带一个自相容源的(3 + 1)-维KP-I方程的广义Dromion结构
Generalized Dromion Structures of the (3 + 1)-Dimensional Kadomtsev-Petviashvili I Equation with a Self-Consistent Source
摘要: 本文利用Hirota双线性方法构造了具有一个自相容源的(3 + 1)-维KP-I方程(KPIESCS)的指数局部化解。我们得到了该方程广义dromion型解和多dromion解。
Abstract: Exponentially localized solutions to the (3 + 1)-dimensional Kadomtsev-Petviashvili I equation with a self-consistent source (KPIESCS) are constructed by the Hirota bilinear method. The generalized dromion type solutions and multi-dromion solutions are obtained.
文章引用:苏丹. 带一个自相容源的(3 + 1)-维KP-I方程的广义Dromion结构[J]. 应用数学进展, 2022, 11(3): 1053-1058. https://doi.org/10.12677/AAM.2022.113114

1. 引言

自从Zabusky和Kruskal在非线性波的数值研究中首次提出“孤子”一词后,孤子理论引起了人们的广泛关注 [1]。孤子理论作为非线性科学的一个分支,在数学和物理中有着广泛的应用 [2] [3]。此外,具有自相容源的方程在物理学中具有重要的实际意义,因为它们可以反映不同波之间的相互作用 [4] [5] [6] [7]。目前,求解这些方程的方法主要有两种。一种是基于Lax对的分析方法,如达布变换方法 [8] [9],贝克隆变换方法 [10] [11] 和逆散射方法 [12] [13] [14]。另一种广泛使用的方法是Hirota双线性方法,它是一种代数方法而不是解析方法 [15] [16]。

对于高维可积模型,最重要的特性之一是发现了称为dromion的指数局部化结构 [17]。通常,dromion由两个或多个非平行线ghost孤子驱动 [18] [19]。在具有奇偶时间对称势的(2 + 1)维KdV方程、(3 + 1)维条件可积系统和(2 + 1)维非线性薛定谔方程中,得到了dromion结构 [20] [21] [22]。此外,在Mel’nikov方程的情况下,得到了更一般的具有空间变化振幅的dromion型解以及包含的多dromion解 [23]。

在本文中,我们将重点讨论如下形式的带一个自相容源的(3 + 1)维Kadomtsev-Petviashvili方程(KPIESCS)广义形式的dromion结构

{ ( u t + 6 u u x + u x x x + 8 κ | ϕ | x 2 ) x u y y + u z z = 0 , i ϕ y = 2 ϕ x x + 2 u ϕ , i ϕ z = ϕ x x + u ϕ . (1)

其中,u是长波振幅, ϕ 是复的短波包, κ 满足条件 κ 2 = 1 。文献 [24] 讨论了该方程一般有理解的显式表示。

2. 方程(1)的局部解

通过因变量转换 u = 2 ( ln f ) x x , ϕ = g / f ,方程(1)被转换成双线性方程

{ ( D x D t + D x 4 D y 2 + D z 2 ) f f + 8 κ g g ¯ = 0 , ( i D y 2 D x 2 ) g f = 0 , ( i D z D x 2 ) g f = 0. (2)

ε 幂级数的形式展开 f , g ,如下所示

g = ε g ( 1 ) + ε 3 g ( 3 ) + , f = 1 + ε 2 f ( 2 ) + ε 4 f ( 4 ) + , (3)

将(3)代入(2)可以得到一组线性方程

{ O ( ε ) : i g z ( 1 ) = g x x ( 1 ) , i g y ( 1 ) = 2 g x x ( 1 ) , O ( ε 2 ) : f x x x x ( 2 ) + f x t ( 2 ) f y y ( 2 ) + f z z ( 2 ) = 4 κ | g ( 1 ) | 2 , (4)

为了得到孤立子解,令

g ( 1 ) = j = 1 N exp ( ψ j ) , ψ j = l j x + m j y + n j z + ω j t + ψ j ( 0 ) , i n j = l j 2 , m j = 2 n j , (5)

其中 l j , m j , ω j , ψ j ( 0 ) 是复的待定系数。当 N = 1 时我们得到

f ( 2 ) = exp ( ψ 1 + ψ 1 + 2 A ) , exp ( 2 A ) = κ 4 l 1 R 4 + l 1 R ω 1 R 3 n 1 R 2 , (6)

