皮肤微生物与银屑病发病相关性的研究进展
Research Progress on the Correlation between Skin Microbiome and Pathogenesis of Psoriasis
DOI: 10.12677/ACM.2022.122182, PDF, HTML, XML, 下载: 336  浏览: 590 
作者: 边慧莹, 周 婧*:哈尔滨医科大学附属第二医院皮肤科,黑龙江 哈尔滨
关键词: 银屑病皮肤微生物发病机制Toll样受体抗菌肽Psoriasis Skin Microbiome Pathogenesis TLRs Antimicrobial Peptides
摘要: 银屑病的病因极其复杂,涉及遗传、免疫与环境等多种因素。近年来越来越多的研究发现,银屑病患者存在皮肤微生物群失调,发病机制可能涉及对皮肤微生物免疫耐受的崩溃。但这些研究在取样方法、部位和微生物分析方法上各持己见,尚无统一标准。迄今为止尚未发现皮肤微生物和银屑病之间的相关性,即微生物的组成变化是否与银屑病的发病具有因果关系。本文对国内外利用现代测序技术鉴定银屑病皮肤微生物多样性的研究进行梳理和分析,旨在了解银屑病发病机制,明确当前的研究进展和存在的问题,为进一步的研究提出建议。
Abstract: Psoriasis is a disease with complex etiology and its pathogenesis involves a variety of factors such as heredity, immunity and environment. In recent years, more and more studies have shown that patients with psoriasis have obvious dysbiosis of skin microbiome. The pathogenesis of psoriasis may involve the collapse of immune tolerance to skin microbiome. However, these studies are different in sampling methods, sampling sites and microbial analysis methods and there is no unified standard. So far, no clear link has been found between skin microbiome and psoriasis and whether there is a causal relationship between changes in microbial composition and psoriasis. In this review, the domestic and foreign studies on the identification of skin microbial diversity of psoriasis by modern sequencing technology were summarized and analyzed, aiming to understand the pathogenesis of psoriasis, clarify the current research progress and existing problems, and put forward suggestions for further research.
文章引用:边慧莹, 周婧. 皮肤微生物与银屑病发病相关性的研究进展[J]. 临床医学进展, 2022, 12(2): 1248-1254. https://doi.org/10.12677/ACM.2022.122182

1. 前言

银屑病是一种常见的慢性炎症性疾病,累及多个系统,特征是角质形成细胞的增殖和皮肤内大量免疫细胞引起自身免疫反应,影响全球约2%的人口 [1]。银屑病发病机制复杂,目前大量研究认为,T细胞的活化在银屑病的发展中起着重要作用 [2]。银屑病患者通常合并有糖尿病、高血压、肥胖、炎症性肠病等系统性疾病,严重影响患者的生活质量 [3]。近年来大量的研究证据表明,银屑病患者存在皮肤微生物群失调。同时,银屑病患者克罗恩病和牙周炎的高发病率,支持了其对微生物成分的异常免疫反应学说 [4] [5]。这两种疾病分别涉及对肠道和口腔微生物的耐受性受损和免疫的异常激活。银屑病、炎症性肠病、牙周炎可能存在共同的免疫致病途径,导致皮肤、肠道和口腔中的共生细菌分别在身体的不同部位启动炎症过程 [6]。此外,点滴型银屑病还与化脓性链球菌的定殖有关 [7]。因此,我们回顾了近年来利用现代测序技术鉴定银屑病皮肤微生物多样性(本文尤指细菌)的研究进展,了解其在银屑病发病中的作用,以便更好地指导银屑病的治疗。

2. 健康人皮肤微生物群

皮肤是人体最大的器官,定植着细菌、真菌、病毒和寄生虫等大量的微生物。皮肤表面细菌可分为常驻菌群、暂驻菌群及偶存菌。常驻菌群较固定地寄生于皮肤,数量和菌种的组成保持相对稳定,在生理状态下不对宿主产生不利影响,可认为是皮肤的共生物;暂驻菌群是通过接触从外界环境中获得的一类菌群,无法永久定植在皮肤表面;偶存菌偶尔存在于少数人体上,仅在短时期内附着于皮肤和增殖,受环境及常驻菌群活性的影响 [8]。与肠道微生物相似,皮肤微生物在保护我们免受病原体入侵、教育免疫系统等方面发挥着重要作用。厚壁菌门、放线菌门、拟杆菌门和变形菌门共同构成了皮肤最大的微生物种群 [9]。

