胰高血糖素样肽-1受体激动剂生物及临床研究进展
Advances in Biological and Clinical Research of GLP-1 Receptor Agonists
DOI: 10.12677/ACM.2022.124430, PDF, HTML, XML, 下载: 353  浏览: 531 
作者: 李 鑫:青海大学研究生院,青海 西宁 ;江 彤*:青海大学附属医院,青海 西宁
关键词: 胰高血糖素样肽-12型糖尿病肥胖并发症GLP-1 Type 2 Diabetes Obesity Complications
摘要: 糖尿病的患病率居高不下,现代人们久坐不动的生活方式也导致了超重和肥胖人群的增多。虽然我们对血糖升高继发的各种并发症已经有了更深入的认识,但药物种类的繁多以及患者长期治疗依从性的下降也给临床治疗增添了几分难度。胰高血糖素样肽-1受体激动剂的问世似乎给体型肥胖的2型糖尿病患者带来了曙光。作为一款降糖药,它不仅可以有效避免低血糖的发生,还可以降低体质指数。近年来,人们还发现了GLP-1受体激动剂的一些非降糖作用,如保护患者的肝脏、肾脏和心血管等系统,降低或延缓相应并发症的发生及发展,甚至可以用于治疗帕金森病和阿尔茨海默症等疾病。本文通过GLP-1受体激动剂在生物及临床研究中的进展展开讨论,探讨其在临床使用中的价值。
Abstract: The prevalence rate of diabetes is high, and the change of modern people’s lifestyle has also led to an increase in overweight and obese people. Although we have a deeper understanding of various complications secondary to elevated blood glucose, the wide variety of drugs and the decline of patients’ long-term treatment compliance also add some difficulties to clinical treatment. The advent of glucagon like peptide-1 receptor agonist seems to bring dawn to obese patients with type 2 diabetes. As a hypoglycemic drug, it can not only effectively avoid hypoglycemia, but also reduce body mass index. In recent years, some non-hypoglycemic effects of GLP-1 receptor agonists have also been found, such as protecting patients’ liver, kidney and cardiovascular systems, reducing or delaying the occurrence and development of corresponding complications, and even can be used to treat diseases such as Parkinson’s disease and Alzheimer’s disease. This paper discusses the progress of GLP-1 receptor agonist in biological and clinical research, and discusses its value in clinical use.
文章引用:李鑫, 江彤. 胰高血糖素样肽-1受体激动剂生物及临床研究进展[J]. 临床医学进展, 2022, 12(4): 2979-2988. https://doi.org/10.12677/ACM.2022.124430

参考文献

[1] Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., Shi, B., Sun, H., Ba, J., Chen, B., Du, J., He, L., Lai, X., Li, Y., Chi, H., Liao, E., Liu, C., Liu, L., Tang, X., Tong, N., Wang, G., Zhang, J.A., Wang, Y., Xue, Y., Yan, L., Yang, J., Yang, L., Yao, Y., Ye, Z., Zhang, Q., Zhang, L., Zhu, J., Zhu, M., Ning, G., Mu, Y., Zhao, J., Teng, W. and Shan, Z. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. British Medical Journal, 369, m997.
https://doi.org/10.1136/bmj.m997
[2] Hu, F.B., Manson, J.E., Stampfer, M.J., Colditz, G., Liu, S., Solomon, C.G. and Willett, W.C. (2001) Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. The New England Journal of Medicine, 345, 790-797.
https://doi.org/10.1056/NEJMoa010492
[3] Olefsky, J.M., Kolterman, O.G. and Scarlett, J.A. (1982) Insulin Action and Resistance in Obesity and Noninsulin-Dependent Type II Diabetes Mellitus. American Journal of Physiology-Endocrinology and Metabolism, 243, E15-E30.
https://doi.org/10.1152/ajpendo.1982.243.1.E15
[4] Albu, J. and Pi-Sunyer, F.X. (1998) Obesity and Diabetes. In: Bray, G.A., Bouchard, C. and James, W.P.T., Eds., Handbook of Obesity, Marcel Dekker, New York, 697-707.
