低下等 [3]。新生儿及婴儿期CH临床表现可以没有明显的特征,常因延误诊断而导致生长迟缓、智能发育迟滞等严重后果,及时的诊断和治疗就显得非常重要 [23]。诊断主要通过新生儿筛查、激素水平检查及甲状腺彩超等影像学检查、基因检查。新生儿通过检测TSH浓度筛查可疑CH患儿,进一步甲状腺功能检查、抗体检查筛选出原发性CH患儿,从而早发现、早治疗,有利于预防不可逆的神经发育迟缓、生长迟缓,并改善其发育结局。但筛查具有一定假阴性,早产儿、低出生体重儿、双胎、在新生儿期患病的患儿以及唐氏综合征患儿原发性先天性CH婴儿可能不能在生后前几周产生足够的TSH,或临床高度怀疑CH的患儿,需要进行第二次评估。建议筛查后进一步完善甲状腺彩超、骨龄、心脏彩超、头颅、垂体磁共振等影像学检查、基因检查进一步明确病因;可疑CH患儿,应进一步进行甲状腺功能检查。若生后3周内婴儿TSH浓度 > 20 mIU/L (新生儿参考值0.49~4.67 mIU/L),不论fT4正常或偏低、则立即开始口服左旋甲状腺素(LT4)治疗;若TSH浓度在6~20 mIU/L之间,fT4正常,治疗与否存在争议 [22] [24] [25]。但个人认为,基于对不可逆神经损害等后遗症的预防,建议推荐剂量范围内小剂量积极治疗,随访甲状腺功能,预防医源性甲亢。对于确诊原发性CH的患儿,根据CH的严重程度开始予以5~15 ug/kg/d的治疗量,定期随访甲状腺功能,必要时调整剂量以维持TSH在正常水平,建议fT4保持在参考区间的平均值以上;期间,还需定期对患儿的神经发育、生长发育、骨骼、代谢、心血管、注意力、记忆问题以及行为问题进行随访以评估疗效 [1]。

4. 小结

TSHR基因突变所致先天性甲状腺功能异常为临床罕见病,呈现家族性或散发性,其临床表型与突变类型高度异质,大多突变类型至今发病机制不明,需要进一步进行分子建模、体外功能实验等实验协助明确发病机制。目前主要通过新生儿筛查、甲状腺功能检查、影像学检查、基因检查等检查手段对甲状腺功能异常患儿进行诊断;该病严重程度及预后与其突变类型、治疗情况、个体因素及环境因素息息相关 [13]。对高危儿反复筛查,临床高度怀疑甲状腺功能异常者进一步检查,才能确保患儿得到及时、正确的识别和治疗、改善预后;对于具有非自身免疫性、家族遗传性或持续性,治疗困难、反复复发的原发性先天性甲状腺功能异常患儿,建议完善家系基因检查,尽管阳性率较低,且与疾病相关性不明 [26]。