在单个个体内,皮肤位置是细菌群落多样性的主要决定因素,且个体之间的定点定植存在高度差异 [10]。人体皮肤部位可根据其生理特征进行分类,即油腻区(头皮、眉间、后背、外耳道等)、湿润区(腋窝、肘窝、腘窝、腹股沟等)和干燥区(前臂、小鱼际等)。皮肤微生物的多样性在干燥区最大,在油腻区最小。基因组分析表明葡萄球菌和棒状杆菌主要分布在潮湿的区域;亲脂性细菌丙酸杆菌则倾向于在皮脂腺丰富的区域定植 [11] [12] [13]。同一个体不同部位皮肤微生物群的变异要大于同一部位不同个体间微生物群的变异 [10]。除了疾病状态外,还有许多因素可以影响个体的微生物特征,包括疾病严重程度、性别、年龄、种族、气候、工作及生活环境等。

3. 银屑病皮肤微生物群的研究方法

目前,对银屑病皮肤微生物群的研究在取样方法、部位、分析技术等方面尚无统一标准。取样方法有皮肤拭子法、刮拭法和活检法。考虑到皮肤活组织检查的有创性,大多数皮肤微生物的研究采用了皮肤拭子法,结果仅代表了皮肤表面的菌群特征。只有少数研究采用了皮肤刮拭和活组织检查。Grice等报道了皮肤拭子、刮拭和活检结果存在微小差异 [14]。拭子法和胶带剥离法之间的一致性也已在几项研究中得到证实。然而Prast-Nielsen等人报道,在比较来自同一个体的拭子和活检时,皮肤微生物组的多样性和分类组成都存在显著差异。梭状芽胞杆菌和拟杆菌在活检标本中更丰富,而金黄色葡萄球菌则在拭子标本中更丰富。据推测随着氧气水平的降低,皮肤较深部位的条件对专性厌氧菌的生长更为有利。这表明了不同皮肤深度的微生物群的组成是由该分类单元的耐氧性驱动的 [15]。Nakatsuji等人则证实了细菌不仅存在于皮肤表面,甚至存在于真皮深层和表层脂肪组织中。拭子法可能不足以研究皮肤微生物群,皮肤深部细菌在银屑病发病机制中的作用值得进一步探索 [16]。在取样部位方面,大多数研究采用了分区取样即从油腻区、湿润区和干燥区分别采集样本。

以往对微生物的研究方法使用细菌培养联合传统鉴定方法,受到不同菌群生长条件的限制,阻碍了对检测结果进行客观比较。近几年大多数皮肤微生物组的研究采用16S核糖体RNA (16S rRNA)扩增子进行测序,这种测序方法所得到的结果包括活菌和死菌。有研究者指出V1~V3扩增子在皮肤微生物组分析中可提供更多信息,而V3~V4扩增子更适合应用在肠道微生物组研究中。当前,主要的分析技术突破使宏基因组测序研究成为可能。它可以同时捕获样品中的所有遗传物质,包括细菌、真菌、古生菌和病毒,从而可以推断出相对丰度 [17] [18]。宏基因组测序的另一个优势是提供足够的分辨率来区分物种,甚至是物种内的菌株。而大多数扩增子测序方法都难以将其分类到物种水平 [19]。因其价格昂贵,仅小部分研究采用了该方法。

4. 银屑病患者皮肤微生物群的变化

近年来的研究表明,银屑病患者存在严重的皮肤微生物群失调。Quan等人利用定量PCR和16S rRNA发现,与未受影响的皮肤和对照组相比,银屑病皮损具有更高的细菌负荷且存在丙酸杆菌与棒状杆菌之间不平衡。与未受影响的皮肤和对照组相比,银屑病皮损中的棒状杆菌比例更高,而丙酸杆菌的比例更低。棒状杆菌与局部病变的严重程度相关,但与PASI评分无关,而丙酸杆菌则与皮肤电容(skin capacitance, CAP)异常相关 [20]。Fyhrquist等人采用16S rRNA V1~V4方法在银屑病皮肤中检测到棒状杆菌比例升高,乳酸杆菌及丙酸杆菌的比例下降。与特应性皮炎相比,银屑病中的微生物与宿主的关联要少得多且临床严重程也和微生物丰度之间没有直接关联 [21]。Chang等人采用16S rRNA V1~V3可变区进行测序显示,银屑病相关菌群比健康皮肤细菌群落表现出更高的多样性和异质性。特定的微生物特征与银屑病病变皮肤、银屑病非病变皮肤和健康皮肤相关。金黄色葡萄球菌在银屑病的非皮损和皮损皮肤中都更丰富,相比之下表皮葡萄球菌和痤疮丙酸杆菌在银屑病皮损中的发生率则低于健康皮肤。同时变形杆菌在银屑病皮肤中过度分布。进一步采用小鼠模型研究皮肤葡萄球菌种类对皮肤T细胞分化的影响,他们发现金黄色葡萄球菌定植的新生小鼠表现出强烈的Th17极化,而表皮葡萄球菌定植的小鼠或未定植的对照小鼠则没有这种反应。这表明金黄色葡萄球菌可能通过上调Th17来启动银屑病的炎症反应 [22] [23]。然而Gao等人和Alekseyenko等人则观察到银屑病皮肤与健康皮肤相比细菌多样性减少且变形杆菌的丰度降低,这与Chang等人的结果恰恰相反 [24] [25]。Fahlen等人则没有发现细菌多样性存在差异但与Chang等人所一致的是在银屑病皮肤中存在变形杆菌的过度分布 [26]。

Tett等人采用高分辨率霰弹宏基因组学对28名银屑病患者和未受影响的皮肤进行了微生物组特征分析。总体而言,银屑病和未受银屑病影响部位的微生物群落在物种水平上并未表现出明显差异。更精细的菌株水平分析揭示了菌株的异质性、定植和功能变异,同时说明了高分辨率分析的必要性 [27]。明确银屑病皮肤微生物的特征,未来可能需要对皮肤微生物组进行菌株水平分析,而不是物种水平分析 [20] [21] [28]。上述研究结果的差异可能是银屑病患者皮肤微生物组成的内在异质性或者不同的实验方案所造成的。在不同研究之间应使用标准化实验方案,以提高可重复性。必要时对研究队列进行meta分析。

5. 皮肤微生物在银屑病发病中的作用

5.1. Toll样受体

宿主与微生物之间的相互作用是通过特异性模式识别受体(PRRs)来识别病原体相关分子模式(PAMPs) [29]。这种相互作用,微生物可以诱导、调节人体的免疫系统 [30]。Toll样受体(TLRs)属于特异性模式识别受体家族中的一员,能够识别多种病原体相关分子模式,如革兰阳性菌细胞壁成分肽聚糖(PGN)、革兰阴性菌细胞壁外壁成分脂多糖(LPS)、鞭毛蛋白及微生物核酸等。TLR2可特异性识别PGN和细菌脂肽(BLP),TLR4可特异性识别LPS [31]。研究发现银屑病患者外周血单核细胞和角质形成细胞中TLR2和TLR4的表达升高,且TLR2的表达增强可进一步上调银屑病表皮和真皮中树突状细胞中的TLR4的表达 [32]。TLRs通过识别细菌成分LPS和BLP,进一步与髓样分化初级反应(88MyD88)相互作用,从而激活NF-Kb信号通路产生肿瘤坏死因子α (TNF-α)、IL-1α和IL-8等炎症因子及β-防御素。β-防御素是抗菌肽(AMPs)的一个家族,由包括角化细胞在内的多种上皮细胞产生。

5.2. 抗菌肽

AMPs在银屑病中呈高表达状态,不仅可以直接杀死或抑制微生物,而且还通过多种机制修饰宿主的炎症反应 [33] [34]。研究表明,中性粒细胞胞外陷阱和肥大细胞胞外陷阱与核酸和AMPs形成复合物。AMPs通过TLRs增强角质形成细胞和树突状细胞对病毒或自体核酸(DNA和RNA)的识别 [35] [36]。TLRs信号可诱导角质形成细胞和浆细胞样树突状细胞(pDC)产生I型干扰素(IFN)。角质形成细胞细胞在与共生菌接触后产生AMPs的活性形式LL-37,通过多种机制激活银屑病免疫细胞,诱导适应性免疫应答。LL-37与自体DNA结合后通过pDC刺激I型IFN的产生,同时LL-37还与自体RNA结合,导致髓样树突状细胞(mDC)产生TNF-α和诱导型一氧化氮合酶 [36] [37]。角质形成细胞衍生的IFN-β促进pDC和mDC成熟。pDC衍生的IFN-α可诱导mDC的活化和成熟 [38] [39]。LL-37又进一步刺激角质形成细胞产生IL-36和其他细胞因子。活化的mDCs分泌大量炎性细胞因子,包括银屑病中的IL-12和IL-23,这有助于初始T细胞向Th17细胞增殖分化,产生IL-17和IL-22,导致恶性反馈循环来维持银屑病的炎症反应 [40] [41]。这可解释在银屑病小鼠模型中,金黄色葡萄球菌定植的新生小鼠表现出强烈的Th17极化,而表皮葡萄球菌定植的小鼠或未定植的对照小鼠却没有这种反应。这表明金黄色葡萄球菌可通过上述通路上调Th17来启动银屑病的炎症反应。

5.3. 肠–脑–皮肤轴

Stokes和Pillsbury于1930年首先提出肠–脑–皮肤轴的概念。过去十年来,许多研究支持这一概念。肠道微生物群是连接免疫系统和神经系统的纽带,可产生多种神经递质,包括多巴胺、血清素、c-氨基丁酸等 [42]。肠道–皮肤微生物相互作用的机制尚未完全阐明,炎症反应在其中发挥重要作用。肠道微生物群参与了促炎症Th17细胞的发育,使其能够调节炎症疾病,如炎症性肠病和肥胖 [43]。肠道内共生菌水平的失衡,导致T细胞激活,进而引发全身炎症反应,造成皮肤稳态的破坏。这与O’Neill等人发现的,肠道微生物可以通过调节表皮分化与免疫系统的协调作用来影响皮肤稳态相一致 [44]。Shinno-Hashimoto H等人在银屑病小鼠模型中也证实了肠道和皮肤之间的几种微生物存在相关性 [45]。同时,口服益生菌可改善银屑病患者的皮损,这在特应性皮炎患者中也得到印证。益生菌疗法为银屑病的治疗开辟了新思路。

6. 总结及研究展望

到目前为止,尚未明确皮肤微生物的改变与银屑病的因果关系,微生物组成的变化是否在银屑病中起致病作用,亦或许仅仅是炎症微环境改变的结果。因此,需要进一步对银屑病皮肤微生物群进行纵向研究。为构建银屑病的微生物学特征,未来的机制研究需结合高通量测序技术、细菌培养、活检、抗菌肽和益生菌分析来阐明细菌在银屑病发病机制中的复杂作用,以便成果更好地指导银屑病的治疗。

NOTES

*通讯作者Email: zhoujing782013@126.com

参考文献

[1] Christophers, E. (2001) Psoriasis—Epidemiology and Clinical Spectrum. Clinical and Experimental Dermatology, 26, 314-320.
https://doi.org/10.1046/j.1365-2230.2001.00832.x
[2] Owczarczyk-Saczonek, A., Czerwińska, J. and Placek, W. (2018) The Role of Regulatory T Cells and Anti-Inflammatory Cytokines in Psoriasis. Acta Dermatovenerologica Alpina, Pannonica et Adriatica, 27, 17-23.
https://doi.org/10.15570/actaapa.2018.4
[3] Iannone, L.F., Bennardo, L., Palleria, C., Roberti, R., De Sarro, C., Naturale, M.D., et al. (2020) Safety Profile of Biologic Drugs for Psoriasis in Clinical Practice: An Italian Prospective Pharmacovigilance Study. PLoS ONE, 15, e0241575.
https://doi.org/10.1371/journal.pone.0241575
[4] Lee, F.I., Bellary, S.V. and Francis, C. (1990) Increased Occurrence of Psoriasis in Patients with Crohn’s Disease and Their Relatives. American Journal of Gastroenterology, 85, 962-963.
[5] Preus, H.R., Khanifam, P., Kolltveit, K., Mørk, C. and Gjermo, P. (2010) Periodontitis in Psoriasis Patients: A Blinded, Case-Controlled Study. Acta Odontologica Scandinavica, 68, 165-170.
https://doi.org/10.3109/00016350903583678
[6] Fry, L., Baker, B.S., Powles, A.V., Fahlen, A. and Engstrand, L. (2013) Is Chronic Plaque Psoriasis Triggered by Microbiota in the Skin? British Journal of Dermatology, 169, 47-52.
https://doi.org/10.1111/bjd.12322
[7] Talanin, N.Y. (1998) American Academy of Dermatology 1998 Awards for Young Investigators in Dermatology. Detection of Streptococcal Antigens in Psoriasis. Journal of the American Academy of Dermatology, 39, 270-271.
https://doi.org/10.1016/S0190-9622(98)70098-2
[8] 彭琛, 陈文娟, 于宁, 高芸璐, 易雪梅, 丁杨峰. 银屑病皮肤及肠道微生态研究进展[J]. 中华皮肤科杂志, 2019, 52(2): 135-137.
[9] Grice, E.A., Kong, H.H., Conlan, S., Deming, C.B., Davis, J., Young, A.C., et al. (2009) Topographical and Temporal Diversity of the Human Skin Microbiome. Science, 324, 1190-1192.
https://doi.org/10.1126/science.1171700
[10] Musthaq, S., