骨质疏松中不同炎症因子的研究进展
Research Progress of Different Inflammatory Factors in Osteoporosis
DOI: 10.12677/ACM.2022.124373, PDF, HTML, XML, 下载: 634  浏览: 1,024  科研立项经费支持
作者: 卢 锋:浙江大学医学院,浙江 杭州;陈海啸*:浙江大学附属台州医院,浙江 临海
关键词: 骨质疏松炎症因子炎症性疾病破骨细胞RANKLOsteoporosis Inflammatory Factors Inflammatory Diseases Osteoclasts RANKL
摘要: 大量研究表明炎性细胞因子对各种炎性疾病发挥重要作用,但对其具体作用的报道并不总是一致的。它们可用作指示或监测疾病或其进展的生物标志物,也可用作治疗的临床适用参数。免疫系统的各种炎症因子可以上调核因子-κB受体活化因子配体(Receptor Activator for Nuclear Factor-κB Ligand, RANKL)的表达,RANKL与破骨细胞前体细胞的RANK结合促进破骨细胞的分化和活化,最终引起炎症性骨质疏松的发生发展。但迄今为止,炎症因子对骨质疏松的具体影响机制一直没有得到系统地归纳。因此,在这篇综述中,我们筛选总结了炎症因子白介素-1 (Interleukin-1, IL-1)、IL-33、IL-6、IL-8、IL-10和肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)的生物学信息在炎症和骨质疏松中的作用,为炎症性骨质疏松提供了一个系统的理论基础。
Abstract: A large number of studies have shown that inflammatory cytokines play an important role in various inflammatory diseases, but the reports on their specific effects are not always consistent. They can be used as biomarkers to indicate or monitor the disease or its progress, and can also be used as clinical parameters for treatment. Various inflammatory factors in the immune system can up-regulate the expression of nuclear factor-kappa B receptor activating factor ligand (Receptor Activator for Nuclear Factor-κB Ligand, RANKL). The binding of RANKL to the RANK of osteoclast precursors promotes the differentiation and activation of osteoclasts, resulting in the occurrence and development of inflammatory osteoporosis. But so far, the specific mechanism of inflammatory factors on osteoporosis has not been systematically summarized. Therefore, in this review, we screened and summarized the biological information of inflammatory factors interleukin-1 (Interleukin-1, IL-1), IL-33, IL-6, IL-8, IL-10 and tumor necrosis factor-α (tumor necrosis factor-α, TNF-α) and their roles in inflammation and osteoporosis, which provided a systematic theoretical basis for inflammatory osteoporosis.
文章引用:卢锋, 陈海啸. 骨质疏松中不同炎症因子的研究进展[J]. 临床医学进展, 2022, 12(4): 2590-2604. https://doi.org/10.12677/ACM.2022.124373

1. 引言

骨质疏松症是一种全身性骨骼疾病,其特征是骨量减少,骨组织微结构恶化,骨脆性增强,骨折风险增加 [1]。世界卫生组织使用骨密度(bone mineral density, BMD)和T评分来定义骨质疏松症。骨质疏松症的定义是T评分 < −2.5,介于正常与骨质疏松症中间的低骨密度被定义为T评分在−1.0到−2.5之间 [2] [3]。据统计,中国至少有9000万人患有骨质疏松症 [4]。髋部和脊柱骨折是骨质疏松症最具破坏性的后果,并与老年人的致残率和死亡率的增加有关 [1] [5]。因此关于骨质疏松发病机制的研究成为当今老龄化社会的重要任务之一。

炎症在传统上被定义为身体对有害刺激的自然反应 [6],参与体内平衡和再生过程,例如伤口愈合。它还参与针对病原体的急性期反应和免疫反应。炎症是一个复杂的过程,涉及不同炎症因子的产生和释放,包括白介素-1α (IL-1α)、白介素-6 (IL-6)和白介素-1β (IL-1β)等 [7] [8],这些炎症因子本身也对炎症起到了重要作用 [9]。它们可用作指示或监测疾病或其进展的生物标志物,也可用作治疗的临床适用参数。但炎症是一把双刃剑,其在体内发挥好或坏的作用取决于发生的环境、部位和时间。如果炎症持续存在,其恢复体内平衡的功能就会丧失,逐渐进展为慢性炎症 [10]。慢性炎症是不受控制的炎症形式,在许多复杂疾病和机体紊乱的发展中起着至关重要的作用,例如慢性炎症性疾病,包括代谢综合征、神经退行性疾病和心血管疾病,以及自身免疫性疾病、癌症和骨质疏松症 [11] - [17]。已经有研究证明,增加IL-1及IL-6家族的炎症因子水平可以上调RANKL的表达 [18]。RANKL和核因子-κB (nuclear factor kappa-B, NF-κB)受体激活因子(Receptor Activator for Nuclear Factor-κB, RANK)的结合引起肿瘤坏死因子受体相关因子6 (tumor necrosis factor receptor-associated factor 6, TRAF6)的募集,触发下游信号通路(PI-3K/κ、NF-κB和丝裂原活化蛋白激酶MAPK (ERK、JNKK和p38))的激活,从而导致慢性炎症性骨质疏松症的发生 [19] [20]。然而,尚未有报告系统地整理炎症因子对骨质疏松症的影响,不同的炎症性疾病涉及的炎症因子机制也有着明显的区别。因此,研究并总结相关炎症因子及其对骨质疏松症的影响对于炎症性疾病患者的骨质疏松症防治有着可观的临床意义。本综述将简要总结IL-1、IL-6、IL-8、IL-10、IL-33和TNF-α的特点并介绍其对骨质疏松症的影响。

2. IL-1

2.1. IL-1的产生和分泌

IL-1型细胞因子是先天性免疫反应的主要介质,IL-1受体拮抗剂(interleu-kin-1 receptor antagonist, IL-1Ra)对IL-1α或IL-1β的阻断已证明IL-1在许多人类自身炎症疾病中起着核心作用。虽然最初的IL-1家族仅包含IL-1α和IL-1β,但目前IL-1家族已扩展至11名成员(IL-1α、IL-1β、IL-18、IL-33、IL-36α、IL-36β、IL-36γ、IL-1Ra、IL-36Ra、IL-37和IL-38) [21] [22] [23]。IL-1主要由单核吞噬细胞谱系的细胞产生,但也可以由内皮细胞、角质形成细胞、滑膜细胞、成骨细胞、中性粒细胞、神经胶质细胞和许多其他细胞产生 [22]。多种物质的刺激可以介导IL-1的产生,包括内毒素、其他细胞因子和微生物。IL-1α和IL-1β以及相关的蛋白质IL-18都是在没有分泌前导序列作为活性较低的前体的情况下合成的。IL-1和IL-18分泌取决于被称为IL-1转化酶(Interleukin 1 converting enzyme, ICE)或半胱天冬酶1的特定转化酶的裂解,该转化酶将原细胞因子裂解为其活性分泌形式 [24]。IL-33的主要来源是非造血细胞,如内皮细胞和上皮细胞 [25]。IL-33是TLR/IL1R超家族孤儿受体St2的配体,通过MyD88激活典型的NF-κB通路 [26]。

2.2. IL-1α和IL-1β的加工活化及分泌

IL-1α在稳态条件下由多种造血细胞和非造血细胞表达,并且可以被诸如氧化应激或细胞因子暴露(例如其他IL-1家族细胞因子)等多种炎症的刺激上调IL-1α mRNA的表达 [27]。与IL-1β和IL-33相比,IL-1α的前体(pro-IL-1α)和重组人成熟IL-1α在诱导人外周血单个核细胞(Peripheral blood mononuclear cell, PBMC)和肺癌细胞中的IL-6和TNF-α方面具有相同的生物学活性 [28]。与pro-IL-1β一样,pro-IL-1α也被包括促炎蛋白酶caspase-1在内的蛋白酶切割,产生具有生物活性的17kDa形式和16 kDa N末端切割产物 [29]。虽然caspase-1对pro-IL-1β的切割是产生生物活性IL-1β所必需的,但根据诱导IL-6和TNF分泌的能力确定了pro-IL-1α和成熟IL-1α与IL-1R结合的动力学相近,且对上皮细胞和造血细胞具有相似的生物活性 [28]。尽管caspase-1对IL-1α的处理对其生物活性是可有可无的,但炎症小体对caspase-1的激活能通过诱导细胞焦亡来促进IL-1α (和其他炎症小体相关细胞因子)的分泌 [29],这体现了IL-1α作为警报素的特性。活性caspase-1还可以切割细胞死亡执行者Gasdermin D (GSDMD),使GSDMD的N端片段寡聚化并插入细胞膜,导致细胞肿胀和最终破裂,伴随包括IL-1α和IL-1β的细胞内容物释放 [30] [31] [32]。因此,炎症小体激活和随后的细胞焦亡是细胞释放IL-1α的一种机制,在炎症小体激活期间释放IL-1α和IL-1β可能会补充IL-1β对IL-1R的激活 [33]。在某些细胞类型中,细胞溶质IL-1R2的结合使pro-IL-1α处于非活性状态,因为在细胞坏死死亡时释放的pro-IL-1α-IL1R2复合物不能通过IL-1R发出信号。IL-1R2对IL-1α活性的抑制可以通过活性caspase-1来缓解,因为它可以切割IL-1R2,从而导致其与pro-IL-1α解离 [33]。因此,炎症小体的激活可能通过减轻IL-1R2的抑制作用来间接促进IL-1α的生物利用度。由此可见,在炎症环境下,IL-1α的释放和活性将会得到显著地放大。