[5] Toplak, H., Hoppichler, F., Wascher, T.C., Schindler, K. and Ludvik, B. (2016) Adipositas und Type 2 Diabetes [Obesity and Type 2 Diabetes]. Wiener klinische Wochenschrift, 128, 196-200.
https://doi.org/10.1007/s00508-016-0986-9
[6] Albu, J. and Raja-Khan, N. (2003) The Management of the Obese Diabetic Patient. Primary Care: Clinics in Office Practice, 30, 465-491.
https://doi.org/10.1016/S0095-4543(03)00043-5
[7] Kieffer, T.J. and Habener, J.F. (1999) The Glucagon-Like Peptides. Endocrine Reviews, 20, 876-913.
https://doi.org/10.1210/edrv.20.6.0385
[8] Theodorakis, M.J., Carlson, O., Michopoulos, S., Doyle, M.E., Juhaszova, M., Petraki, K. and Egan, J.M. (2006) Human Duodenal Enteroendocrine Cells: Source of Both Incretin Peptides, GLP-1 and GIP. American Journal of Physiology-Endocrinology and Metabolism, 290, E550-E559.
https://doi.org/10.1152/ajpendo.00326.2004
[9] Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439.
https://doi.org/10.1152/physrev.00034.2006
[10] 张凯悦, 吴倜珺. GLP-1受体激动剂类药物(GLP-1RA)在2型糖尿病治疗中的研究进展[J]. 医学分子生物学杂志, 2021, 18(4): 321-324.
https://doi.org/10.3870/j.issn.1672-8009.2021.04.013
[11] Hazlehurst, J.M., Woods, C., Marjot, T., Cobbold, J.F. and Tomlinson, J.W. (2016) Non-Alcoholic Fatty Liver Disease and Diabetes. Metabolism, 65, 1096-1108.
https://doi.org/10.1016/j.metabol.2016.01.001
[12] Cantini, G., Mannucci, E. and Luconi, M. (2016) Perspectives in GLP-1 Research: New Targets, New Receptors. Trends in Endocrinology & Metabolism, 27, 427-438.
https://doi.org/10.1016/j.tem.2016.03.017
[13] Drucker, D.J., Habener, J.F. and Holst, J.J. (2017) Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides. Journal of Clinical Investigation, 127, 4217-4227.
[14] Nauck, M.A., Sauerwald, A., Ritzel, R., Holst, J.J. and Schmiegel, W. (1998) Influence of Glucagon-Like Peptide 1 on Fasting Glycemia in Type 2 Diabetic Patients Treated with Insulin after Sulfonylurea Secondary Failure. Diabetes Care, 21, 1925-1931.
https://doi.org/10.2337/diacare.21.11.1925
[15] Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756.
https://doi.org/10.1016/j.cmet.2018.03.001
[16] Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837.
https://doi.org/10.1016/j.cmet.2013.04.008
[17] Ahrén, B., Hirsch, I.B., Pieber, T.R., Mathieu, C., Gómez-Peralta, F., Hansen, T.K., Philotheou, A., Birch, S., Christiansen, E., Jensen, T.J. and Buse, J.B. (ADJUNCT TWO Investigators) (2016) Efficacy and Safety of Liraglutide Added to Capped Insulin Treatment in Subjects with Type 1 Diabetes: The ADJUNCT TWO Randomized Trial. Diabetes Care, 39, 1693-1701.
https://doi.org/10.2337/dc16-0690
[18] Mathieu, C., Zinman, B., Hemmingsson, J.U., Woo, V., Colman, P., Christiansen, E., Linder, M. and Bode, B. (ADJUNCT ONE Investigators) (2016) Efficacy and Safety of Liraglutide Added to Insulin Treatment in Type 1 Diabetes: The ADJUNCT ONE Treat-to-Target Randomized Trial. Diabetes Care, 39, 1702-1710.
