|
[1]
|
Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., Shi, B., Sun, H., Ba, J., Chen, B., Du, J., He, L., Lai, X., Li, Y., Chi, H., Liao, E., Liu, C., Liu, L., Tang, X., Tong, N., Wang, G., Zhang, J.A., Wang, Y., Xue, Y., Yan, L., Yang, J., Yang, L., Yao, Y., Ye, Z., Zhang, Q., Zhang, L., Zhu, J., Zhu, M., Ning, G., Mu, Y., Zhao, J., Teng, W. and Shan, Z. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. British Medical Journal, 369, m997. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hu, F.B., Manson, J.E., Stampfer, M.J., Colditz, G., Liu, S., Solomon, C.G. and Willett, W.C. (2001) Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. The New England Journal of Medicine, 345, 790-797. [Google Scholar] [CrossRef]
|
|
[3]
|
Olefsky, J.M., Kolterman, O.G. and Scarlett, J.A. (1982) Insulin Action and Resistance in Obesity and Noninsulin-Dependent Type II Diabetes Mellitus. American Journal of Physiology-Endocrinology and Metabolism, 243, E15-E30. [Google Scholar] [CrossRef]
|
|
[4]
|
Albu, J. and Pi-Sunyer, F.X. (1998) Obesity and Diabetes. In: Bray, G.A., Bouchard, C. and James, W.P.T., Eds., Handbook of Obesity, Marcel Dekker, New York, 697-707.
|
|
[5]
|
Toplak, H., Hoppichler, F., Wascher, T.C., Schindler, K. and Ludvik, B. (2016) Adipositas und Type 2 Diabetes [Obesity and Type 2 Diabetes]. Wiener klinische Wochenschrift, 128, 196-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Albu, J. and Raja-Khan, N. (2003) The Management of the Obese Diabetic Patient. Primary Care: Clinics in Office Practice, 30, 465-491. [Google Scholar] [CrossRef]
|
|
[7]
|
Kieffer, T.J. and Habener, J.F. (1999) The Glucagon-Like Peptides. Endocrine Reviews, 20, 876-913. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Theodorakis, M.J., Carlson, O., Michopoulos, S., Doyle, M.E., Juhaszova, M., Petraki, K. and Egan, J.M. (2006) Human Duodenal Enteroendocrine Cells: Source of Both Incretin Peptides, GLP-1 and GIP. American Journal of Physiology-Endocrinology and Metabolism, 290, E550-E559. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
张凯悦, 吴倜珺. GLP-1受体激动剂类药物(GLP-1RA)在2型糖尿病治疗中的研究进展[J]. 医学分子生物学杂志, 2021, 18(4): 321-324. [Google Scholar] [CrossRef]
|
|
[11]
|
Hazlehurst, J.M., Woods, C., Marjot, T., Cobbold, J.F. and Tomlinson, J.W. (2016) Non-Alcoholic Fatty Liver Disease and Diabetes. Metabolism, 65, 1096-1108. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cantini, G., Mannucci, E. and Luconi, M. (2016) Perspectives in GLP-1 Research: New Targets, New Receptors. Trends in Endocrinology & Metabolism, 27, 427-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Drucker, D.J., Habener, J.F. and Holst, J.J. (2017) Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides. Journal of Clinical Investigation, 127, 4217-4227.
|
|
[14]
|
Nauck, M.A., Sauerwald, A., Ritzel, R., Holst, J.J. and Schmiegel, W. (1998) Influence of Glucagon-Like Peptide 1 on Fasting Glycemia in Type 2 Diabetic Patients Treated with Insulin after Sulfonylurea Secondary Failure. Diabetes Care, 21, 1925-1931. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ahrén, B., Hirsch, I.B., Pieber, T.R., Mathieu, C., Gómez-Peralta, F., Hansen, T.K., Philotheou, A., Birch, S., Christiansen, E., Jensen, T.J. and Buse, J.B. (ADJUNCT TWO Investigators) (2016) Efficacy and Safety of Liraglutide Added to Capped Insulin Treatment in Subjects with Type 1 Diabetes: The ADJUNCT TWO Randomized Trial. Diabetes Care, 39, 1693-1701. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mathieu, C., Zinman, B., Hemmingsson, J.U., Woo, V., Colman, P., Christiansen, E., Linder, M. and Bode, B. (ADJUNCT ONE Investigators) (2016) Efficacy and Safety of Liraglutide Added to Insulin Treatment in Type 1 Diabetes: The ADJUNCT ONE Treat-to-Target Randomized Trial. Diabetes Care, 39, 1702-1710. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Panjwani, N., Mulvihill, E.E., Longuet, C., Yusta, B., Campbell, J.E., Brown, T.J., Streutker, C., Holland, D., Cao, X., Baggio, L.L. and Drucker, D.J. (2013) GLP-1 Receptor Activation Indirectly Reduces Hepatic Lipid Accumulation but Does Not Attenuate Development of Atherosclerosis in Diabetic Male ApoE-/- Mice. Endocrinology, 154, 127-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sjøberg, K.A., Holst, J.J., Rattigan, S., Richter, E.A. and Kiens, B. (2014) GLP-1 Increases Microvascular Recruitment but Not Glucose Uptake in Human and Rat Skeletal Muscle. American Journal of Physiology-Endocrinology and Metabolism, 306, E355-E362. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Schjoldager, B.T., Mortensen, P.E., Christiansen, J., Orskov, C. and Holst, J.J. (1989) GLP-1 (Glucagon-Like Peptide 1) and Truncated GLP-1, Fragments of Human Proglucagon, Inhibit Gastric Acid Secretion in Humans. Digestive Diseases and Sciences, 34, 703-708. [Google Scholar] [CrossRef]
|
|
[22]
|
Wettergren, A., Schjoldager, B., Mortensen, P.E., Myhre, J., Christiansen, J. and Holst, J.J. (1993) Truncated GLP-1 (Proglucagon 78-107-Amide) Inhibits Gastric and Pancreatic Functions in Man. Digestive Diseases and Sciences, 38, 665-673. [Google Scholar] [CrossRef]
|
|
[23]
|
Wettergren, A., Maina, P., Boesby, S. and Holst, J.J. (1997) Glucagon-Likepeptide-1 7-36 Amide and Peptide YY Have Additive Inhibitory Effect on Gastric Acid Secretion in Man. Scandinavian Journal of Gastroenterology, 32, 552-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wettergren, A., Petersen, H., Orskov, C., Christiansen, J., Sheikh, S.P. and Holst, J.J. (1994) Glucagon-Like Peptide-1 7-36 Amide and Peptide YY from the L-Cell of the Ileal Mucosa Are Potent Inhibitors of Vagally Induced Gastric Acid Secretion in Man. Scandinavian Journal of Gastroenterology, 29, 501-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Linnebjerg, H., Park, S., Kothare, P.A., Trautmann, M.E., Mace, K., Fineman, M., Wilding, I., Nauck, M. and Horowitz, M. (2008) Effect of Exenatide on Gastric Emptying and Relationship to Postprandial Glycemia in Type 2 Diabetes. Regulatory Peptides, 151, 123-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Henderson, S.J., Konkar, A., Hornigold, D.C., Trevaskis, J.L., Jackson, R., Fritsch Fredin, M., Jansson-Löfmark, R., Naylor, J., Rossi, A., Bednarek, M.A., Bhagroo, N., Salari, H., Will, S., Oldham, S., Hansen, G., Feigh, M., Klein, T., Grimsby, J., Maguire, S., Jermutus, L., Rondinone, C.M. and Coghlan, M.P. (2016) Robust Anti-Obesity and Metabolic Effects of a Dual GLP-1/Glucagon Receptor Peptide Agonist in Rodents and Non-Human Primates. Diabetes, Obesity and Metabolism, 18, 1176-1190. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Turton, M.D., O’Shea, D., Gunn, I., Beak, S.A., Edwards, C.M., Meeran, K., Choi, S.J., Taylor, G.M., Heath, M.M., Lambert, P.D., Wilding, J.P., Smith, D.M., Ghatei, M.A., Herbert, J. and Bloom, S.R. (1996) A Role for Glucagon-Like Peptide-1 in the Central Regulation of Feeding. Nature, 379, 69-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361. [Google Scholar] [CrossRef]
|
|
[29]
|
赵立峰, 刘英, 刘冠英. GLP-1受体激动剂对心血管的保护机制研究进展[J]. 海峡药学, 2021, 33(3): 143-145.
|
|
[30]
|
戴亚伟, 周景昕, 韩旭, 等. GLP-1抑制主动脉瓣膜间质细胞钙化[J]. 南京医科大学学报(自然科学版), 2019(5): 664-667.
