妊娠期糖尿病对新生儿不良临床结局影响的研究进展
Research Progress on the Influence of Gestational Diabetes Mellitus on Adverse Clinical Outcomes in Neonates
DOI: 10.12677/ACM.2022.124457, PDF, HTML, XML, 下载: 269  浏览: 503 
作者: 杨 洋, 华子瑜:重庆医科大学附属儿童医院新生儿科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 妊娠期糖尿病新生儿并发症巨大儿新生儿低血糖Gestational Diabetes Mellitus Neonatal Complications Macrosomia Neonatal Hypoglycemia
摘要: 妊娠期糖尿病(Gestational Diabetes Mellitus, GDM)是妊娠期最常见的并发症之一,且发病率呈逐年上升趋势。GDM母亲的新生儿受到宫内高血糖及胎儿高胰岛素血症的影响,容易出现巨大儿、新生儿低血糖、新生儿高胆红素血症、早产、先天畸形、新生儿呼吸窘迫综合征等并发症,远期可能出现肥胖,相关并发症的严重程度与母亲血糖水平密切相关。本文就GDM母亲新生儿不良临床结局做一综述,旨在提高对妊娠期糖尿病母亲新生儿的全面认识。
Abstract: Gestational Diabetes Mellitus (GDM) is one of the most common complications during pregnancy and its incidence is increasing year by year. Affected by intrauterine hyperglycemia and fetal hyperinsulinemia, infants of GDM mothers are prone to many complications, such as macrosomia, neonatal hypoglycemia, neonatal hyperbilirubinemia, premature birth, congenital malformation, neonatal respiratory distress syndrome and may develop obesity in the long term. The severity of related complications is strongly associated with maternal blood glucose levels. This review addresses the currently available knowledge on the influence of diabetes in pregnancy on the offspring in order to improve the comprehensive understanding of the infants born to mothers with GDM.
文章引用:杨洋, 华子瑜. 妊娠期糖尿病对新生儿不良临床结局影响的研究进展[J]. 临床医学进展, 2022, 12(4): 3168-3174. https://doi.org/10.12677/ACM.2022.124457

1. 引言

妊娠期糖尿病(Gestational Diabetes Mellitus, GDM)是指妊娠期发生的不同程度的糖代谢异常,但血糖值未达到显性糖尿病的诊断标准,是妊娠期最常见的并发症之一。

1964年诞生的全球第1个妊娠期糖尿病诊断标准,是以孕妇产后发生2型糖尿病风险增加的界值作为诊断切点,未考虑到孕期高血糖对母婴两代人围产期结局的影响 [1]。于2000年7月至2006年4月,国际上进行了一项关于高血糖与不良妊娠结局(HAPO)的研究,纳入了9个国家15个中心23,316名孕妇,结果发现,在排除其他危险因素后,母体血糖与母婴的主要及次要不良结局发生都呈线性相关,即随着血糖水平升高,围产期不良事件发生率逐渐上升 [2]。2010年国际糖尿病和妊娠研究小组(International Association of Diabetes and Pregnancy Study Groups, IADPSG)根据此项研究将妊娠不良结局增加75%为切点 [3],制定了新的GDM的诊断标准。我国颁布的《中国2型糖尿病防治指南(2020年版)》 [4],依据此界值,制定了现行的GDM诊断标准:孕期任何时间行75克口服葡萄糖耐量试验(Oral Glucose Tolerance Test, OGTT),血糖值满足以下三项之一即可诊断GDM:5.1 mmol/L ≤ 空腹血糖 < 7.0 mmol/L,OGTT 1 h血糖 ≥ 10.0 mmol/L,8.5 mmol/L ≤ OGTT 2 h血糖 < 11.1 mmol/L。

据报道,GDM的发病率从1%~20%不等,且随着人们生活水平及生活方式的改变在世界范围内呈逐年上升趋势 [5]。GDM增加了不良妊娠的风险,对母婴健康都能产生严重影响。因此,全面认识GDM对新生儿的影响,对临床上管理糖尿病母亲新生儿至关重要。本文就目前关于GDM新生儿相关并发症的研究进行综述。