https://doi.org/10.2337/dc16-0691
[19] Panjwani, N., Mulvihill, E.E., Longuet, C., Yusta, B., Campbell, J.E., Brown, T.J., Streutker, C., Holland, D., Cao, X., Baggio, L.L. and Drucker, D.J. (2013) GLP-1 Receptor Activation Indirectly Reduces Hepatic Lipid Accumulation but Does Not Attenuate Development of Atherosclerosis in Diabetic Male ApoE-/- Mice. Endocrinology, 154, 127-139.
https://doi.org/10.1210/en.2012-1937
[20] Sjøberg, K.A., Holst, J.J., Rattigan, S., Richter, E.A. and Kiens, B. (2014) GLP-1 Increases Microvascular Recruitment but Not Glucose Uptake in Human and Rat Skeletal Muscle. American Journal of Physiology-Endocrinology and Metabolism, 306, E355-E362.
https://doi.org/10.1152/ajpendo.00283.2013
[21] Schjoldager, B.T., Mortensen, P.E., Christiansen, J., Orskov, C. and Holst, J.J. (1989) GLP-1 (Glucagon-Like Peptide 1) and Truncated GLP-1, Fragments of Human Proglucagon, Inhibit Gastric Acid Secretion in Humans. Digestive Diseases and Sciences, 34, 703-708.
https://doi.org/10.1007/BF01540341
[22] Wettergren, A., Schjoldager, B., Mortensen, P.E., Myhre, J., Christiansen, J. and Holst, J.J. (1993) Truncated GLP-1 (Proglucagon 78-107-Amide) Inhibits Gastric and Pancreatic Functions in Man. Digestive Diseases and Sciences, 38, 665-673.
https://doi.org/10.1007/BF01316798
[23] Wettergren, A., Maina, P., Boesby, S. and Holst, J.J. (1997) Glucagon-Likepeptide-1 7-36 Amide and Peptide YY Have Additive Inhibitory Effect on Gastric Acid Secretion in Man. Scandinavian Journal of Gastroenterology, 32, 552-555.
https://doi.org/10.3109/00365529709025098
[24] Wettergren, A., Petersen, H., Orskov, C., Christiansen, J., Sheikh, S.P. and Holst, J.J. (1994) Glucagon-Like Peptide-1 7-36 Amide and Peptide YY from the L-Cell of the Ileal Mucosa Are Potent Inhibitors of Vagally Induced Gastric Acid Secretion in Man. Scandinavian Journal of Gastroenterology, 29, 501-505.
https://doi.org/10.3109/00365529409092462
[25] Linnebjerg, H., Park, S., Kothare, P.A., Trautmann, M.E., Mace, K., Fineman, M., Wilding, I., Nauck, M. and Horowitz, M. (2008) Effect of Exenatide on Gastric Emptying and Relationship to Postprandial Glycemia in Type 2 Diabetes. Regulatory Peptides, 151, 123-129.
https://doi.org/10.1016/j.regpep.2008.07.003
[26] Henderson, S.J., Konkar, A., Hornigold, D.C., Trevaskis, J.L., Jackson, R., Fritsch Fredin, M., Jansson-Löfmark, R., Naylor, J., Rossi, A., Bednarek, M.A., Bhagroo, N., Salari, H., Will, S., Oldham, S., Hansen, G., Feigh, M., Klein, T., Grimsby, J., Maguire, S., Jermutus, L., Rondinone, C.M. and Coghlan, M.P. (2016) Robust Anti-Obesity and Metabolic Effects of a Dual GLP-1/Glucagon Receptor Peptide Agonist in Rodents and Non-Human Primates. Diabetes, Obesity and Metabolism, 18, 1176-1190.
https://doi.org/10.1111/dom.12735
[27] Turton, M.D., O’Shea, D., Gunn, I., Beak, S.A., Edwards, C.M., Meeran, K., Choi, S.J., Taylor, G.M., Heath, M.M., Lambert, P.D., Wilding, J.P., Smith, D.M., Ghatei, M.A., Herbert, J. and Bloom, S.R. (1996) A Role for Glucagon-Like Peptide-1 in the Central Regulation of Feeding. Nature, 379, 69-72.
https://doi.org/10.1038/379069a0
[28] 纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361.
https://doi.org/10.3969/j.issn.1006-6187.2018.05.001
[29] 赵立峰, 刘英, 刘冠英. GLP-1受体激动剂对心血管的保护机制研究进展[J]. 海峡药学, 2021, 33(3): 143-145.