IL-1β的主要来源是造血细胞(如单核细胞)、巨噬细胞(如小胶质细胞)以及树突状细胞 [34]。一般来说,血液单核细胞中活性IL-1β的释放受到严格控制,只有不到20%的IL-1β前体被加工和释放。许多炎症性疾病的基础是活性IL-1β的释放增加。活化的单核细胞/巨噬细胞释放的ATP在细胞外积累 [35],ATP与P2X7受体结合后,细胞内钾离子迅速排出,胞内钾的下降会导致称为“炎性体”的一组高度特化的细胞内蛋白质的寡聚化,它将procaspase-1转化为活性酶 [36]。活性caspase-1然后在专门的分泌性溶酶体或胞质溶胶中切割IL-1β前体,随后分泌具有生物活性的IL-1β。

2.3. IL-1α和IL-1β促进炎症性骨质疏松发生发展

IL-1α或IL-1β首先与I型IL-1受体(IL-1RI)结合,随后募集IL-1受体辅助蛋白(Interleukin-1 Receptor Accessory Protein, IL-1RAcP),形成由IL-1RI、IL-1和辅助受体组成的三聚体复合物。通过称为Toll和IL-1R样(Toll/Interleukin-1 receptor, TIR)结构域的保守胞质区域,该三聚体复合物快速组装两种细胞内信号蛋白,即骨髓分化初级反应基因88 (myeloiddifferentiationfactor88, MyD88)和IL-1受体激活蛋白激酶(IL-1 receptor associated kinase, IRAK)。IL-1、IL-1RI、IL-RAcP、MyD88和IRAK形成稳定的IL-1诱导的第一信号模块。随后IRAK1和IRAK2磷酸化,TRAF6募集和寡聚化,NF-κB、c-Jun N-末端激酶(c-Jun N-terminal kinase, JNK)和p38 MAPK炎症信号通路被激活,最后使得炎症基因大量表达 [23] [37]。

有研究表明,IL-1α已成为皮肤炎症 [38]、结肠炎症、癌症 [39]、心血管疾病 [40] 和神经炎症 [41] 的顶端驱动因素。IL-1β也被视为多种炎症疾病的主要治疗靶点 [42] [43]。尽管一些炎症性疾病是由于caspase-1活性的功能获得性突变引起的,但痛风、2型糖尿病、心力衰竭、复发性心包炎、类风湿性关节炎等常见疾病也对IL-1β中和有反应 [23]。

炎症相关的骨质疏松症是由破骨细胞的激活驱动的,破骨细胞具有高度运动性,可在骨表面移动并吸收大面积的骨组织 [44]。IL-1β与其T淋巴细胞、B淋巴细胞和巨噬细胞上的受体结合可促进RANKL [45] 的产生,RANKL与破骨细胞前体细胞的RANK结合,有助于破骨细胞的分化和活化。RANKL活性被骨保护素(osteoclastogenesis inhibitory factor, OPG)抑制,OPG是RANKL的可溶性诱饵受体并阻断RANKL介导的破骨细胞分化和促骨吸收活性,IL-1α和TNF-α可以直接通过RANK/RANKL/OPG途径作用于破骨细胞 [46] [47],促进破骨细胞的分化增强骨吸收。此外,IL-1β可以通过增加巨噬细胞集落刺激因子(macrophage colony stimulating factor, M-CSF)的产生来激活破骨细胞,还可以抑制破骨细胞凋亡 [48]。IL-1也被认为是TNF介导的成骨的关键介质 [49] [50]。TNF和IL-1最初参与不同的信号通路,它们与NF-κB的激活和MAPK系统的刺激相融合。因此,两种细胞因子的串扰效应为破骨细胞生成提供有效信号,抑制成骨细胞功能,调节骨骼细胞的寿命 [51]。另一方面,IL-1对成骨细胞也有影响。IL-1α可以通过JNK和p38 MAPK途径诱导减少的MC3T3-E1细胞的活力并抑制成骨细胞分化 [52]。树突状细胞(dendritic cell, DC)被认为是能够有效激活幼稚T淋巴细胞的专业抗原呈递细胞,能够在早期发育阶段在体外分化成破骨细胞。当M-CSF和RANKL存在时,小鼠IL-1β和TNF-α可以增加骨吸收。与TNF-α相比,IL-1β在促进骨吸收方面具有更高的效率 [53]。

2.4. IL-33具有潜在的骨保护作用

IL-33是IL-1家族的最新成员,位于细胞核中,但也发现在细胞外作为警报素 [54]。IL-33的主要来源是非造血细胞,例如内皮细胞和上皮细胞 [25]。与IL-1家族的其他成员(如IL-1β)不同,IL-33的N末端不需要激活处理 [55]。IL-33是一种Th2细胞因子,主要由炎症刺激后的基质细胞表达。它往往作为传统的细胞因子、警报素和能够控制基因转录的核因子发挥作用 [56]。作为警报素,IL-33在细胞损伤和细胞死亡后释放,参与应激反应并导致其他细胞因子的诱导 [57]。IL-33作为IL-1受体家族成员ST2的配体在细胞外发挥作用,IL-33与ST2的结合可以进一步激活下游通路,导致Th2细胞因子的转录增加 [58]。ST2主要由先天免疫细胞、肥大细胞和Th2淋巴细胞表达,其连接的不同变体导致产生不同的受体形式,包括可溶性形式(sST2),它通过结合细胞外IL-33充当诱饵受体,从而阻止其与膜受体的相互作用。IL-33下游信号传导需要辅助受体IL-1R3才能发挥作用,ST2/IL-1R3转导信号导致NF-κB、JNK和MAPK通路 [59] [60] 的激活。IL-33激活幼稚T细胞并促进其向Th2表型成熟,从而导致Th2型细胞因子和趋化因子的释放,IL-33还影响各种适应性和先天免疫细胞,包括嗜酸性粒细胞、肥大细胞、2型先天淋巴细胞和Th2淋巴细胞 [59] [61] [62]。此外,通过NF-kB和MAPK信号通路,IL-33可以诱导产生IL-5、IL-13和CCL5、CCL17、CCL24等趋化因子 [63] [64]。

IL-33/ST2信号通路与生理和病理条件下的骨转换有关。IL-33通过调节抗破骨细胞基因(如干扰素调节因子8 (Recombinant Interferon Regulatory Factor 8, IRF-8))抑制RANKL诱导的破骨细胞形成,该基因可以被抗ST2单克隆抗体阻断 [62]。IL-33可以作用于所有不同类型的骨细胞 [65]。尽管IL-33/ST2通路与各种急性和慢性免疫性疾病和炎症性疾病有关,并伴有明显的骨吸收,如髋关节骨坏死和类风湿性关节炎,但IL-33/ST2通路已被认为是骨骼的重要保护信号,可通过减少破骨细胞生成和刺激成骨细胞功能,减少骨吸收量。 [64]。此外,IL-33还间接作用于骨骼,诱导能够干扰M-CSF和RANKL产生的抗破骨细胞因子的合成 [55]。总之,IL-33在细胞、分子和转录水平上发挥作用,介导骨重塑中的多能功能,并具有减轻骨质疏松症的潜在治疗价值。

3. IL-6

IL-6是一种多效性细胞因子,不仅参与免疫反应,还参与炎症、造血、骨代谢、胚胎发育和其他基本过程 [66] [67] [68]。IL-6经过糖基化并由T细胞、单核细胞、内皮细胞和成纤维细胞分泌 [69],同时具有促炎和抗炎的特性。IL-6下传指令是通过两种不同的机制实现的;其中之一是IL-6与其膜结合的IL-6受体(membrane-bound interleukin-6 receptor, mbIL6R) [70] 结合。该复合物随后通过Janus激酶/信号转导和转录激活因子(STAT)激酶、磷酸肌醇3-激酶(phosphoinositide 3-kinase, PI3K)和MAPK激酶(如p38)募集了两个膜结合糖蛋白130分子(glycoprotein 130, gp130) [71] [72]。对IL-6的可持续反应的一个主要限制是mbIL6R的可用性,它仅在某些细胞类型上表达,而gp130几乎存在于每个细胞中 [73]。这意味着IL-6通过经典信号传导的系统性影响是相当有限的 [69]。IL-6识别的第二种机制依赖于可溶性IL-6受体(Soluble interleukin 6 receptor, sIL6R),它通过mRNA剪接或解聚素和金属蛋白酶的蛋白水解来表达 [69]。有趣的是,ADAM蛋白酶不仅能被其他细胞因子激活,例如IL-1β或TNF-α [74],也可以被细菌毒素诱导 [75]。在sIL6R表达的情况下,IL-6与sIL6R结合并构建IL6/sIL6R复合物,进而激活mbIL6R-less细胞上的gp130 [76]。这个过程被称为转信号,是IL-6诱导炎症发生发展的主要推动力 [77]。目前,与C反应蛋白(C-reactive protein, CRP)类似,IL-6用于“监测”癌症、感染或自身免疫性疾病患者的炎症水平 [67] [78]。