这里 l 1 = l 1 R + i l 1 I , m 1 = m 1 R + i m 1 I , n 1 = n 1 R + i n 1 I , ω 1 = ω 1 R + i ω 1 I g ( 2 j 1 ) = f ( 2 j ) = 0 ( j 2 ) 。此时我们得到

孤立子解

{ u = 2 l 1 R 2 sech 2 ( ψ 1 R + A ) , ϕ = 4 l 1 R 4 + l 1 R ω 1 R 12 l 1 R 2 l 1 I 2 4 κ sech ( ψ 1 R + A ) e i ψ 1 I , (7)

其中 ψ 1 R = l 1 R x + m 1 R y + 2 l 1 R l 1 I z + ω 1 R t + ψ 1 R ( 0 ) , ψ 1 I = l 1 I x + m 1 I y ( l 1 R 2 l 1 I 2 ) z + ω 1 I t + ψ 1 I ( 0 )

特别地,为了得到类似文献 [19] 中的(1,1)-dromion解,我们取

f = 1 + e ψ 1 + ψ 1 * + e ψ 2 + ψ 2 * + K e ψ 1 + ψ 1 * + ψ 2 + ψ 2 * , g = ρ e ψ 1 + ψ 2 , (8)

其中

ψ 1 = p x + m y + n z , ψ 2 = q t , (9)

并且 K > 0 是一个待定实数, p , m , n , q 是待定复系数。将(8)式代入(2)式中的第一个方程可以得到当 3 n R 2 = 4 p R 4 时满足

κ | ρ | 2 = p R q R ( K 1 ) , (10)

然后再将(8)和(10)代入(2)式中的第二个方程得到 m = 2 n , n = i p 2 , p R 2 = 3 p I 2

因此,我们得到如下形式的指数衰减解

{ u = 8 p R 2 ( 1 + e ψ 2 + ψ 2 ) ( e ψ 1 + ψ 1 + K e ψ 1 + ψ 1 + ψ 2 + ψ 2 ) ( 1 + e ψ 1 + ψ 1 + e ψ 2 + ψ 2 + K e ψ 1 + ψ 1 + ψ 2 + ψ 2 ) 2 , ϕ = ρ e ψ 1 + ψ 2 1 + e ψ 1 + ψ 1 + e ψ 2 + ψ 2 + K e ψ 1 + ψ 1 + ψ 2 + ψ 2 , (11)

此外,可以看到(4)式中的第一个方程只和自变量 x , y , z 有关,因此可以引入一些关于自变量t的任意函数来寻找更一般形式的解。例如,选择

g ( 1 ) = j = 1 N exp ( ψ j ) , ψ j = l j x + m j y + n j z + a j ( t ) + ψ j ( 0 ) , i n j = l j 2 , m j = 2 n j , (12)

或者

g ( 1 ) = j = 1 N a j ( t ) exp ( ψ j ) , ψ j = l j x + m j y + n j z + ψ j ( 0 ) , i n j = l j 2 , m j = 2 n j . (13)

为了说明此种情况,不妨假设

g ( 1 ) = a ( t ) e ψ 1 , ψ 1 = l 1 x + m 1 y + n 1 z , (14)

这里 a ( t ) 是一个复函数,复系数 l 1 , n 1 , m 1 满足色散关系 l 1 2 = i n 1 , m 1 = 2 n 1 。将(14)代入(4)式第二个方程,我们得到

f ( 2 ) = b ( t ) e ψ 1 + ψ 1 , (15)

其中 b ( t ) 是一个满足如下关系的实函数

8 l 1 R 4 b ( t ) + l 1 R b ( t ) 6 n 1 R 2 b ( t ) = 2 κ | a ( t ) | 2 . (16)

于是我们得到方程(1)如下形式的解

{ u = 2 l 1 R 2 sech 2 [ ψ 1 R + 1 2 ln b ( t ) ] , ϕ = a ( t ) 2 b ( t ) e i ψ 1 I sech [ ψ 1 I + 1 2 ln b ( t ) ] , (17)