2. 巨大儿和大于胎龄儿

Pedersen假说认为,胎儿过度生长与母体葡萄糖经胎盘转移增加、刺激胎儿细胞胰岛素的释放有关。2008年国际上进行的高血糖与不良妊娠结局的研究也证实了这一点,低于GDM诊断标准的血糖水平与大于胎龄儿的发生率及升高的脐血C肽水平具有很强的相关性 [2]。然而,良好的血糖控制并不能完全降低GDM母亲巨大儿的发生率 [6],这表明可能有其他机制共同参与了胎儿的过度生长。

我国学者为探究血糖值和肥胖对巨大儿发病率的影响,对在24~28周时进行GDM筛查的孕妇进行了研究,测量了其血糖值和体质指数(Body mass index, BMI),经过分析发现,与母亲的血糖水平相比,母亲的BMI是更强大的巨大儿风险预测因子,提示母亲的肥胖对新生儿的体重有更大的影响 [7]。国外有研究发现,在血糖控制良好的GDM中,母体游离脂肪酸是唯一与大于胎龄儿独立相关的参数 [8]。这一事实强调了母体脂质对胎儿发育的潜在重要性。所以孕期的体重管理与血糖管理同样重要。

GDM母亲的巨大胎儿形成一种独特的过度生长模式,皮下脂肪主要沉积于肩胛间区域和腹部。由于胎儿头部大小不增加,但肩部和腹围可明显增大,与正常新生儿相比,其头肩比下降,因此自然分娩时易发生围产期窒息,发生肩难产、臂丛神经损伤、骨折的风险也更常见 [9]。国外的一项荟萃分析结果显示,与正常新生儿相比,体重大于4000 g和大于4500 g的新生儿,肩难产、臂丛神经损伤和骨折的风险分别增加了6至11倍和8至20倍 [10]。

3. 新生儿低血糖

低血糖是新生儿期最常见的代谢紊乱。GDM母亲的新生儿,由于母亲的高血糖引起的胎儿高胰岛素血症状态的存在,一旦撤去母亲的血糖供应,容易发生低血糖。然而,由于缺乏一致公认的新生儿低血糖定义及治疗阈值 [11],GDM母亲新生儿低血糖的确切发病率目前尚不清楚。

葡萄糖是大脑的主要能量来源,严重的低血糖发作时会导致脑细胞功能障碍,造成不可逆的中枢神经系统损伤 [12]。国外有研究报道了101,060名生后被诊断为低血糖的患儿,随访至其2~6岁,发现与血糖正常的对照组相比,其神经系统疾病、运动及认知发育迟缓的发病率都明显升高 [13]。新生儿低血糖发作时多数症状并不典型,单靠观察临床表现往往不能发现,对于GDM母亲的新生儿在生后应常规监测血糖水平。然而,并没有一个具体的血糖浓度和低血糖持续时间,能够预测低血糖发作是否造成了永久性脑损伤 [14]。所以其关键在于对早期低血糖的发现及纠正。

4. 新生儿高胆红素血症

有研究显示,6%的新生儿高胆红素血症与GDM有关 [15]。在血糖控制欠佳的GDM孕妇中,一方面糖化血红蛋白含量增加,使其血红蛋白对氧的亲和力升高,降低了通过脐静脉向胎儿输送的氧气量 [16],另一方面,胎儿体内高血糖和高胰岛素血症的存在导致胎儿耗氧量增加。共同作用导致胎儿在宫内处于一种慢性缺氧状态,使胎儿促红细胞生成素水平增加,致有核红细胞增多 [17]。胎儿娩出后,大量有核红细胞短时间内被破坏分解,导致胆红素生成过多。关于GDM母亲新生儿高胆红素血症的危险因素分析研究也证实了这一点,经过多因素的回归分析后发现,只有新生儿红细胞增多症与新生儿高胆红素血症发生率密切相关 [18]。由于GDM常合并巨大儿、早产等并发症,影响胆红素的清除,加重新生儿高胆红素血症的程度。

5. 早产

早产儿的死亡风险是足月儿的120倍,是导致围产儿死亡的主要原因 [19],研究显示,GDM是早产的独立危险因素,GDM孕妇分娩早产儿的风险增加了3.4倍 [20]。由于高血糖状态造成胎盘血管内皮功能障碍影响胎盘功能,自发性早产风险增加,且生产时易合并窒息、肩难产等并发症 [21],临床为避免严重并发症的发生,有时需提前终止妊娠,从而造成医源性早产的发生。