IL-6 放大器(Interleukin 6 amplifier, IL-6 Amp)是通过信号传导及转录激活因子3 (signal transducer and activator of transcription 3, STAT3)和NF-κB之间的协同相互作用产生更多的IL-6及多种其他细胞因子和趋化因子,它也在炎症性疾病中发挥关键作用,包括细胞因子风暴综合征、自身免疫性疾病和癌症 [17] [79] [80] [81] [82]。在所谓的“细胞因子风暴”(一种由T细胞过度活化引起的可能致命的免疫反应)期间,观察到IL-6大幅度增加,明显高于其他炎性细胞因子。最近的一项研究表明,使用T细胞转染的癌症免疫疗法诱导的细胞因子风暴被抗IL-6受体抗体托珠单抗所抵消 [83]。IL-6在炎症初期在局部病变部位合成后,通过血流进入肝脏,随后迅速诱导大量急性期蛋白如CRP、血清淀粉样蛋白A (serum amyloid A protein, SAA)、纤维蛋白原、触珠蛋白和α1-抗胰凝乳蛋白酶的产生 [84]。另一方面,IL-6减少纤连蛋白、白蛋白和转铁蛋白的产生。当高浓度的SAA长期存在时,它会通过SAA淀粉样变性的产生导致几种慢性炎症性疾病的严重并发症 [85]。这导致淀粉样蛋白原纤维沉积,从而导致各种器官进行性恶化。此外,IL-6与转化生长因子(TGF)-β结合对于从幼稚CD4 + T细胞分化Th17是必不可少的 [86],但IL-6也抑制TGF-β诱导的Treg分化 [87]。Th17/Treg平衡的上调被认为是造成免疫耐受性破坏的原因,因此在病理上IL-6与自身免疫和慢性炎症性疾病的发展有关 [88]。

当IL-6在骨髓基质细胞中产生时,它会刺激RANKL产生 [89],这对于破骨细胞的分化和活化是必不可少的 [90],并且这会导致骨吸收和骨质疏松症 [91]。IL-6不仅刺激成骨细胞前体细胞中RANKL的表达 [92],还通过病理细胞促进RANKL的表达,例如类风湿性关节炎的滑膜成纤维细胞 [93]。IL-6通过IL-6R对破骨细胞前体发挥调节作用:当RANKL水平较高时抑制破骨细胞的形成,而当RANKL水平较低时刺激破骨细胞的形成 [94]。过量表达IL-6的转基因小鼠血清中IL-6的循环水平很高,破骨细胞数量增加,小鼠的骨小梁质量较低 [95]。然而,IL-6基因敲除小鼠在破骨细胞形成或松质骨量方面没有表现出缺陷 [91],表明IL-6在正常的松质骨生理中没有独特的作用。与此相对的是,IL-6似乎在破骨细胞数量增加的病理过程中起着重要作用。例如,IL-6基因缺失的小鼠在实验性炎性关节炎中表现出钝化的卵巢切除诱导的骨丢失 [91] 和破骨细胞形成减少 [93]。总之,IL-6在骨质疏松中扮演重要角色,并加快骨吸收的进程。

4. IL-8

白介素8 (IL-8),也称为CXCL8,是一种有着促炎作用的CXC趋化因子。IL-8的表达主要受激活蛋白和/或NF-κB介导的转录活性的调节,尽管在IL-8基因启动子上已经表征了额外的激素反应元件和NF-IL-6共有位点。因此,IL-8的表达已显示受多种不同刺激的调节,包括炎症信号(例如,TNF-α、IL-1β)、化学和环境压力(例如,暴露于化疗药物和缺氧)和类固醇激素(例如,雄激素、雌激素和地塞米松) [96] [97]。IL-8的生物学效应是通过IL-8与两种细胞表面G蛋白偶联受体(称为CXCR1和CXCR2)结合来介导的 [98] [99]。这些受体具有相当大的结构相似性,表明这些基因是通过基因复制产生的。这些信号通过配体诱导的构象变化跨膜传递,暴露细胞内环和受体羧基末端尾部上的表位,促进与功能性异源三聚体G蛋白的偶联。CXCR1和CXCR2也表现出明显不同的配体结合药理学。CXCR1仅能被IL-8和粒细胞趋化蛋白2的结合而被激活。然而,CXCR2可以被多种CXC趋化因子激活,包括生长相关癌基因(GROα、β和γ)、中性粒细胞激活肽和粒细胞趋化蛋白2 [96]。IL-8信号还调节MAPK信号级联的活性,该级联构成许多丝氨酸/苏氨酸激酶,它们通过与紧邻细胞表面受体的支架蛋白相互作用而共定位。这些激酶的底物特异性导致不同信号级联的激活,其中最好的特征是Raf-1/MAP/ERK激酶1/Erk级联。IL-8信号传导已被证明可诱导这种经典MAPK信号级联的激活,在中性粒细胞 [100] 和癌细胞 [101] [102] [103] 中检测到Erk1/2的下游磷酸化。在中性粒细胞中,磷脂酰肌醇-3激酶活性已被确定为将IL-8受体与MAPK信号传导耦合的关键中间体 [100]。MAPK信号的激活与IL-8在嗜中性粒细胞 [104]、内皮细胞 [105] 和癌细胞系 [101] [102] [103] 的细胞增殖和细胞存活促进作用一致。Erk-MAPK信号的激活最终指明了将IL-8信号与E2F和激活蛋白转录因子的激活联系起来的推定途径,其功能主要是调节许多与细胞增殖有关的基因的转录。此外,IL-8信号还激活p38 MAPK信号级联 [106]。然而,这种MAPK对IL-8诱导的反应的功能重要性仍有待确定。

IL-8能将中性粒细胞引导至炎症方向(趋化性),ARDS患者的肺中这种细胞因子的浓度增加很明显 [107]。此外,IL-8在体外不会直接激活NAPDH氧化酶,但它通过募集N–甲酰–甲硫氨酰–亮氨酰–苯丙氨酸(formylmethionyl leucyl phenylalanine, fMLP)受体和P-选择素配体来增强呼吸爆发活性进入脂质 [108]。用IL-8 cDNA转染的结肠癌细胞的体外研究显示,这些细胞的细胞增殖、迁移和侵袭显着增加 [109]。由此可见,IL-8是细胞迁移和增殖的非常有效的触发因素,因此应始终在炎症模型中加以考虑。一项分析儿童烧伤后60天全身IL-8水平的研究(n = 468)提供了有趣的见解:IL-8水平与烧伤的全身表面积百分比相关,可预测多器官衰竭和死亡率 [110]。需要注意的是,全身性IL-8水平不仅通过读取绝对水平提供预后价值,而且还可以通过记录持续高IL-8水平的持续时间来用于诊断。

IL-8与其他炎症因子有关,在骨重塑中发挥作用。患有骨质疏松症和骨质流失的绝经后妇女的IL-8显着增加 [111]。阿托伐他汀以其对骨组织的多效性作用而闻名,它降低了遭受糖皮质激素诱导的骨质疏松症的大鼠的IL-8水平和骨质流失 [112]。COPD患者的血浆IL-8水平升高,并且与中性粒细胞的RANKL表达相关。表达RANKL的中性粒细胞在患有慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD)的男性患者中增加,且与骨矿物质密度和肺功能相关,这表明IL-8促进了COPD患者破骨细胞生成及骨流失 [113]。

5. IL-10

白介素-10 (IL-10)细胞因子家族由九个成员组成,即IL-10;IL-20亚家族成员IL-19、IL-20、IL-22、IL-24和IL-26;以及远缘相关的细胞因子IL-28A、IL-28B和IL-29,它们常被归类为III型干扰素(Interferon, IFN)并分别命名为IFN-λ2、IFN-λ3和IFN-λ1 [114]。IL-10是该细胞因子家族的创始成员,最初被认为是从活化的CD4 + T辅助(Th2)细胞中纯化的活性物质,称为细胞因子合成抑制因子(CSIF) [114]。在其克隆之后,还发现IL-10可刺激肥大细胞、胸腺细胞和B细胞,并对骨髓细胞具有主要的免疫抑制作用 [115] [116] [117] [118]。