其中 ψ 1 R , ψ 1 I 分别是 ψ 1 的实部和虚部。显然,此时u是一个曲线孤子,自相容源项 ϕ 拥有丰富的结构。例如,如果选择

a ( t ) b ( t ) = 2 sech ( c 0 + c 1 t ) , (18)

我们可以从(16)式中求得

b ( t ) = exp ( 8 κ tanh ( c 0 + c 1 t ) + ( 6 n 1 R 2 8 l 1 R 4 ) t l 1 R ) , (19)

于是可以得到

ϕ = e i ψ 1 I sech ( c 0 + c 1 t ) sech [ l 1 R ( x + 4 l 1 I y + 2 l 1 I z ) + 1 2 l 1 R ( 8 κ tanh ( c 0 + c 1 t ) + ( 6 n 1 R 2 8 l 1 R 4 ) t ) ] . (20)

这就是一个dromion型解。

如果选择

a ( t ) b ( t ) = 2 ( t + t 0 ) 2 + 1 , (21)

我们就得到一个代数衰减的局部解

ϕ = e i ψ 1 I ( t + t 0 ) 2 + 1 sech { l 1 R ( x + 4 l 1 I y + 2 l 1 I z ) + 1 2 l 1 R [ ( 6 n 1 R 2 8 l 1 R 4 ) t + 8 κ d t [ ( t + t 0 ) 2 + 1 ] 2 ] } , (22)

这个解沿着t方向衰减的速度要比解(20)慢很多。

通过扩展上述步骤,我们可以构造广义形式的局部解。实际上,可以得到如下形式的多dromion解

ϕ N = [ j = 1 M a j ( t ) 2 b ( t ) ] e i ψ 1 I sech [ ψ 1 R + 1 2 ln b ( t ) ] . (23)

这里 a j ( t ) , j = 1 , 2 , , N 是关于自变量t的任意函数且满足

8 l 1 R 4 b ( t ) + l 1 R b ( t ) 6 n 1 R 2 b ( t ) = 2 κ p = 1 M q = 1 M a p ( t ) a q ( t ) , (24)

为了说明这种解,我们取 M = 2 为例。令

a 1 ( t ) b ( t ) = 2 sech ( t + η 1 ) , a 2 ( t ) b ( t ) = 2 sech ( t + η 2 ) , (25)

求解式(24)得到

b ( t ) = exp [ ( 6 n 1 R 2 8 l 1 R 4 ) t + 8 κ ( tanh ( t + η 1 ) + tanh ( t + η 2 ) + 2 sech ( t + η 1 ) sech ( t + η 2 ) d t ) l 1 R ] , (26)

此时就可以到一个高阶dromion解

ϕ 2 = e i ψ 1 I [ sech ( t + η 1 ) + sech ( t + η 2 ) ] sech [ l 1 R ( x + 4 l 1 I y + 2 l 1 I z ) + 1 2 l 1 R ( ( 6 n 1 R 2 8 l 1 R 4 ) t + 8 κ ( tanh ( t + η 1 ) + tanh ( t + η 2 ) + 2 sech ( t + η 1 ) sech ( t + η 2 ) d t ) ) ] . (27)