尽管GDM增加了早产的风险,但根据国外的一项研究显示,发生在GDM孕妇中的极早产并不会增加新生儿并发症的风险 [22]。早产儿的健康状况与其母亲GDM的影响相比,更依赖于孕周的长短及其器官形态和功能发育成熟的程度。

6. 先天畸形

妊娠早期是胚胎发育的关键时期,大多数的先天畸形也发生在此时期。妊娠期的糖代谢异常是先天畸形的重要因素,孕前糖尿病与GDM均与先天畸形明显相关,但孕前糖尿病的影响更为显著,表明先天畸形风险增加的程度可能与葡萄糖代谢障碍的程度有关 [23],提示这一时期较差的血糖控制使胚胎在早期发育时暴露于高血糖水平,多器官系统均受此作用影响。常见的畸形包括:心血管系统、泌尿生殖系统、消化系统、肌肉骨骼和其他畸形,其中心血管系统畸形最为常见,主要表现为先天性心脏病和心肌肥厚 [24]。

孕前糖尿病会使新生儿患先天性心脏病的风险增加5倍,包括大动脉转位、室间隔缺损、永存动脉干和三尖瓣闭锁等 [25] [26]。胎儿的心脏发育始于第二孕周,自第八周时已形成四腔心的房室结构,此时期是心脏胚胎发育的关键时间,先天性心脏畸形的形成主要在此期。导致先天性心脏病的病因分为遗传因素和环境因素两大类,而高血糖是非常重要的一种环境因素,其具体机制目前尚不清楚。有动物实验发现,在实验诱导的糖尿病孕鼠胚胎中,大约有10%的胚胎表现出一系列的心脏畸形,其中以永存动脉干合并室间隔缺损最为常见,且心脏畸形的胚胎中参与心脏神经嵴发育的基因Bmp4、Msx1和Pax3的mRNA表达显著下调(p < 0.001) [27],提示母亲糖尿病会改变后代心脏神经嵴发育有关基因的表达,从而导致先天性心脏缺陷。还有研究发现,高血糖会引起细胞线粒体功能障碍,导致活性氧过量生成,激活程序性细胞死亡或凋亡级联反应,从而影响心脏发育过程 [28]。一项在糖尿病孕鼠模型中开展的动物实验也提示,超氧化物歧化酶1通过对活性氧的清除可以减少子鼠室间隔缺损及流出道发育缺陷的发生率 [29]。

心肌肥厚主要影响室间隔,严重情况下可延伸至室壁。国内有研究对出生1周的GDM组及对照组新生儿进行了超声心动图检查,结果表明,在出生体重无明显差异的情况下,GDM组新生儿室间隔厚度明显高于对照组,多元回归分析显示,母亲糖化血红蛋白水平、胰岛素水平及新生儿出生体重均与新生儿室间隔厚度正相关 [30],提示较差的血糖控制可能会诱发心肌肥厚。但其发病机制目前尚不明确,有研究发现,在实验诱导的糖尿病孕鼠中,其胎鼠体重较小,但胎鼠的心脏重量、心脏/胎鼠重量、室间隔厚度均有所增加,差异有统计学意义 [31]。胎鼠体重的下降可能与孕期升高的血糖水平引起的胎盘功能障碍有关,而胎盘功能的损害会导致宫内慢性缺氧,使胎儿发生心肌损害并释放肌钙蛋白,有研究测定了GDM母亲新生儿的肌钙蛋白水平,发现在室间隔肥厚的新生儿中,心肌肌钙蛋白I水平明显升高 [32],进一步证明了上述理论的可能。而在妊娠后期,由于母体血糖控制欠佳,胎儿高胰岛素血症增加了胎儿心脏胰岛素受体的表达,胰岛素具有促进合成代谢的作用,可引起胎儿心肌增生和肥厚,由于室间隔含有丰富的胰岛素受体,其肥大更为明显 [33]。通常认为,心肌肥厚在生后6月至2年内可以在解剖范围缓解,但其对心功能的长期影响有待进一步研究 [34]。

7. 新生儿呼吸窘迫综合征(Neonatal Respiratory Distress Syndrome, NRDS)