IL-10由几乎所有的白细胞亚群产生,包括DC、巨噬细胞、T细胞、NK细胞和B细胞。IL-10是一种通用的抑制性细胞因子。它抑制先天性和适应性免疫的炎症反应,并防止由加剧的适应性免疫反应引起的组织损伤。因此,IL-10是炎症消退阶段的中心细胞因子 [119]。IL-10通过抑制炎症因子和抗原呈递细胞(antigen-presenting cells, APC)和其他功能引发其对骨髓细胞的主要抑制作用。IL-10信号通路受损与炎症性疾病如炎症性肠病(IBD)相关,并且在感染期间通常伴有免疫病理学;相反,IL-10的高产量或失调可能导致慢性感染 [114]。阻断小鼠中的IL-10通路会导致IBD自发发展,但进化中的病原体可以利用IL-10的功能来抑制感染期间的正常宿主炎症反应,从而建立慢性感染状态。增加的IL-10表达与许多慢性细菌和病毒感染有关。此外,一些病毒可以产生自己的IL-10 (vIL-10),直接抑制宿主的免疫反应 [115]。某些病原体甚至通过DCs和巨噬细胞诱导出IL-10形成了一种强大的免疫逃避机制。在淋巴细胞性脉络丛脑膜炎病毒(lymphocytic choroid plexus meningitis virus, LCMV)感染模型中,IL-10本身或随后诱导的T调节细胞会损害病原体控制和清除。巨噬细胞衍生的IL-10可以抑制邻近细胞分化为经典激活的巨噬细胞,从而使巨噬细胞能够自我调节 [120]。总之,Th1细胞分泌IL-10代表了一个有效的自动调节反馈回路,可在Th1细胞驱动的抗感染反应期间防止过度炎症和潜在的组织破坏。然而,病原体利用这种机制来阻止它们的消除,从而导致慢性感染。

在骨生物学方面,IL-10具有对破骨细胞生成的有效抑制作用和对成骨细胞分化的促进作用。在IL-10敲除小鼠中,可以观察到骨质疏松症的特征,包括RANKL和OPG水平升高、骨吸收增加、骨形成较少和骨小梁结构改变 [121]。研究表明,IL-10基因多态性可能影响其mRNA和蛋白质的产生,并与骨质疏松症的发展有关。IL-10的丢失还加剧了早期1型糖尿病引起的骨丢失 [122]。由此可见,IL-10具有良好的骨保护作用,减少骨质疏松发展的可能性。

6. TNF-α

TNF是一种炎症因子,可在受伤后数分钟内在血液中检测到,在感染性疾病中具有重要的保护作用 [123]。其中TNF-α是一种多效性炎症因子,以其促炎活性而闻名。TNF-α的主要来源是巨噬细胞和T细胞,但许多其他细胞,如B细胞、中性粒细胞和内皮细胞也被描述为产生TNF-α。TNF-α的靶标包括两种 I型跨膜受体,TNF受体I (TNFR-I或CD120a)和TNF受体II (TNFR-II或CD120b)。TFNR-I在除红细胞外的每个细胞上都有表达,而TNFR-II仅在内皮细胞和免疫细胞上发现 [9]。TNF-α的失调与多种病理状况有关,例如感染、自身免疫性疾病、癌症、动脉粥样硬化、阿尔茨海默病和炎症性肠病。TNF-α在调节多种发育和免疫过程中也发挥着不同的作用,包括炎症、分化、脂质代谢和细胞凋亡 [124]。据报道,人类免疫系统的几乎所有成分都与TNF-α有功能关系。

TNF-α的功能性相当广泛,一个突出的特征是TNFR-I通过NF-κB和AP-1介导细胞存活和促炎反应 [125]。此外,TNF-α通过Fas和半胱天冬酶激活引起细胞死亡的信号通路。TNF-α可以通过免疫炎症方面的作用影响骨质疏松的发生发展。TNF-α在某些分化阶段抑制成骨细胞活性,并刺激破骨细胞增殖和分化 [126]。与IL-6类似,TNF-α可以通过内分泌方式调节骨代谢 [127]。在早期阶段,TNF-α通过下调Runx2的表达来抑制成骨细胞的分化,而Runx2对成骨细胞的分化至关重要。TNF-α通过上调降解Runx2蛋白的S-1和S-2来阻止成骨细胞骨形成。此外,TNF-α通过抑制胰岛素样生长因子-1的作用来抑制成骨细胞分化 [126]。有研究表示,Notch和非经典NF-κB信号通路在转TNF-α的小鼠骨髓间充质干细胞中明显上调,提示TNF-α可能通过Notch和非规范NF-κB信号之间的相互作用来抑制骨髓间充质干细胞的成骨分化 [128]。此外,TNF-α通过激活SAPK/JNK和NF-κB来抑制骨形态发生蛋白信号转导 [129]。但是,其他研究也有报道TNF-α具有增强成骨分化的功能,这是因为较低浓度的TNF-α可增加骨髓间充质干细胞中Runx2、Osx、Ocn和碱性磷酸酶的水平,而较高浓度的TNF-α则可降低它们的水平 [130]。TNF-α被认为是破骨细胞分化的重要刺激因子。TNF-α治疗可以通过激活NF-κB信号,在没有RANKL的野生型(wild type, WT)小鼠中局部和系统地增加抗酒石酸酸性磷酸酶(tartrate-resistant acid phosphatase, TRAP)阳性破骨细胞的数量。已经证明,用TNF-α处理处于破骨细胞前体细胞阶段的骨髓来源的巨噬细胞,可以促进破骨细胞的生成 [131]。TNF-α被认为是促进成熟造血干细胞分化为破骨细胞的关键因子,可提高巨噬细胞和干细胞中RANK和RANKL的水平,刺激RANKL与其受体RANK结合,激活受RANKL调控的多条信号通路,如MAPK、TRAF-2、c-jun、JNK、NF-κB和AP-1,从而介导破骨细胞的增殖和分化 [132]。此外,TNF-α诱导的破骨细胞生成在TRAF6-/-OC前体中上调,这是通过刺激诱导TRAF3的自噬降解来实现的 [133]。因此,RANKL还可以通过TRAF6非依赖的信号通路促进TNF-α诱导的破骨细胞生成 [133]。在体外,TNF-α通过激活NF-κB和激活的T细胞核因子途径,在没有成骨细胞/基质细胞的情况下直接刺激破骨前体细胞形成成熟的破骨细胞。TNF-α通过促进c-fms的表达促进骨髓中破骨细胞前体细胞的增殖和分化,从而增加循环中破骨细胞前体的数量。TNF-α诱导的c-fms表达必须通过M-CSF和独立的机制发挥作用,还促进T淋巴细胞产生M-CSF和成骨细胞产生RANKL,从而间接刺激破骨细胞的形成 [134]。不难看出,较高浓度的TNF-α可以通过抑制成骨细胞分化和促进破骨细胞增殖达到促进骨质疏松发展的效果。

7. 结论与展望

骨质疏松症被认为是一种沉默的疾病,前期几乎无明显症状,等到发现时常常已经发生严重的并发症,如骨折 [2] [135]。鉴于其危险性,骨质疏松症的研究一直没有停止。在过去的几年中,对炎症状态下骨重塑的病理生理学有了很多深入的了解。很明显,涉及慢性炎症(例如炎症性肠病)的几种炎症因子不仅在炎症的主要发生部位(例如肠道)中至关重要,而且在骨骼中也具有至关重要的作用,可调节骨代谢的进程。一些炎症因子如TNF-α、IL-1、IL-6、IL-8可以调节骨重塑、激活破骨细胞并最终促进骨质疏松症的发展。然而也有一些炎症因子如IL-10和IL-33却在炎症中起到了不错的骨保护作用。尽管骨质疏松症的发展涉及多个方面,但到目前为止,炎症作为一个关键因素只得到了部分解决。对于临床医生来说,有个重要任务是确定与炎症性疾病相关的骨质疏松症的危险因素,然后在这一类人群中进行骨质疏松相关指标的筛查,作出相应的预防性措施,并对这种情况进行适当的早期治疗。