[30] 戴亚伟, 周景昕, 韩旭, 等. GLP-1抑制主动脉瓣膜间质细胞钙化[J]. 南京医科大学学报(自然科学版), 2019(5): 664-667.
[31] Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 394, 121-130.
https://doi.org/10.1016/S0140-6736(19)31149-3
[32] Koye, D.N., Shaw, J.E., Reid, C.M., Atkins, R.C., Reutens, A.T. and Magliano, D.J. (2017) Incidence of Chronic Kidney Disease among People with Diabetes: A Systematic Review of Observational Studies. Diabetic Medicine, 34, 887-901.
https://doi.org/10.1111/dme.13324
[33] Pyke, C., Heller, R.S., Kirk, R.K., Ørskov, C., Reedtz-Runge, S., Kaastrup, P., Hvelplund, A., Bardram, L., Calatayud, D. and Knudsen, L.B. (2014) GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Antibody. Endocrinology, 155, 1280-1290.
https://doi.org/10.1210/en.2013-1934
[34] Thomas, M.C. (2017) The Potential and Pitfalls of GLP-1 Receptor Agonists for Renal Protection in Type 2 Diabetes. Diabetes & Metabolism, 43, 2S20-2S27.
https://doi.org/10.1016/S1262-3636(17)30069-1
[35] Rowlands, J., Heng, J., Newsholme, P. and Carlessi, R. (2018) Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Frontiers in Endocrinology, 9, Article No. 672.
https://doi.org/10.3389/fendo.2018.00672
[36] Smits, M.M., Tonneijck, L., Muskiet, M.H., Hoekstra, T., Kramer, M.H., Pieters, I.C., Cahen, D.L., Diamant, M. and van Raalte, D.H. (2015) Cardiovascular, Renal and Gastrointestinal Effects of Incretin-Based Therapies: An Acute and 12-Week Randomised, Double-Blind, Placebo-Controlled, Mechanistic Intervention Trial in Type 2 Diabetes. BMJ Open, 5, e009579.
https://doi.org/10.1136/bmjopen-2015-009579
[37] Roscioni, S.S., Heerspink, H.J. and de Zeeuw, D. (2014) The Effect of RAAS Blockade on the Progression of Diabetic Nephropathy. Nature Reviews Nephrology, 10, 77-87.
https://doi.org/10.1038/nrneph.2013.251
[38] Greco, E.V., Russo, G., Giandalia, A., Viazzi, F., Pontremoli, R. and De Cosmo, S. (2019) GLP-1 Receptor Agonists and Kidney Protection. Medicina, 55, Article No. 233.
https://doi.org/10.3390/medicina55060233
[39] Sun, F., Wu, S., Wang, J., Guo, S., Chai, S., Yang, Z., Li, L., Zhang, Y., Ji, L. and Zhan, S. (2015) Effect of Glucagon-Like Peptide-1 Receptor Agonists on Lipid Profiles among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Clinical Therapeutics, 37, 225-241.E8.
https://doi.org/10.1016/j.clinthera.2014.11.008
[40] Farr, S., Taher, J. and Adeli, K. (2014) Glucagon-Like Peptide-1 as a Key Regulator of Lipid and Lipoprotein Metabolism in Fasting and Postprandial States. Cardiovascular & Hematological Disorders-Drug Targets, 14, 126-136.
https://doi.org/10.2174/1871529X14666140505125300
[41] Kooijman, S., Wang, Y., Parlevliet, E.T., Boon, M.R., Edelschaap, D., Snaterse, G., Pijl, H., Romijn, J.A. and Rensen, P.C. (2015) Central GLP-1 Receptor Signalling Accelerates Plasma Clearance of Triacylglycerol and Glucose by Activating Brown Adipose Tissue in Mice. Diabetologia, 58, 2637-2646.