关于妊娠期糖尿病是否会增加新生儿罹患新生儿呼吸窘迫综合征的风险,目前仍然存在争议 [35] [36]。早期研究表现,GDM母亲新生儿体内存在高胰岛素血症,高浓度的胰岛素通过抑制糖皮质激素的合成,使肺表面活性物质的合成、释放延迟,进而影响II型肺泡细胞的成熟,胎儿肺成熟延迟,导致NRDS [37]。评估胎儿肺成熟度有两个常用指标,羊水中卵磷脂/鞘磷脂的比率和磷脂酰甘油水平 [38],为探索GDM孕妇与血糖正常孕妇胎儿肺成熟时间有无差异,有研究检测了不同孕周羊水穿刺得到的结果,发现在GDM组,卵磷脂/鞘磷脂的比率与对照组无显著差异,但磷脂酰甘油达到成熟水平延迟了1至1.5周,提示高血糖可能使胎儿体内磷脂酰甘油分泌延迟,导致肺表面活性物质的合成受到影响 [39]。2019年,有学者为探索GDM是否会导致NRDS的风险增加,进行了荟萃分析,共纳入24项研究,汇总分析得出GDM使新生儿罹患NRDS的风险增加了1.57倍 [40]。

8. 肥胖

近年来,儿童肥胖的发病率在发达国家和发展中国家都急剧增加 [41] [42],肥胖是高血压、高血糖和高胆固醇血症的危险因素,增加了患心脑血管疾病和糖尿病的风险。我国一项针对学龄前儿童单纯性肥胖的病因分析发现,出生体重 ≥ 4.0 kg (OR = 1.83)和GDM (OR = 4.57)是影响儿童肥胖的重要因素 [43]。荷兰的一项回顾性研究,为探索GDM与儿童肥胖之间的关联程度以及与宫内生长的关系,描绘了GDM母亲后代的生长曲线,并对大于胎龄儿及非大于胎龄儿进行亚组分析,结果发现,直到青春期早期,GDM母亲后代的BMI开始高于背景人群,而GDM母亲的大于胎龄儿,在青春期超重及肥胖的风险尤其高 [44]。表明孕期GDM暴露的长期影响并不总是在儿童早期明显,青春期是肥胖发展的另一个敏感时期。HAPO后续研究随访了来自10个中心的15,812名孕妇,这些孕妇均在怀孕24~32周时进行了75 g OGTT试验,并对其4775名在10至14岁的后代进行访视,测量了其皮下脂肪厚度、体脂率、BMI等反映肥胖的参数,研究发现母亲的孕期血糖水平与子代皮下脂肪厚度、体脂率和肥胖发生率均呈线性正相关 [45]。

GDM增加子代肥胖风险的机制尚不明确,一方面可能与遗传易感性有关,另一方面可能是由于母孕期较高的高血糖的宫内环境。国外有研究比较了宫内暴露于母体GDM不一致的同胞之间的成对DNA甲基化的差异,测量了18对同胞的外周血DNA的甲基化水平,在分析的465,447个甲基化位点中,发现了12个差异甲基化区域,其中包括与单基因糖尿病(HNF4A)和肥胖(RREB1)基因相关的区域 [46],证实了宫内高血糖引起的后代表观遗传学改变。既往有研究表明,母亲的BMI与子女的肥胖呈正相关,这种关系是受遗传因素影响的 [47],我国学者为探究GDM与母亲BMI之间的相互作用对儿童肥胖的影响,根据与BMI相关的13个易感基因对1114名孕妇进行遗传风险评分 [48],结果发现,母亲的GDM状态会增加母亲BMI对子女肥胖的遗传易感性,提示孕期母亲的高血糖状态是儿童肥胖的主要风险因素 [49]。

9. 总结

综上所述,妊娠期糖尿病增加了新生儿多种临床不良结局的风险,严重程度与母亲血糖水平密切相关,所以,加强对妊娠期糖尿病母亲围产期的综合管理,提高对糖尿病母亲新生儿的全面认识,对降低糖尿病母亲新生儿发病率、死亡率至关重要。但良好的血糖控制并不能完全预防所有并发症的发生,具体机制尚需进一步深入研究。