基金项目

本研究得到浙江省自然科学基金(LY20H060006)资助。

NOTES

*通讯作者。

参考文献

[1] Ensrud, K.E. and Crandall, C.J. (2017) Osteoporosis. Annals of Internal Medicine, 167, ITC17-ITC32.
https://doi.org/10.7326/AITC201708010
[2] Johnston, C.B. and Dagar, M. (2020) Osteoporosis in Older Adults. The Medical clinics of North America, 104, 873-884.
https://doi.org/10.1016/j.mcna.2020.06.004
[3] Cotts, K.G. and Cifu, A.S. (2018) Treatment of Osteoporosis. JAMA, 319, 1040-1041.
https://doi.org/10.1001/jama.2017.21995
[4] Zhong, D., Xu, G.-Z., Wu, J.-Z., et al. (2021) Circ-ITCH Sponges miR-214 to Promote the Osteogenic Differentiation in Osteoporosis via Upregulating YAP1. Cell Death & Disease, 12, Article No. 340.
https://doi.org/10.1038/s41419-021-03586-y
[5] Jin, F., Li, J., Zhang, Y.-B., et al. (2021) A functional Motif of Long Noncoding RNA Nron against Osteoporosis. Nature Communications, 12, Article No. 3319.
https://doi.org/10.1038/s41467-021-23642-7
[6] Hosseinkhani, B., van den Akker, N.M.S., Molin, D.G.M., et al. (2020) (Sub)Populations of Extracellular Vesicles Released by TNF-α -Triggered Human Endothelial Cells Promote Vascular Inflammation and Monocyte Migration. Journal of Extracellular Vesicles, 9, Article ID: 1801153.
https://doi.org/10.1080/20013078.2020.1801153
[7] Yao, F., Xue, Q., Li, K., et al. (2019) Phenolic Compounds and Ginsenosides in Ginseng Shoots and Their Antioxidant and Anti-Inflammatory Capacities in LPS-Induced RAW264.7 Mouse Macrophages. International Journal of Molecular Sciences, 20, Article No. 2951.
https://doi.org/10.3390/ijms20122951
[8] Zhu, N. and Hou, J. (2021) Molecular Mechanism of the Anti-Inflammatory Effects of Sophorae Flavescentis Aiton identified by network pharmacology. Scientific Reports, 11, Article No. 1005.
https://doi.org/10.1038/s41598-020-80297-y
[9] Kany, S., Vollrath, J.T. and Relja, B. (2019) Cytokines in Inflammatory Disease. International Journal of Molecular sciences, 20, Article No. 6008.
https://doi.org/10.3390/ijms20236008
[10] Besedovsky, L., Lange, T. and Haack, M. (2019) The Sleep-Immune Crosstalk in Health and Disease. Physiological Reviews, 99, 1325-1380.
https://doi.org/10.1152/physrev.00010.2018
[11] Coussens, L.M. and Werb, Z. (2002) Inflammation and Cancer. Nature, 420, 860-867.
https://doi.org/10.1038/nature01322
[12] Campisi, J. (2005) Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell, 120, 513-522.
https://doi.org/10.1016/j.cell.2005.02.003
[13] Mantovani, A., Allavena, P., Sica, A., et al. (2008) Cancer-Related Inflammation. Nature, 454, 436-444.
https://doi.org/10.1038/nature07205
[14] Kuilman, T., Michaloglou, C., Vredeveld, L.C.W., et al. (2008) Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network. Cell, 133, 1019-1031.
https://doi.org/10.1016/j.cell.2008.03.039
[15] Acosta, J.C., O’Loghlen, A., Banito, A., et al. (2008) Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell, 133, 1006-1018.
https://doi.org/10.1016/j.cell.2008.03.038
[16] Grivennikov, S.I., Greten, F.R. and Karin, M. (2010) Immunity, Inflammation, and Cancer. Cell, 140, 883-899.
https://doi.org/10.1016/j.cell.2010.01.025
[17] Murakami, M., Harada, M., Kamimura, D., et al. (2013) Disease-Association Analysis of an Inflammation-Related Feedback Loop. Cell Reports, 3, 946-959.
https://doi.org/10.1016/j.celrep.2013.01.028
[18] Napimoga, M.H., Dantas Formiga, W.D., Abdalla, H.B., et al. (2020) Secreted Osteoclastogenic Factor of Activated T Cells (SOFAT) Is Associated With Rheumatoid Arthritis and Joint Pain: Initial Evidences of a New Pathway. Frontiers in Immunology, 11, Article No. 1442.
https://doi.org/10.3389/fimmu.2020.01442
[19] Liu, Y., Wang, Z., Ma, C., et al. (2020) Dracorhodin Perchlorate Inhibits Osteoclastogenesis through Repressing Rankl-Stimulated Nfatc1 Activity. Journal of Cellular and Molecular Medicine, 24, 3303-3313.
https://doi.org/10.1111/jcmm.15003
[20] Saylor, P.J., Lee, R.J. and Smith, M.R. (2011) Emerging Therapies to Prevent Skeletal Morbidity in Men with Prostate Cancer. Journal of Clinical Oncology, 29, 3705-3714.
https://doi.org/10.1200/JCO.2010.34.4994
[21] Dinarello, C.A. and Wolff, S.M. (1993) The Role of Interleukin-1 in Disease. The New England Journal of Medicine, 328, 106-113.
https://doi.org/10.1056/NEJM199301143280207
[22] Borish, L.C. and Steinke, J.W. (2003) 2. Cytokines and Chemokines. The Journal of Allergy and Clinical Immunology, 111, S460-S475.
https://doi.org/10.1067/mai.2003.108
[23] Dinarello, C.A. (2011) Interleukin-1 in the Pathogenesis and Treatment of Inflammatory Diseases. Blood, 117, 3720-3732.
https://doi.org/10.1182/blood-2010-07-273417
[24] Cerretti, D.P., Kozlosky, C.J., Mosley, B., et al. (1992) Molecular Cloning of the Interleukin-1 Beta Converting Enzyme. Science, 256, 97-100.
https://doi.org/10.1126/science.1373520
[25] Pichery, M., Mirey, E., Mercier, P., et al. (2012) Endogenous IL-33 Is Highly Expressed in Mouse Epithelial Barrier Tissues, Lymphoid Organs, Brain, Embryos, and Inflamed Tissues: In Situ Analysis Using a Novel Il-33-LacZ Gene Trap Reporter Strain. Journal of Immunology, 188, 3488-3495.
https://doi.org/10.4049/jimmunol.1101977
[26] Schmitz, J., Owyang, A., Oldham, E., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490.
https://doi.org/10.1016/j.immuni.2005.09.015
[27] McCarthy, D.A., Ranganathan, A., Subbaram, S., et al. (2013) Redox-Control of the Alarmin, Interleukin-1α. Redox Biology, 1, 218-225.
https://doi.org/10.1016/j.redox.2013.03.001
[28] Kim, B., Lee, Y., Kim, E., et al. (2013) The Interleukin-1α Precursor is Biologically Active and Is Likely a Key Alarmin in the IL-1 Family of Cytokines. Frontiers in Immunology, 4, Article No. 391.
https://doi.org/10.3389/fimmu.2013.00391
[29] Gross, O., Yazdi, A.S., Thomas, C.J., et al. (2012) Inflammasome Activators Induce Interleukin-1α Secretion via Distinct Pathways with Differential Requirement for the Protease Function of Caspase-1. Immunity, 36, 388-400.
https://doi.org/10.1016/j.immuni.2012.01.018
[30] Liu, X., Zhang, Z., Ruan, J., et al. (2016) Inflammasome-Activated Gasdermin D Causes Pyroptosis by Forming Membrane Pores. Nature, 535, 153-158.
https://doi.org/10.1038/nature18629
[31] Sborgi, L., Rühl, S., Mulvihill, E., et al. (2016) GSDMD Membrane Pore Formation Constitutes the Mechanism of Pyroptotic Cell Death. The EMBO Journal, 35, 1766-1778.
https://doi.org/10.15252/embj.201694696
[32] Shi, J., Zhao, Y., Wang, K., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665.
https://doi.org/10.1038/nature15514
[33] Zheng, Y., Humphry, M., Maguire, J.J., et al. (2013) Intracellular Interleukin-1 Receptor 2 Binding Prevents Cleavage and Activity of Interleukin-1α, Controlling Necrosis-Induced Sterile Inflammation. Immunity, 38, 285-295.
https://doi.org/10.1016/j.immuni.2013.01.008
[34] Dinarello, C.A. (2009) Immunological and Inflammatory Functions of the Interleukin-1 Family. Annual Review of Immunology, 27, 519-550.
https://doi.org/10.1146/annurev.immunol.021908.132612
[35] Netea, M.G., Nold-Petry, C.A., Nold, M.F., et al. (2009) Differential Requirement for the Activation of the Inflammasome for Processing and Release of IL-1beta in Monocytes and Macrophages. Blood, 113, 2324-2335.
https://doi.org/10.1182/blood-2008-03-146720
[36] Agostini, L., Martinon, F., Burns, K., et al. (2004) NALP3 Forms an IL-1beta-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder. Immunity, 20, 319-325.