https://doi.org/10.1007/s00125-015-3727-0
[42] Laurindo, L.F., Barbalho, S.M., Guiguer, E.L., da Silva Soares de Souza, M., de Souza, G.A., Fidalgo, T.M., Araújo, A.C., de Souza Gonzaga, H.F., de Bortoli Teixeira, D., de Oliveira Silva Ullmann, T., Sloan, K.P. and Sloan, L.A. (2022) GLP-1a: Going beyond Traditional Use. International Journal of Molecular Sciences, 23, Article No. 739.
https://doi.org/10.3390/ijms23020739
[43] Brunner, K.T., Henneberg, C.J., Wilechansky, R.M. and Long, M.T. (2019) Nonalcoholic Fatty Liver Disease and Obesity Treatment. Current Obesity Reports, 8, 220-228.
https://doi.org/10.1007/s13679-019-00345-1
[44] Gupta, N.A., Mells, J., Dunham, R.M., Grakoui, A., Handy, J., Saxena, N.K. and Anania, F.A. (2010) Glucagon-Like Peptide-1 Receptor Is Present on Human Hepatocytes and Has a Direct Role in Decreasing Hepatic Steatosis in Vitro by Modulating Elements of the Insulin Signaling Pathway. Hepatology, 51, 1584-1592.
https://doi.org/10.1002/hep.23569
[45] Trevaskis, J.L., Griffin, P.S., Wittmer, C., Neuschwander-Tetri, B.A., Brunt, E.M., Dolman, C.S., Erickson, M.R., Napora, J., Parkes, D.G. and Roth, J.D. (2012) Glucagon-Like Peptide-1 Receptor Agonism Improves Metabolic, Biochemical, and Histopathological Indices of Nonalcoholic Steatohepatitis in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 302, G762-G772.
https://doi.org/10.1152/ajpgi.00476.2011
[46] Seghieri, M., Christensen, A.S., Andersen, A., Solini, A., Knop, F.K. and Vilsbøll, T. (2018) Future Perspectives on GLP-1 Receptor Agonists and GLP-1/Glucagon Receptor Co-Agonists in the Treatment of NAFLD. Frontiers in Endocrinology, 9, Article No. 649.
https://doi.org/10.3389/fendo.2018.00649
[47] Bifari, F., Manfrini, R., Dei Cas, M., Berra, C., Siano, M., Zuin, M., Paroni, R. and Folli, F. (2018) Multiple Target Tissue Effects of GLP-1 Analogues on Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH). Pharmacological Research, 137, 219-229.
https://doi.org/10.1016/j.phrs.2018.09.025
[48] Kazankov, K., Jørgensen, S.M.D., Thomsen, K.L., Møller, H.J., Vilstrup, H., George, J., Schuppan, D. and Grønbæk, H. (2019) The Role of Macrophages in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 16, 145-159.
https://doi.org/10.1038/s41575-018-0082-x
[49] Athauda, D. and Foltynie, T. (2016) The Glucagon-Like Peptide 1 (GLP) Receptor as a Therapeutic Target in Parkinson’s Disease: Mechanisms of Action. Drug Discovery Today, 21, 802-818.
https://doi.org/10.1016/j.drudis.2016.01.013
[50] Kim, D.S., Choi, H.I., Wang, Y., Luo, Y., Hoffer, B.J. and Greig, N.H. (2017) A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell Transplantation, 26, 1560-1571.
https://doi.org/10.1177/0963689717721234
[51] Athauda, D., Maclagan, K., Skene, S.S., Bajwa-Joseph, M., Letchford, D., Chowdhury, K., Hibbert, S., Budnik, N., Zampedri, L., Dickson, J., Li, Y., Aviles-Olmos, I., Warner, T.T., Limousin, P., Lees, A.J., Greig, N.H., Tebbs, S. and Foltynie, T. (2017) Exenatide Once Weekly versus Placebo in Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 390, 1664-1675.
https://doi.org/10.1016/S0140-6736(17)31585-4
[52] Mulvaney, C.A., Duarte, G.S., Handley, J., Evans, D.J., Menon, S., Wyse, R. and Emsley, H.C. (2020) GLP-1 Receptor Agonists for Parkinson’s Disease. Cochrane Database of Systematic Reviews, 7, CD012990.