参考文献

[1] Zhang, H.M., et al. (2017) Identification and Functional Characterization of a Novel Thyrotropin Receptor Mutation (V87L) in a Chinese Woman with Subclinical Hypothyroidism. Experimental and Therapeutic Medicine, 13, 290-294.
https://doi.org/10.3892/etm.2016.3957
[2] Ortiga-Carvalho, T.M., et al. (2016) Hypothalamus-Pituitary-Thyroid Axis. Comprehensive Physiology, 6, 1387-1428.
https://doi.org/10.1002/cphy.c150027
[3] Wassner, A.J. (2017) Pediatric Hypothyroidism: Diagnosis and Treat-ment. Pediatric Drugs, 19, 291-301.
https://doi.org/10.1007/s40272-017-0238-0
[4] 武银铃, 李红宁, 刘国良. 基因突变及先天性甲状腺功能低下症(甲状腺形态发育异常) [J]. 实用糖尿病杂志, 2019, 15(5): 3-5.
[5] Paschke, R., et al. (2012) 2012 European Thyroid Association Guidelines for the Management of Familial and Persistent Sporadic Non-Autoimmune Hyperthy-roidism Caused by Thyroid-Stimulating Hormone Receptor Germline Mutations. European Thyroid Journal, 1, 142-147.
https://doi.org/10.1159/000342982
[6] Nguyen, J. and Joseph, D. (2022) Locally Invasive Classical Papillary Thyroid Carcinoma with TSH Receptor I568T Mutation: Case Report. Endocrinology, Diabetes & Metabolism Case Re-ports, 2022.
https://doi.org/10.1530/EDM-21-0192
[7] Wang, H., et al. (2020) Mutation Spectrum Analysis of 29 Causative Genes in 43 Chinese Patients with Congenital Hypothyroidism. Molecular Medicine Reports, 22, 297-309.
https://doi.org/10.3892/mmr.2020.11078
[8] Sugisawa, C., et al. (2018) Identification of Compound Heterozy-gous TSHR Mutations (R109Q and R450H) in a Patient with Nonclassic TSH Resistance and Functional Characteriza-tion of the Mutant Receptors. Clinical Pediatric Endocrinology, 27, 123-130.
https://doi.org/10.1297/cpe.27.123
[9] Fuhrer, D. (2020) Constitutive TSH Receptor Activation as a Hallmark of Thyroid Autonomy. Endocrine, 68, 274-278.
https://doi.org/10.1007/s12020-020-02270-z
[10] Long, W., et al. (2018) Targeted Next-Generation Sequencing of Thirteen Causative Genes in Chinese Patients with Congenital Hypothyroidism. Endocrine Journal, 65, 1019-1028.
https://doi.org/10.1507/endocrj.EJ18-0156
[11] Watanabe, D., et al. (2020) A Novel c.1391_1428delinsT Mutation in TSHR as a Cause of Familial Congenital Hypothyroidism with Delayed Onset. Pediatrics & Neonatology, 61, 114-116.
https://doi.org/10.1016/j.pedneo.2019.11.003
[12] Suput, O.J., et al. (2021) Central TSH Dysregulation in a Patient with Familial Non-Autoimmune Autosomal Dominant Hyperthyroidism Due to a Novel Thyroid-Stimulating Hormone Receptor Disease-Causing Variant. Medicina (Kaunas), 57, 196.
https://doi.org/10.3390/medicina57030196
[13] Kayas, L., et al. (2022) TSHRV656F Activating Variant of the Thyroid Stimulating Hormone Receptor Gene in Neonatal Onset Hyperthyroidism: A Case Review. Journal of Clinical Research in Pediatric Endocrinology, 14, 114-118.
https://doi.org/10.4274/jcrpe.galenos.2020.2020.0229
[14] Cassio, A., et al. (2013) Current Loss-of-Function Mu-tations in the Thyrotropin Receptor Gene: When to Investigate, Clinical Effects, and Treatment. Journal of Clinical Re-search in Pediatric Endocrinology, 5, 29-39.
[15] Larsen, C.C., et al. (2014) A New Family with an Activating Muta-tion (G431S) in the TSH Receptor Gene: A Phenotype Discussion and Review of the Literature. International Journal of Pediatric Endocrinology, 2014, Article No. 23.
https://doi.org/10.1186/1687-9856-2014-23
[16] Duprez, L., et al. (1994) Germline Mutations in the Thyrotropin Receptor Gene Cause Non-Autoimmune Autosomal Dominant Hyperthyroidism. Nature Genetics, 7, 396-401.
https://doi.org/10.1038/ng0794-396
[17] Vaidya, B., et al. (2004) Premature Birth and Low Birth Weight Associ-ated with Nonautoimmune Hyperthyroidism Due to an Activating Thyrotropin Receptor Gene Mutation. Clinical Endo-crinology (Oxford), 60, 711-718.
https://doi.org/10.1111/j.1365-2265.2004.02040.x
[18] Chawla, R., et al. (2015) Squamosal Suture Cranio-synostosis Due to Hyperthyroidism Caused by an Activating Thyrotropin Receptor Mutation (T632I). Thyroid, 25, 1167-1172.
https://doi.org/10.1089/thy.2014.0503
[19] Ahn, M.B. (2021) Extrathyroidal Manifestations of Persis-tent Sporadic Non-Autoimmune Hyperthyroidism in a 6-Year-Old Boy: A Case Report. Life (Basel), 11, 713.
https://doi.org/10.3390/life11070713
[20] Wong, F.C., et al. (2018) False-Positive TSH Receptor Antibody Results in an Infant with Activating TSHR Mutation. Endocrine Journal, 65, 793-794.
https://doi.org/10.1507/endocrj.EJ18-0161
[21] Fuhrer, D., et al. (2000) Novel TSHR Germline Mutation (Met463Val) Masquerading as Graves’ Disease in a Large Welsh Kindred with Hyperthyroidism. Thyroid, 10, 1035-1041.
https://doi.org/10.1089/thy.2000.10.1035
[22] van Trotsenburg, P., et al. (2021) Congenital Hypothy-roidism: A 2020-2021 Consensus Guidelines Update—An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid, 31, 387-419.
https://doi.org/10.1089/thy.2020.0333
[23] 罗俊, 吴素英. 先天性甲状腺功能减低症研究进展[J]. 世界最新医学信息文摘, 2019, 19(96): 48-49.
[24] Wassner, A.J. and Brown, R.S. (2015) Congenital Hypothyroidism: Recent Advances. Current Opinion in Endocrinology, Diabetes and Obesity, 22, 407-412.
https://doi.org/10.1097/MED.0000000000000181
[25] Brown, R.S., Alter, C.A. and Sadeghi-Nejad, A. (2015) Severe Unsuspected Maternal Hypothyroidism Discovered after the Diagnosis of Thyrotropin Receptor-Blocking Anti-body-Induced Congenital Hypothyroidism in the Neonate: Failure to Recognize and Implications to the Fetus. Hormone Research in Paediatrics, 83, 132-135.
https://doi.org/10.1159/000368671
[26] Patel, K.A., et al. (2019) Utility of Systematic TSHR Gene Testing in Adults with Hyperthyroidism Lacking overt Autoimmunity and Diffuse Uptake on Thyroid Scintigraphy. Clinical Endo-crinology (Oxford), 90, 328-333.
https://doi.org/10.1111/cen.13892