https://doi.org/10.1016/S1074-7613(04)00046-9
[37] Weber, A., Wasiliew, P. and Kracht, M. (2010) Interleukin-1 (IL-1) Pathway. Science Signaling, 3, cm1.
https://doi.org/10.1126/scisignal.3105cm1
[38] Di Paolo, N.C., Shafiani, S., Day, T., et al. (2015) Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection. Immunity, 43, 1125-1136.
https://doi.org/10.1016/j.immuni.2015.11.016
[39] Bersudsky, M., Luski, L., Fishman, D., et al. (2014) Non-Redundant Properties of IL-1α and IL-1β during Acute Colon Inflammation in Mice. Gut, 63, 598-609.
https://doi.org/10.1136/gutjnl-2012-303329
[40] Freigang, S., Ampenberger, F., Weiss, A., et al. (2013) Fatty Acid-Induced Mitochondrial Uncoupling Elicits Inflammasome-Independent IL-1α and Sterile Vascular Inflammation in Atherosclerosis. Nature Immunology, 14, 1045-1053.
https://doi.org/10.1038/ni.2704
[41] Brough, D. and Denes, A. (2015) Interleukin-1α and Brain Inflammation. IUBMB Life, 67, 323-330.
https://doi.org/10.1002/iub.1377
[42] Garlanda, C., Dinarello, C.A. and Mantovani, A. (2013) The Interleukin-1 Family: Back to the Future. Immunity, 39, 1003-1018.
https://doi.org/10.1016/j.immuni.2013.11.010
[43] Ge, Y., Huang, M. and Yao, Y.-M. (2019) Recent Advances in the Biology of IL-1 Family Cytokines and Their Potential Roles in Development of Sepsis. Cytokine & Growth Factor Reviews, 45, 24-34.
https://doi.org/10.1016/j.cytogfr.2018.12.004
[44] Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508.
https://doi.org/10.1126/science.289.5484.1504
[45] Nakamura, I. and Jimi, E. (2006) Regulation of Osteoclast Differentiation and Function by Interleukin-1. Vitamins and Hormones, 74, 357-370.
https://doi.org/10.1016/S0083-6729(06)74015-8
[46] Zupan, J., Komadina, R. and Marc, J. (2012) The Relationship between Osteoclastogenic and Anti-Osteoclastogenic Pro-Inflammatory Cytokines Differs in Human Osteoporotic and Osteoarthritic Bone Tissues. Journal of Biomedical Science, 19, Article No. 28.
https://doi.org/10.1186/1423-0127-19-28
[47] Kudo, O., Fujikawa, Y., Itonaga, I., et al. (2002) Proinflammatory Cytokine (TNFalpha/IL-1alpha) Induction of Human Osteoclast Formation. The Journal of Pathology, 198, 220-227.
https://doi.org/10.1002/path.1190
[48] Lacativa, P.G.S. and Farias, M.L.F.d. (2010) Osteoporosis and Inflammation. Arquivos Brasileiros de Endocrinologia e Metabologia, 54, 123-132.
https://doi.org/10.1590/S0004-27302010000200007
[49] Kim, J.H., Jin, H.M., Kim, K., et al. (2009) The Mechanism of Osteoclast Differentiation Induced by IL-1. Journal of immunology, 183, 1862-1870.
https://doi.org/10.4049/jimmunol.0803007
[50] Zwerina, J., Redlich, K., Polzer, K., et al. (2007) TNF-Induced Structural Joint Damage Is Mediated by IL-1. Proceedings of the National Academy of Sciences of the United States of America, 104, 11742-11747.
https://doi.org/10.1073/pnas.0610812104
[51] Weitzmann, M.N. and Pacifici, R. (2005) The Role of T Lymphocytes in Bone Metabolism. Immunological Reviews, 208, 154-168.
https://doi.org/10.1111/j.0105-2896.2005.00324.x
[52] Guo, C., Yang, X.-G., Wang, F., et al. (2016) IL-1α Induces Apoptosis and Inhibits the Osteoblast Differentiation of MC3T3-E1 Cells through the JNK and p38 MAPK Pathways. International Journal of Molecular Medicine, 38, 319-327.
https://doi.org/10.3892/ijmm.2016.2606
[53] Speziani, C., Rivollier, A., Gallois, A., et al. (2007) Murine Dendritic Cell Transdifferentiation into Osteoclasts Is Differentially Regulated by Innate and Adaptive Cytokines. European Journal of Immunology, 37, 747-757.
https://doi.org/10.1002/eji.200636534
[54] Carriere, V., Roussel, L., Ortega, N., et al. (2007) IL-33, the IL-1-like cytokine ligand for ST2 Receptor, Is a Chromatin-Associated Nuclear Factor in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 282-287.
https://doi.org/10.1073/pnas.0606854104
[55] Molofsky, A.B., Savage, A.K. and Locksley, R.M. (2015) Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 42, 1005-1019.
https://doi.org/10.1016/j.immuni.2015.06.006
[56] Catalan-Dibene, J., McIntyre, L.L. and Zlotnik, A. (2018) Interleukin 30 to Interleukin 40. Journal of Interferon & Cytokine Research, 38, 423-439.
https://doi.org/10.1089/jir.2018.0089
[57] Dattagupta, A. and Immaneni, S. (2018) ST2: Current Status. Indian Heart Journal, 70, S96-S101.
https://doi.org/10.1016/j.ihj.2018.03.001
[58] Villarreal, D.O. and Weiner, D.B. (2014) Interleukin 33: A Switch-Hitting Cytokine. Current Opinion in Immunology, 28, 102-106.
https://doi.org/10.1016/j.coi.2014.03.004
[59] Lin, W., Zhou, Q., Liu, C., et al. (2017) Increased Plasma IL-17, IL-31, and IL-33 Levels in Chronic Spontaneous Urticaria. Scientific Reports, 7, Article No. 17797.
https://doi.org/10.1038/s41598-017-18187-z
[60] Perrigoue, J.G., Li, J., Zaph, C., et al. (2007) IL-31-IL-31R Interactions Negatively Regulate Type 2 Inflammation in the Lung. The Journal of Experimental Medicine, 204, 481-487.
https://doi.org/10.1084/jem.20061791
[61] Guarneri, F., Minciullo, P.L., Mannucci, C., et al. (2015) IL-31 and IL-33 Circulating Levels in Allergic Contact Dermatitis. European Annals of Allergy and Clinical Immunology, 47, 156-158.
[62] Murdaca, G., Greco, M., Tonacci, A., et al. (2019) IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. International Journal of Molecular Sciences, 20, Article No. 5856.
https://doi.org/10.3390/ijms20235856
[63] Zeng, X., Zhang, Z., Gao, Q.-Q., et al. (2016) Clinical Significance of Serum Interleukin-31 and Interleukin-33 Levels in Patients of Endometrial Cancer: A Case Control Study. Disease Markers, 2016, Article ID: 9262919.
https://doi.org/10.1155/2016/9262919
[64] Miller, A.M. (2011) Role of IL-33 in Inflammation and Disease. Journal of Inflammation, 8, Article No. 22.
https://doi.org/10.1186/1476-9255-8-22
[65] Macari, S., Madeira, M.F.M., Lima, I.L.A., et al. (2018) ST2 Regulates Bone Loss in a Site-Dependent and Estrogen-Dependent Manner. Journal of Cellular Biochemistry, 119, 8511-8521.
https://doi.org/10.1002/jcb.27080
[66] Hirano, T. (1998) Interleukin 6 and Its Receptor: Ten Years Later. International Reviews of Immunology, 16, 249-284.
https://doi.org/10.3109/08830189809042997
[67] Hunter, C.A. and Jones, S.A. (2015) IL-6 as a Keystone Cytokine in Health and Disease. Nature Immunology, 16, 448-457.
https://doi.org/10.1038/ni.3153
[68] Hasegawa, H., Mizoguchi, I., Chiba, Y., et al. (2016) Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family. Frontiers in Immunology, 7, Article No. 479.
https://doi.org/10.3389/fimmu.2016.00479
[69] Schaper, F. and Rose-John, S. (2015) Interleukin-6: Biology, Signaling and Strategies of Blockade. Cytokine & Growth Factor Reviews, 26, 475-487.
https://doi.org/10.1016/j.cytogfr.2015.07.004
[70] Hibi, M., Murakami, M., Saito, M., et al. (1990) Molecular Cloning and Expression of an IL-6 Signal Transducer, gp130. Cell, 63, 1149-1157.
https://doi.org/10.1016/0092-8674(90)90411-7
[71] Heinrich, P.C., Behrmann, I., Haan, S., et al. (2003) Principles of Interleukin (IL)-6-Type Cytokine Signalling and Its Regulation. The Biochemical Journal, 374, 1-20.
https://doi.org/10.1042/bj20030407
[72] Radtke, S., Wüller, S., Yang, X.-P., et al. (2010) Cross-Regulation of Cytokine Signalling: Pro-Inflammatory Cytokines Restrict IL-6 Signalling through Receptor Internalisation and Degradation. Journal of Cell Science, 123, 947-959.
https://doi.org/10.1242/jcs.065326