参考文献

参考文献

[1] 吴红花. 从HAPO研究到HAPO随访研究的启示[J]. 中华医学杂志, 2019, 99(34): 2646-2649.
[2] HAPO Study Cooperative Research Group, Metzger, B.E., Lowe, L.P., et al. (2008) Hyperglycemia and Adverse Pregnancy Outcomes. The New England Journal of Medicine, 358, 1991-2002.
https://doi.org/10.1056/NEJMoa0707943
[3] Metzger, B.E., et al. (2010) International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care, 33, 676-682.
https://doi.org/10.2337/dc09-1848
[4] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398.
[5] Alfadhli, E.M. (2015) Gestational Diabetes Mellitus. Saudi Medical Journal, 36, 399-406.
https://doi.org/10.15537/smj.2015.4.10307
[6] Young, B.C. and Ecker, J.L. (2013) Fetal Macrosomia and Shoulder Dystocia in Women with Gestational Diabetes: Risks Amenable to Treatment? Current Diabetes Reports, 13, 12-18.
https://doi.org/10.1007/s11892-012-0338-8
[7] Liu, J., Leng, J., Tang, C., et al. (2014) Maternal Glucose Level and Body Mass Index Measured at Gestational Diabetes Mellitus Screening and the Risk of Macrosomia: Results from a Perinatal Cohort Study. BMJ Open, 4, e004538.
https://doi.org/10.1136/bmjopen-2013-004538
[8] Schaefer-Graf, U.M., Graf, K., Kulbacka, I., et al. (2008) Maternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies with Gestational Diabetes Mellitus. Diabetes Care, 31, 1858-1863.
https://doi.org/10.2337/dc08-0039
[9] Kc, K., Shakya, S. and Zhang, H. (2015) Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Annals of Nutrition and Metabolism, 66, 14-20.
https://doi.org/10.1159/000371628
[10] Beta, J., Khan, N., Khalil, A., et al. (2019) Maternal and Neonatal Complications of Fetal Macrosomia: Systematic Review and Meta-Analysis. Ultrasound in Obstetrics & Gynecology, 54, 308-318.
https://doi.org/10.1002/uog.20279
[11] Harding, J.E., Harris, D.L., Hegarty, J.E., et al. (2017) An Emerging Evidence Base for the Management of Neonatal Hypoglycaemia. Early Human Development, 104, 51-56.
https://doi.org/10.1016/j.earlhumdev.2016.12.009
[12] De Angelis, L.C., Brigati, G., Polleri, G., et al. (2021) Neonatal Hypoglycemia and Brain Vulnerability. Frontiers in Endocrinology (Lausanne), 12, Article ID: 634305.
https://doi.org/10.3389/fendo.2021.634305
[13] Wickstrom, R., Skiold, B., Petersson, G., et al. (2018) Moderate Neonatal Hypoglycemia and Adverse Neurological Development at 2-6 Years of Age. European Journal of Epidemiology, 33, 1011-1020.
https://doi.org/10.1007/s10654-018-0425-5
[14] Gu, M.H., Amanda, F. and Yuan, T.M. (2019) Brain Injury in Neonatal Hypoglycemia: A Hospital-Based Cohort Study. Clinical Medicine Insights: Pediatrics, 13.
https://doi.org/10.1177/1179556519867953
[15] Boskabadi, H., Rakhshanizadeh, F. and Zakerihamidi, M. (2020) Evaluation of Maternal Risk Factors in Neonatal Hyperbilirubinemia. Archives of Iranian Medicine, 23, 128-140.
https://doi.org/10.34172/aim.2020.55
[16] Mimouni, F., Miodovnik, M., Siddiqi, T.A., et al. (1988) Perinatal Asphyxia in Infants of Insulin-Dependent Diabetic Mothers. The Journal of Pediatrics, 113, 345-353.
https://doi.org/10.1016/S0022-3476(88)80282-8
[17] Teramo, K.A. (2010) Obstetric Problems in Diabetic Pregnancy—The Role of Fetal Hypoxia. Best Practice & Research Clinical Endocrinology & Metabolism, 24, 663-671.
https://doi.org/10.1016/j.beem.2010.05.005
[18] Thevarajah, A. and Simmons, D. (2019) Risk Factors and Outcomes for Neonatal Hypoglycaemia and Neonatal Hyperbilirubinaemia in Pregnancies Complicated by Gestational Diabetes Mellitus: A Single Centre Retrospective 3-Year Review. Diabetic Medicine, 36, 1109-1117.
https://doi.org/10.1111/dme.13962
[19] Gotsch, F., Gotsch, F., Romero, R., et al. (2009) The Preterm Parturition Syndrome and Its Implications for Understanding the Biology, Risk Assessment, Diagnosis, Treatment and Prevention of Preterm Birth. The Journal of Maternal—Fetal & Neonatal Medicine, 22, 5-23.
https://doi.org/10.1080/14767050902860690
[20] Zhang, Y.P., Liu, X.H., Gao, S.H., et al. (2012) Risk Factors for Preterm Birth in Five Maternal and Child Health Hospitals in Beijing. PLoS ONE, 7, e52780.
https://doi.org/10.1371/journal.pone.0052780
[21] Preda, A., Pădureanu, V., Moța, M., et al. (2021) Analysis of Maternal and Neonatal Complications in a Group of Patients with Gestational Diabetes Mellitus. Medicina, 57, Article No. 1170.
https://doi.org/10.3390/medicina57111170
[22] Deryabina, E.G., Yakornova, G.V., Pestryaeva, L.A., et al. (2016) Perinatal Outcome in Pregnancies Complicated with Gestational Diabetes Mellitus and Very Preterm Birth: Case-Control Study. Gynecological Endocrinology, 32, 52-55.
https://doi.org/10.1080/09513590.2016.1232215
[23] Wu, Y., Liu, B., Sun, Y., et al. (2020) Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus with Congenital Anomalies of the Newborn. Diabetes Care, 43, 2983-2990.
https://doi.org/10.2337/dc20-0261
[24] Mills, J.L. (2010) Malformations in Infants of Diabetic Mothers. Teratology 25: 385-94. 1982. Birth Defects Research Part A: Clinical and Molecular Teratology, 88, 769-778.
https://doi.org/10.1002/bdra.20757
[25] Loffredo, C.A., Wilson, P.D. and Ferencz, C. (2001) Maternal Diabetes: An Independent Risk Factor for Major Cardiovascular Malformations with Increased Mortality of Affected Infants. Teratology, 64, 98-106.
https://doi.org/10.1002/tera.1051
[26] Wren, C., Birrell, G. and Hawthorne, G. (2003) Cardiovascular Malformations in Infants of Diabetic Mothers. Heart, 89, 1217-1220.
https://doi.org/10.1136/heart.89.10.1217
[27] Kumar, S.D., Dheen, S.T. and Tay, S.S. (2007) Maternal Diabetes Induces Congenital Heart Defects in Mice by Altering the Expression of Genes Involved in Cardiovascular Development. Cardiovascular Diabetology, 6, Article No. 34.
https://doi.org/10.1186/1475-2840-6-34
[28] Reece, E.A. (2012) Diabetes-Induced Birth Defects: What Do We Know? What Can We Do? Current Diabetes Reports, 12, 24-32.
https://doi.org/10.1007/s11892-011-0251-6
[29] Wang, F., Fisher, S.A., Zhong, J., et al. (2015) Superoxide Dismutase 1 in Vivo Ameliorates Maternal Diabetes Mellitus-Induced Apoptosis and Heart Defects through Restoration of Impaired Wnt Signaling. Circulation: Cardiovascular Genetics, 8, 665-676.
https://doi.org/10.1161/CIRCGENETICS.115.001138
[30] 邢继伟, 张巍, 焦颖. 妊娠期糖尿病对新生儿心脏发育的影响[J]. 中华新生儿科杂志(中英文), 2019, 34(6): 413-417.
[31] Menezes, H.S., Barra, M., Bello, A.R., et al. (2001) Fetal Myocardial Hypertrophy in an Experimental Model of Gestational Diabetes. Cardiology in the Young, 11, 609-613.
https://doi.org/10.1017/S1047951101000956
[32] Korraa, A., Ezzat, M.H., Bastawy, M., et al. (2012) Cardiac Troponin I Levels and Its Relation to Echocardiographic Findings in Infants of Diabetic Mothers. Italian Journal of Pediatrics, 38, 39.
https://doi.org/10.1186/1824-7288-38-39
[33] Thorsson, A.V. and Hintz, R.L. (1977) Insulin Receptors in the Newborn. Increase in Receptor Affinity and Number. The New England Journal of Medicine, 297, 908-912.
https://doi.org/10.1056/NEJM197710272971704