[53] Selkoe, D.J. (2002) Alzheimer’s Disease Is a Synaptic Failure. Science, 298, 789-791.
https://doi.org/10.1126/science.1074069
[54] Craft, S. (2009) The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia: Two Roads Converged. Archives of Neurology, 66, 300-305.
https://doi.org/10.1001/archneurol.2009.27
[55] McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67.
https://doi.org/10.1016/j.neuropharm.2013.08.005
[56] Qi, L., Chen, Z., Wang, Y., Liu, X., Liu, X., Ke, L., Zheng, Z., Lin, X., Zhou, Y., Wu, L. and Liu, L. (2017) Subcutaneous Liraglutide Ameliorates Methylglyoxal-Induced Alzheimer-Like Tau Pathology and Cognitive Impairment by Modulating Tau Hyperphosphorylation and Glycogen Synthase Kinase-3β. American Journal of Translational Research, 9, 247-260.
[57] Batista, A.F., Forny-Germano, L., Clarke, J.R., Lyra, E., Silva, N.M., Brito-Moreira, J., Boehnke, S.E., Winterborn, A., Coe, B.C., Lablans, A., Vital, J.F., Marques, S.A., Martinez, A.M., Gralle, M., Holscher, C., Klein, W.L., Houzel, J.C., Ferreira, S.T., Munoz, D.P. and De Felice, F.G. (2018) The Diabetes Drug Liraglutide Reverses Cognitive Impairment in Mice and Attenuates Insulin Receptor and Synaptic Pathology in a Non-Human Primate Model of Alzheimer’s Disease. The Journal of Pathology, 245, 85-100.
https://doi.org/10.1002/path.5056
[58] Batista, A.F., Bodart-Santos, V., De Felice, F.G. and Ferreira, S.T. (2019) Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer’s and Parkinson’s Diseases. CNS Drugs, 33, 209-223.
https://doi.org/10.1007/s40263-018-0593-6
[59] Soria Lopez, J.A., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255.
https://doi.org/10.1016/B978-0-12-804766-8.00013-3
[60] Kellar, D. and Craft, S. (2020) Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. The Lancet Neurology, 19, 758-766.
https://doi.org/10.1016/S1474-4422(20)30231-3
[61] Moran, L.J., Norman, R.J. and Teede, H.J. (2015) Metabolic Risk in PCOS: Phenotype and Adiposity Impact. Trends in Endocrinology & Metabolism, 26, 136-143.
https://doi.org/10.1016/j.tem.2014.12.003
[62] Broughton, D.E. and Moley, K.H. (2017) Obesity and Female Infertility: Potential Mediators of Obesity’s Impact. Fertility and Sterility, 107, 840-847.
https://doi.org/10.1016/j.fertnstert.2017.01.017
[63] Lim, S.S., Hutchison, S.K., Van Ryswyk, E., Norman, R.J., Teede, H.J. and Moran, L.J. (2019) Lifestyle Changes in Women with Polycystic Ovary Syndrome. Cochrane Database of Systematic Reviews, 3, CD007506.
[64] Frøssing, S., Nylander, M., Chabanova, E., Frystyk, J., Holst, J.J., Kistorp, C., Skouby, S.O. and Faber, J. (2018) Effect of Liraglutide on Ectopic Fat in Polycystic Ovary Syndrome: A Randomized Clinical Trial. Diabetes, Obesity and Metabolism, 20, 215-218.
https://doi.org/10.1111/dom.13053
[65] Liu, X., Zhang, Y., Zheng, S.Y., Lin, R., Xie, Y.J., Chen, H., Zheng, Y.X., Liu, E., Chen, L., Yan, J.H., Xu, W., Mai, T.T. and Gong, Y. (2017) Efficacy of Exenatide on Weight Loss, Metabolic Parameters and Pregnancy in Overweight/Obese Polycystic Ovary Syndrome. Clinical Endocrinology, 87, 767-774.
https://doi.org/10.1111/cen.13454
[66] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.