[73] Boulanger, M.J., Chow, D.-C., Brevnova, E.E., et al. (2003) Hexameric Structure and Assembly of the Interleukin-6/IL-6 Alpha-Receptor/gp130 Complex. Science, 300, 2101-2104.
https://doi.org/10.1126/science.1083901
[74] Franchimont, N., Lambert, C., Huynen, P., et al. (2005) Interleukin-6 Receptor Shedding Is Enhanced by Interleukin-1beta and Tumor Necrosis Factor Alpha and Is Partially Mediated by Tumor Necrosis Factor Alpha-Converting Enzyme in Osteoblast-Like Cells. Arthritis and Rheumatism, 52, 84-93.
https://doi.org/10.1002/art.20727
[75] Walev, I., Vollmer, P., Palmer, M., et al. (1996) Pore-Forming Toxins Trigger Shedding of Receptors for Interleukin 6 and Lipopolysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 93, 7882-7887.
https://doi.org/10.1073/pnas.93.15.7882
[76] Lust, J.A., Donovan, K.A., Kline, M.P., et al. (1992) Isolation of an mRNA Encoding a Soluble Form of the Human Interleukin-6 Receptor. Cytokine, 4, 96-100.
https://doi.org/10.1016/1043-4666(92)90043-Q
[77] Rose-John, S. (2018) Interleukin-6 Family Cytokines. Cold Spring Harbor Perspectives in Biology, 10, Article No. a028415.
https://doi.org/10.1101/cshperspect.a028415
[78] Luna, J.M., Moon, Y.P., Liu, K.M., et al. (2014) High-Sensitivity C-Reactive Protein and Interleukin-6-Dominant Inflammation and Ischemic Stroke Risk: The Northern Manhattan Study. Stroke, 45, 979-987.
https://doi.org/10.1161/STROKEAHA.113.002289
[79] Atsumi, T., Singh, R., Sabharwal, L., et al. (2014) Inflammation Amplifier, a New Paradigm in Cancer Biology. Cancer Research, 74, 8-14.
https://doi.org/10.1158/0008-5472.CAN-13-2322
[80] Hirano, T. and Murakami, M. (2020) COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity, 52, 731-733.
https://doi.org/10.1016/j.immuni.2020.04.003
[81] Hirano, T. (2010) Interleukin 6 in Autoimmune and Inflammatory Diseases: A Personal Memoir. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 86, 717-730.
https://doi.org/10.2183/pjab.86.717
[82] Grivennikov, S.I. and Karin, M. (2010) Dangerous Liaisons: STAT3 and NF-kappaB Collaboration and Crosstalk in Cancer. Cytokine & Growth Factor Reviews, 21, 11-19.
https://doi.org/10.1016/j.cytogfr.2009.11.005
[83] Grupp, S.A., Kalos, M., Barrett, D., et al. (2013) Chimeric Antigen Receptor-Modified T Cells for Acute Lymphoid Leukemia. The New England Journal of Medicine, 368, 1509-1518.
https://doi.org/10.1056/NEJMoa1215134
[84] Heinrich, P.C., Castell, J.V. and Andus, T. (1990) Interleukin-6 and the Acute Phase Response. The Biochemical Journal, 265, 621-636.
https://doi.org/10.1042/bj2650621
[85] Gillmore, J.D., Lovat, L.B., Persey, M.R., et al. (2001) Amyloid Load and Clinical Outcome in AA Amyloidosis in Relation to Circulating Concentration of Serum Amyloid A Protein. Lancet, 358, 24-29.
https://doi.org/10.1016/S0140-6736(00)05252-1
[86] Korn, T., Bettelli, E., Oukka, M., et al. (2009) IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485-517.
https://doi.org/10.1146/annurev.immunol.021908.132710
[87] Bettelli, E., Carrier, Y., Gao, W., et al. (2006) Reciprocal Developmental Pathways for the Generation of Pathogenic Effector TH17 and Regulatory T Cells. Nature, 441, 235-238.
https://doi.org/10.1038/nature04753
[88] Kimura, A. and Kishimoto, T. (2010) IL-6: Regulator of Treg/Th17 Balance. European Journal of Immunology, 40, 1830-1835.
https://doi.org/10.1002/eji.201040391
[89] Hashizume, M., Hayakawa, N. and Mihara, M. (2008) IL-6 Trans-Signalling Directly Induces RANKL on Fibroblast-Like Synovial Cells and Is Involved in RANKL Induction by TNF-alpha and IL-17. Rheumatology, 47, 1635-1640.
https://doi.org/10.1093/rheumatology/ken363
[90] Kotake, S., Sato, K., Kim, K.J., et al. (1996) Interleukin-6 and Soluble Interleukin-6 Receptors in the Synovial Fluids from Rheumatoid Arthritis Patients Are Responsible for Osteoclast-Like Cell Formation. Journal of Bone and Mineral Research, 11, 88-95.
https://doi.org/10.1002/jbmr.5650110113
[91] Poli, V., Balena, R., Fattori, E., et al. (1994) Interleukin-6 Deficient Mice Are Protected from Bone Loss Caused by Estrogen Depletion. The EMBO Journal, 13, 1189-1196.
https://doi.org/10.1002/j.1460-2075.1994.tb06368.x
[92] Palmqvist, P., Persson, E., Conaway, H.H., et al. (2002) IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-kappa B Ligand, Osteoprotegerin, and Receptor Activator of NF-kappa B in Mouse Calvariae. Journal of Immunology, 169, 3353-3362.
https://doi.org/10.4049/jimmunol.169.6.3353
[93] Wong, P.K.K., Quinn, J.M.W., Sims, N.A., et al. (2006) Interleukin-6 Modulates Production of T Lymphocyte-Derived Cytokines in Antigen-Induced Arthritis and Drives Inflammation-Induced Osteoclastogenesis. Arthritis and Rheumatism, 54, 158-168.
https://doi.org/10.1002/art.21537
[94] Feng, W., Liu, H., Luo, T., et al. (2017) Combination of IL-6 and sIL-6R Differentially Regulate Varying Levels of RANKL-Induced Osteoclastogenesis through NF-κB, ERK and JNK Signaling Pathways. Scientific Reports, 7, Article No. 41411.
https://doi.org/10.1038/srep41411
[95] De Benedetti, F., Rucci, N., Del Fattore, A., et al. (2006) Impaired Skeletal Development in Interleukin-6-Transgenic Mice: A Model for the Impact of Chronic Inflammation on the Growing Skeletal System. Arthritis and Rheumatism, 54, 3551-3563.
https://doi.org/10.1002/art.22175
[96] Brat, D.J., Bellail, A.C. and Van Meir, E.G. (2005) The Role of Interleukin-8 and Its Receptors in Gliomagenesis and Tumoral Angiogenesis. Neuro-Oncology, 7, 122-133.
https://doi.org/10.1215/S1152851704001061
[97] Waugh, D.J.J. and Wilson, C. (2008) The Interleukin-8 Pathway in Cancer. Clinical Cancer Research, 14, 6735-6741.
https://doi.org/10.1158/1078-0432.CCR-07-4843
[98] Holmes, W.E., Lee, J., Kuang, W.J., et al. (1991) Structure and Functional Expression of a Human Interleukin-8 Receptor. Science, 253, 1278-1280.
https://doi.org/10.1126/science.1840701
[99] Murphy, P.M. and Tiffany, H.L. (1991) Cloning of Complementary DNA Encoding a Functional Human Interleukin-8 Receptor. Science, 253, 1280-1283.
https://doi.org/10.1126/science.1891716
[100] Knall, C., Young, S., Nick, J.A., et al. (1996) Interleukin-8 Regulation of the Ras/Raf/Mitogen-Activated Protein Kinase Pathway in Human Neutrophils. The Journal of Biological Chemistry, 271, 2832-2838.
https://doi.org/10.1074/jbc.271.5.2832
[101] MacManus, C.F., Pettigrew, J., Seaton, A., et al. (2007) Interleukin-8 Signaling Promotes Translational Regulation of Cyclin D in Androgen-Independent Prostate Cancer Cells. Molecular Cancer Research, 5, 737-748.
https://doi.org/10.1158/1541-7786.MCR-07-0032
[102] Venkatakrishnan, G., Salgia, R. and Groopman, J.E. (2000) Chemokine Receptors CXCR-1/2 Activate Mitogen-Activated Protein Kinase via the Epidermal Growth Factor Receptor in Ovarian Cancer Cells. The Journal of Biological Chemistry, 275, 6868-6875.
https://doi.org/10.1074/jbc.275.10.6868
[103] Luppi, F., Longo, A.M., de Boer, W.I., et al. (2007) Interleukin-8 Stimulates Cell Proliferation in Non-Small Cell Lung Cancer through Epidermal Growth Factor Receptor Transactivation. Lung Cancer, 56, 25-33.
https://doi.org/10.1016/j.lungcan.2006.11.014
[104] Glynn, P.C., Henney, E. and Hall, I.P. (2002) The Selective CXCR2 Antagonist SB272844 Blocks Interleukin-8 and Growth-Related Oncogene-Alpha-Mediated Inhibition of Spontaneous Neutrophil Apoptosis. Pulmonary Pharmacology & Therapeutics, 15, 103-110.