[34] Zielinsky, P., Da Costa, M.H., Oliveira, L.T., et al. (1997) Natural History of Myocardial Hypertrophy and Its Association with Hyperinsulinism in Infants of Diabetic Mothers. Arquivos Brasileiros de Cardiologia, 69, 389-394.
https://doi.org/10.1590/S0066-782X1997001200005
[35] Al-Nemri, A.M., Alsohime, F., Shaik, A.H., et al. (2018) Perinatal and Neonatal Morbidity among Infants of Diabetic Mothers at a University Hospital in Central Saudi Arabia. Saudi Medical Journal, 39, 592-597.
https://doi.org/10.15537/smj.2018.6.22907
[36] Werner, E.F., Romano, M.E., Rouse, D.J., et al. (2019) Association of Gestational Diabetes Mellitus with Neonatal Respiratory Morbidity. Obstetrics & Gynecology, 133, 349-353.
https://doi.org/10.1097/AOG.0000000000003053
[37] Bourbon, J.R. and Farrell, P.M. (1985) Fetal Lung Development in the Diabetic Pregnancy. Pediatric Research, 19, 253-267.
https://doi.org/10.1203/00006450-198503000-00001
[38] Piper, J.M. (2002) Lung Maturation in Diabetes in Pregnancy: If and When to Test. Seminars in Perinatology, 26, 206-209.
https://doi.org/10.1053/sper.2002.33969
[39] Moore, T.R. (2002) A Comparison of Amniotic Fluid Fetal Pulmonary Phospholipids in Normal and Diabetic Pregnancy. The American Journal of Obstetrics and Gynecology, 186, 641-650.
https://doi.org/10.1067/mob.2002.122851
[40] Li, Y., Wang, W. and Zhang, D. (2019) Maternal Diabetes Mellitus and Risk of Neonatal Respiratory Distress Syndrome: A Meta-Analysis. Acta Diabetologica, 56, 729-740.
https://doi.org/10.1007/s00592-019-01327-4
[41] Skinner, A.C., Ravanbakht, S.N., Skelton, J.A., et al. (2018) Prevalence of Obesity and Severe Obesity in US Children, 1999-2016. Pediatrics, 141, e20173459.
https://doi.org/10.1542/peds.2017-3459
[42] Hu, L., Huang, X., You, C., et al. (2017) Prevalence of Overweight, Obesity, Abdominal Obesity and Obesity-Related Risk Factors in Southern China. PLoS ONE, 12, e0183934.
https://doi.org/10.1371/journal.pone.0183934
[43] 宗心南, 李辉, 张亚钦, 九市儿童体格发育调查协作组. 中国9个城市学龄前儿童单纯性肥胖的影响因素研究[J]. 中华流行病学杂志, 2022, 43(1): 50-57.
[44] Hammoud, N.M., Visser, G.H.A., Van Rossem, L., et al. (2018) Long-Term BMI and Growth Profiles in Offspring of Women with Gestational Diabetes. Diabetologia, 61, 1037-1045.
https://doi.org/10.1007/s00125-018-4584-4
[45] Lowe, W.L., Lowe, L.P., Kuang, A., et al. (2019) Maternal Glucose Levels during Pregnancy and Childhood Adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-Up Study. Diabetologia, 62, 598-610.
https://doi.org/10.1007/s00125-018-4809-6
[46] Kim, E., Kwak, S.H., Chung, H.R., et al. (2017) DNA Methylation Profiles in Sibling Pairs Discordant for Intrauterine Exposure to Maternal Gestational Diabetes. Epigenetics, 12, 825-832.
https://doi.org/10.1080/15592294.2017.1370172
[47] Tyrrell, J., Richmond, R.C., Palmer, T.M., et al. (2016) Genetic Evidence for Causal Relationships between Maternal Obesity-Related Traits and Birth Weight. JAMA, 315, 1129-1140.
https://doi.org/10.1001/jama.2016.1975
[48] Liu, S., Huang, S., Chen, F., et al. (2018) Genomic Analyses from Non-Invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. Cell, 175, 347-359.e14.
https://doi.org/10.1016/j.cell.2018.08.016
[49] Liang, Z., Liu, H., Wang, L., et al. (2020) Maternal Gestational Diabetes Mellitus Modifies the Relationship between Genetically Determined Body Mass Index during Pregnancy and Childhood Obesity. Mayo Clinic Proceedings, 95, 1877-1887.
https://doi.org/10.1016/j.mayocp.2020.04.042