|
|
[31]
|
Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 394, 121-130. [Google Scholar] [CrossRef]
|
|
[32]
|
Koye, D.N., Shaw, J.E., Reid, C.M., Atkins, R.C., Reutens, A.T. and Magliano, D.J. (2017) Incidence of Chronic Kidney Disease among People with Diabetes: A Systematic Review of Observational Studies. Diabetic Medicine, 34, 887-901. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pyke, C., Heller, R.S., Kirk, R.K., Ørskov, C., Reedtz-Runge, S., Kaastrup, P., Hvelplund, A., Bardram, L., Calatayud, D. and Knudsen, L.B. (2014) GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Antibody. Endocrinology, 155, 1280-1290. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Thomas, M.C. (2017) The Potential and Pitfalls of GLP-1 Receptor Agonists for Renal Protection in Type 2 Diabetes. Diabetes & Metabolism, 43, 2S20-2S27. [Google Scholar] [CrossRef]
|
|
[35]
|
Rowlands, J., Heng, J., Newsholme, P. and Carlessi, R. (2018) Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Frontiers in Endocrinology, 9, Article No. 672. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Smits, M.M., Tonneijck, L., Muskiet, M.H., Hoekstra, T., Kramer, M.H., Pieters, I.C., Cahen, D.L., Diamant, M. and van Raalte, D.H. (2015) Cardiovascular, Renal and Gastrointestinal Effects of Incretin-Based Therapies: An Acute and 12-Week Randomised, Double-Blind, Placebo-Controlled, Mechanistic Intervention Trial in Type 2 Diabetes. BMJ Open, 5, e009579. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Roscioni, S.S., Heerspink, H.J. and de Zeeuw, D. (2014) The Effect of RAAS Blockade on the Progression of Diabetic Nephropathy. Nature Reviews Nephrology, 10, 77-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Greco, E.V., Russo, G., Giandalia, A., Viazzi, F., Pontremoli, R. and De Cosmo, S. (2019) GLP-1 Receptor Agonists and Kidney Protection. Medicina, 55, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sun, F., Wu, S., Wang, J., Guo, S., Chai, S., Yang, Z., Li, L., Zhang, Y., Ji, L. and Zhan, S. (2015) Effect of Glucagon-Like Peptide-1 Receptor Agonists on Lipid Profiles among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Clinical Therapeutics, 37, 225-241.E8. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Farr, S., Taher, J. and Adeli, K. (2014) Glucagon-Like Peptide-1 as a Key Regulator of Lipid and Lipoprotein Metabolism in Fasting and Postprandial States. Cardiovascular & Hematological Disorders-Drug Targets, 14, 126-136. [Google Scholar] [CrossRef]
|
|
[41]
|
Kooijman, S., Wang, Y., Parlevliet, E.T., Boon, M.R., Edelschaap, D., Snaterse, G., Pijl, H., Romijn, J.A. and Rensen, P.C. (2015) Central GLP-1 Receptor Signalling Accelerates Plasma Clearance of Triacylglycerol and Glucose by Activating Brown Adipose Tissue in Mice. Diabetologia, 58, 2637-2646. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Laurindo, L.F., Barbalho, S.M., Guiguer, E.L., da Silva Soares de Souza, M., de Souza, G.A., Fidalgo, T.M., Araújo, A.C., de Souza Gonzaga, H.F., de Bortoli Teixeira, D., de Oliveira Silva Ullmann, T., Sloan, K.P. and Sloan, L.A. (2022) GLP-1a: Going beyond Traditional Use. International Journal of Molecular Sciences, 23, Article No. 739. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Brunner, K.T., Henneberg, C.J., Wilechansky, R.M. and Long, M.T. (2019) Nonalcoholic Fatty Liver Disease and Obesity Treatment. Current Obesity Reports, 8, 220-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Gupta, N.A., Mells, J., Dunham, R.M., Grakoui, A., Handy, J., Saxena, N.K. and Anania, F.A. (2010) Glucagon-Like Peptide-1 Receptor Is Present on Human Hepatocytes and Has a Direct Role in Decreasing Hepatic Steatosis in Vitro by Modulating Elements of the Insulin Signaling Pathway. Hepatology, 51, 1584-1592. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Trevaskis, J.L., Griffin, P.S., Wittmer, C., Neuschwander-Tetri, B.A., Brunt, E.M., Dolman, C.S., Erickson, M.R., Napora, J., Parkes, D.G. and Roth, J.D. (2012) Glucagon-Like Peptide-1 Receptor Agonism Improves Metabolic, Biochemical, and Histopathological Indices of Nonalcoholic Steatohepatitis in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 302, G762-G772. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Seghieri, M., Christensen, A.S., Andersen, A., Solini, A., Knop, F.K. and Vilsbøll, T. (2018) Future Perspectives on GLP-1 Receptor Agonists and GLP-1/Glucagon Receptor Co-Agonists in the Treatment of NAFLD. Frontiers in Endocrinology, 9, Article No. 649. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bifari, F., Manfrini, R., Dei Cas, M., Berra, C., Siano, M., Zuin, M., Paroni, R. and Folli, F. (2018) Multiple Target Tissue Effects of GLP-1 Analogues on Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH). Pharmacological Research, 137, 219-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kazankov, K., Jørgensen, S.M.D., Thomsen, K.L., Møller, H.J., Vilstrup, H., George, J., Schuppan, D. and Grønbæk, H. (2019) The Role of Macrophages in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 16, 145-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Athauda, D. and Foltynie, T. (2016) The Glucagon-Like Peptide 1 (GLP) Receptor as a Therapeutic Target in Parkinson’s Disease: Mechanisms of Action. Drug Discovery Today, 21, 802-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kim, D.S., Choi, H.I., Wang, Y., Luo, Y., Hoffer, B.J. and Greig, N.H. (2017) A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell Transplantation, 26, 1560-1571. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Athauda, D., Maclagan, K., Skene, S.S., Bajwa-Joseph, M., Letchford, D., Chowdhury, K., Hibbert, S., Budnik, N., Zampedri, L., Dickson, J., Li, Y., Aviles-Olmos, I., Warner, T.T., Limousin, P., Lees, A.J., Greig, N.H., Tebbs, S. and Foltynie, T. (2017) Exenatide Once Weekly versus Placebo in Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 390, 1664-1675. [Google Scholar] [CrossRef]
|
|
[52]
|
Mulvaney, C.A., Duarte, G.S., Handley, J., Evans, D.J., Menon, S., Wyse, R. and Emsley, H.C. (2020) GLP-1 Receptor Agonists for Parkinson’s Disease. Cochrane Database of Systematic Reviews, 7, CD012990.