3. 总结

本文中,我们基于Hirota双线性方法找到了(3 + 1)维KPIESCS的指数局部化解。我们特别构造了局域dromion解和诱导dromion解。

基金项目

湛江市非资助科技攻关计划项目(2021B01506)。

参考文献

参考文献

[1] Zabusky, N.J. and Kruskal, M.D. (1965) Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Physical Review Letters, 15, 240-243.
https://doi.org/10.1103/PhysRevLett.15.240
[2] Enns, R.H., Jones, B.L., Miura, R.M. and Rangnekar, S.S. (1981) Nonlinear Phenomena in Physics and Biology. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4684-4106-2
[3] Agrawal, G.P. (2006) Nonlinear Fiber Optics. Academic Press, San Diego.
https://doi.org/10.1016/B978-012369516-1/50011-X
[4] Mel’nikov, V.K. (1983) On Equations for Wave Interactions. Letters in Mathematical Physics, 7, 129-136.
https://doi.org/10.1007/BF00419931
[5] Mel’nikov, V.K. (1987) A Direct Method for Deriving a Multi-Soliton Solution for the Problem of Interaction of Waves on the x,y Plane. Communications in Mathematical Physics, 112, 639-652.
https://doi.org/10.1007/BF01225378
[6] Mel’nikov, V.K. (1989) Interaction of Solitary Waves in the System Described by the Kadomtsev-Petviashvili Equation with a Self-Consistent Source. Communications in Mathematical Physics, 126, 201-215.
https://doi.org/10.1007/BF02124337
[7] Mel’nikov, V.K. (1990) New Method for Deriving Nonlinear Integrable Systems. Journal of Mathematical Physics, 31, 1106-1113.
https://doi.org/10.1063/1.528790
[8] Matveev, V.B. and Salle, M.A. (1991) Darboux Transformations and Solitons. Springer, Berlin.
[9] Gu, C.H., Hu, H.S. and Zhou, Z.X. (2005) Darboux Transformations in Integrable Systems. Springer, Dordrecht.
https://doi.org/10.1007/1-4020-3088-6
[10] Rogers, C. and Schief, W.K. (2002) Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511606359
[11] Chen, D.Y. (2006) Introduction to Soliton Theory. Science Press, Beijing.
[12] Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511623998
[13] Zeng, Y.B., Ma, W.X. and Lin, R.L. (2001) Integration of the Soliton Hierarchy with Self-Consistent Sources. Journal of Mathematical Physics, 41, 5453-5489.
https://doi.org/10.1063/1.533420
[14] Li, Q., Zhang, D.J. and Chen, D.Y. (2010) Solving Non-Isospectral mKdV Equation and Sine-Gordon Equation Hierarchies with Self-Consistent Sources via Inverse Scattering Transforma. Communications in Theoretical Physics, 54, 219-228.
https://doi.org/10.1088/0253-6102/54/2/04
[15] Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511543043
[16] Deng, S.F., Chen, D.Y. and Zhang, D.J. (2003) The Multisoliton Solutions of the KP Equation with Self-Consistent Sources. Journal of the Physical Society of Japan, 72, 2184-2192.
https://doi.org/10.1143/JPSJ.72.2184
[17] Fokas, A.S. and Santini, P.M. (1989) Coherent Structures in Multidimensions. Physical Review Letters, 63, 1329-1333.
https://doi.org/10.1103/PhysRevLett.63.1329
[18] Boiti, M., Leon, J.J.P., Martina, L. and Pempinelli, F. (1988) Scattering of Localized Solitons in the Plane. Physics Letters A, 132, 432-439.
https://doi.org/10.1016/0375-9601(88)90508-7
[19] Radha, R. and Lakshmanan, M. (1994) Singularity Analysis and Localized Coherent Structures in (2+1)-Dimensional Generalized Korteweg-de Vries Equations. Journal of Mathematical Physics, 35, 4746-4756.
https://doi.org/10.1063/1.530812
[20] Lou, S.Y. (1995) Generalized Dromion Solutions of the (2+1)-Dimensional KdV Equation. Journal of Physics A: Mathematical and General, 28, 7227-7232.
https://doi.org/10.1088/0305-4470/28/24/019
[21] Ruan, Y. and Lou, S.Y. (1997) Higher-Dimensional Dromion Structures: Jimbo-Miwa-Kadomtsev-Petviashvili System. Journal of Mathematical Physics, 38, 3123-3136.
https://doi.org/10.1063/1.532038
[22] Li, Y.Q., Liu, W.J., Wong, P., Huang, L.G., Pan, N. (2015) Dromion Structures in the (2+1)-Dimensional Nonlinear Schrödinger Equation with a Parity-Time-Symmetric Potential. Applied Mathematics Letters, 47, 8-12.
https://doi.org/10.1016/j.aml.2015.02.002
[23] Kumar, C.S., Radha, R. and Lakshmanan, M. (2004) Exponentially Localized Solutions of Mel’nikov Equation. Chaos, Solitons & Fractals, 22, 705-712.
https://doi.org/10.1016/j.chaos.2004.02.046
[24] Yong, X.L., Li, X.Y., Huang, Y.H., Ma, W.X. and Liu, Y. (2020) Rational Solutions and Lump Solutions to the (3+1)-Dimensional Mel’nikov Equation. Modern Physics Letters B, 34, Article ID: 2050033.
https://doi.org/10.1142/S0217984920500335