https://doi.org/10.1006/pupt.2001.0323
[105] Li, A., Dubey, S., Varney, M.L., et al. (2003) IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. Journal of Immunology, 170, 3369-3376.
https://doi.org/10.4049/jimmunol.170.6.3369
[106] Murphy, C., McGurk, M., Pettigrew, J., et al. (2005) Nonapical and Cytoplasmic Expression of Interleukin-8, CXCR1, and CXCR2 Correlates with Cell Proliferation and Microvessel Density in Prostate Cancer. Clinical Cancer Research, 11, 4117-4127.
https://doi.org/10.1158/1078-0432.CCR-04-1518
[107] Allen, T.C. and Kurdowska, A. (2014) Interleukin 8 and Acute Lung Injury. Archives of pathology & Laboratory Medicine, 138, 266-269.
https://doi.org/10.5858/arpa.2013-0182-RA
[108] Kobayashi, Y. (2008) The Role of Chemokines in Neutrophil Biology. Frontiers in Bioscience, 13, 2400-2407.
https://doi.org/10.2741/2853
[109] Ning, Y., Manegold, P.C., Hong, Y.K., et al. (2011) Interleukin-8 Is Associated with Proliferation, Migration, Angiogenesis and Chemosensitivity in Vitro and in Vivo in Colon Cancer Cell Line Models. International Journal of Cancer, 128, 2038-2049.
https://doi.org/10.1002/ijc.25562
[110] Kraft, R., Herndon, D.N., Finnerty, C.C., et al. (2015) Predictive Value of IL-8 for Sepsis and Severe Infections after Burn Injury: A Clinical Study. Shock, 43, 222-227.
https://doi.org/10.1097/SHK.0000000000000294
[111] Al-Daghri, N.M., Yakout, S., Al-Shehri, E., et al. (2014) Inflammatory and Bone Turnover Markers in Relation to PTH and Vitamin D Status among Saudi Postmenopausal Women with and without Osteoporosis. International Journal of Clinical and Experimental Medicine, 7, 3528-3535.
[112] Sousa, L.H., Linhares, E.V.M., Alexandre, J.T., et al. (2016) Effects of Atorvastatin on Periodontitis of Rats Subjected to Glucocorticoid-Induced Osteoporosis. Journal of Periodontology, 87, 1206-1216.
https://doi.org/10.1902/jop.2016.160075
[113] Hu, X., Sun, Y., Xu, W., et al. (2017) Expression of RANKL by Peripheral Neutrophils and Its Association with Bone Mineral Density in COPD. Respirology, 22, 126-132.
https://doi.org/10.1111/resp.12878
[114] Ouyang, W. and O’Garra, A. (2019) IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity, 50, 871-891.
https://doi.org/10.1016/j.immuni.2019.03.020
[115] Moore, K.W., Vieira, P., Fiorentino, D.F., et al. (1990) Homology of Cytokine Synthesis Inhibitory Factor (IL-10) to the Epstein-Barr Virus Gene BCRFI. Science, 248, 1230-1234.
https://doi.org/10.1126/science.2161559
[116] Moore, K.W., O’Garra, A., de Waal Malefyt, R., et al. (1993) Interleukin-10. Annual Review of Immunology, 11, 165-190.
https://doi.org/10.1146/annurev.iy.11.040193.001121
[117] Moore, K.W., de Waal Malefyt, R., Coffman, R.L., et al. (2001) Interleukin-10 and the Interleukin-10 Receptor. Annual Review of Immunology, 19, 683-765.
https://doi.org/10.1146/annurev.immunol.19.1.683
[118] Vieira, P., de Waal-Malefyt, R., Dang, M.N., et al. (1991) Isolation and Expression of Human Cytokine Synthesis Inhibitory Factor cDNA Clones: Homology to Epstein-Barr Virus Open Reading Frame BCRFI. Proceedings of the National Academy of Sciences of the United States of America, 88, 1172-1176.
https://doi.org/10.1073/pnas.88.4.1172
[119] Ouyang, W., Rutz, S., Crellin, N.K., et al. (2011) Regulation and functions of the IL-10 family of Cytokines in Inflammation and Disease. Annual Review of Immunology, 29, 71-109.
https://doi.org/10.1146/annurev-immunol-031210-101312
[120] Sing, A., Rost, D., Tvardovskaia, N., et al. (2002) Yersinia V-Antigen Exploits Toll-Like Receptor 2 and CD14 for Interleukin 10-Mediated Immunosuppression. The Journal of Experimental Medicine, 196, 1017-1024.
https://doi.org/10.1084/jem.20020908
[121] Dresner-Pollak, R., Gelb, N., Rachmilewitz, D., et al. (2004) Interleukin 10-Deficient Mice Develop Osteopenia, Decreased Bone Formation, and Mechanical Fragility of Long Bones. Gastroenterology, 127, 792-801.
https://doi.org/10.1053/j.gastro.2004.06.013
[122] Rios-Arce, N.D., Dagenais, A., Feenstra, D., et al. (2020) Loss of Interleukin-10 Exacerbates Early Type-1 Diabetes-Induced Bone Loss. Journal of Cellular Physiology, 235, 2350-2365.
https://doi.org/10.1002/jcp.29141
[123] Salomon, B.L. (2021) Insights into the Biology and Therapeutic Implications of TNF and Regulatory T Cells. Nature Reviews. Rheumatology, 17, 487-504.
https://doi.org/10.1038/s41584-021-00639-6
[124] Wang, Y., Che, M., Xin, J., et al. (2020) The Role of IL-1β and TNF-α in Intervertebral Disc Degeneration. Biomedicine & Pharmacotherapy, 131, Article ID: 110660.
https://doi.org/10.1016/j.biopha.2020.110660
[125] Bradley, J.R. (2008) TNF-Mediated Inflammatory Disease. The Journal of Pathology, 214, 149-160.
https://doi.org/10.1002/path.2287
[126] Zhang, Q., Li, Z., Zhang, M., et al. (2020) Injectable in Situ Self-Cross-Linking Hydrogels Based on Hemoglobin, Carbon Quantum Dots, and Sodium Alginate for Real-Time Detection of Wound Bacterial Infection and Efficient Postoperative Prevention of Tumor Recurrence. Langmuir, 36, 13263-13273.
https://doi.org/10.1021/acs.langmuir.0c02219
[127] Wang, T., He, C. and Yu, X. (2017) Pro-Inflammatory Cytokines: New Potential Therapeutic Targets for Obesity-Related Bone Disorders. Current Drug Targets, 18, 1664-1675.
https://doi.org/10.2174/1389450118666170104153512
[128] Zhang, H., Hilton, M.J., Anolik, J.H., et al. (2014) NOTCH Inhibits Osteoblast Formation in Inflammatory Arthritis via Noncanonical NF-κB. The Journal of Clinical Investigation, 124, 3200-3214.
https://doi.org/10.1172/JCI68901
[129] Yamazaki, M., Fukushima, H., Shin, M., et al. (2009) Tumor Necrosis Factor Alpha Represses Bone Morphogenetic Protein (BMP) Signaling by Interfering with the DNA Binding of Smads through the Activation of NF-kappaB. The Journal of Biological Chemistry, 284, 35987-35995.
https://doi.org/10.1074/jbc.M109.070540
[130] Huang, H., Zhao, N., Xu, X., et al. (2011) Dose-Specific Effects of Tumor Necrosis Factor Alpha on Osteogenic Differentiation of Mesenchymal Stem Cells. Cell Proliferation, 44, 420-427.
https://doi.org/10.1111/j.1365-2184.2011.00769.x
[131] Takayanagi, H., Kim, S. and Taniguchi, T. (2002) Signaling Crosstalk between RANKL and Interferons in Osteoclast Differentiation. Arthritis Research & Therapy, 4, Article No. S227.
https://doi.org/10.1186/ar581
[132] Takayanagi, H., Ogasawara, K., Hida, S., et al. (2000) T-Cell-Mediated Regulation of Osteoclastogenesis by Signalling Cross-Talk between RANKL and IFN-Gamma. Nature, 408, 600-605.
https://doi.org/10.1038/35046102
[133] Yao, Z., Lei, W., Duan, R., et al. (2017) RANKL Cytokine Enhances TNF-Induced Osteoclastogenesis Independently of TNF Receptor Associated Factor (TRAF) 6 by Degrading TRAF3 in Osteoclast Precursors. The Journal of Biological Chemistry, 292, 10169-10179.
https://doi.org/10.1074/jbc.M116.771816
[134] Kaplan, D.L., Eielson, C.M., Horowitz, M.C., et al. (1996) Tumor Necrosis Factor-Alpha Induces Transcription of the Colony-Stimulating Factor-1 Gene in Murine Osteoblasts. Journal of Cellular Physiology, 168, 199-208.
https://doi.org/10.1002/(SICI)1097-4652(199607)168:1<199::AID-JCP24>3.0.CO;2-1
[135] Yao, X., Liu, M., Jin, F., et al. (2020) Comprehensive Analysis of Differentially Expressed Circular RNAs in Patients with Senile Osteoporotic Vertebral Compression Fracture. BioMed Research International, 2020, Article ID: 4951251.
https://doi.org/10.1155/2020/4951251