|
|
[53]
|
Selkoe, D.J. (2002) Alzheimer’s Disease Is a Synaptic Failure. Science, 298, 789-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Craft, S. (2009) The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia: Two Roads Converged. Archives of Neurology, 66, 300-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Qi, L., Chen, Z., Wang, Y., Liu, X., Liu, X., Ke, L., Zheng, Z., Lin, X., Zhou, Y., Wu, L. and Liu, L. (2017) Subcutaneous Liraglutide Ameliorates Methylglyoxal-Induced Alzheimer-Like Tau Pathology and Cognitive Impairment by Modulating Tau Hyperphosphorylation and Glycogen Synthase Kinase-3β. American Journal of Translational Research, 9, 247-260.
|
|
[57]
|
Batista, A.F., Forny-Germano, L., Clarke, J.R., Lyra, E., Silva, N.M., Brito-Moreira, J., Boehnke, S.E., Winterborn, A., Coe, B.C., Lablans, A., Vital, J.F., Marques, S.A., Martinez, A.M., Gralle, M., Holscher, C., Klein, W.L., Houzel, J.C., Ferreira, S.T., Munoz, D.P. and De Felice, F.G. (2018) The Diabetes Drug Liraglutide Reverses Cognitive Impairment in Mice and Attenuates Insulin Receptor and Synaptic Pathology in a Non-Human Primate Model of Alzheimer’s Disease. The Journal of Pathology, 245, 85-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Batista, A.F., Bodart-Santos, V., De Felice, F.G. and Ferreira, S.T. (2019) Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer’s and Parkinson’s Diseases. CNS Drugs, 33, 209-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Soria Lopez, J.A., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255. [Google Scholar] [CrossRef]
|
|
[60]
|
Kellar, D. and Craft, S. (2020) Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. The Lancet Neurology, 19, 758-766. [Google Scholar] [CrossRef]
|
|
[61]
|
Moran, L.J., Norman, R.J. and Teede, H.J. (2015) Metabolic Risk in PCOS: Phenotype and Adiposity Impact. Trends in Endocrinology & Metabolism, 26, 136-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Broughton, D.E. and Moley, K.H. (2017) Obesity and Female Infertility: Potential Mediators of Obesity’s Impact. Fertility and Sterility, 107, 840-847. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Lim, S.S., Hutchison, S.K., Van Ryswyk, E., Norman, R.J., Teede, H.J. and Moran, L.J. (2019) Lifestyle Changes in Women with Polycystic Ovary Syndrome. Cochrane Database of Systematic Reviews, 3, CD007506.
|
|
[64]
|
Frøssing, S., Nylander, M., Chabanova, E., Frystyk, J., Holst, J.J., Kistorp, C., Skouby, S.O. and Faber, J. (2018) Effect of Liraglutide on Ectopic Fat in Polycystic Ovary Syndrome: A Randomized Clinical Trial. Diabetes, Obesity and Metabolism, 20, 215-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Liu, X., Zhang, Y., Zheng, S.Y., Lin, R., Xie, Y.J., Chen, H., Zheng, Y.X., Liu, E., Chen, L., Yan, J.H., Xu, W., Mai, T.T. and Gong, Y. (2017) Efficacy of Exenatide on Weight Loss, Metabolic Parameters and Pregnancy in Overweight/Obese Polycystic Ovary Syndrome. Clinical Endocrinology, 87, 767-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|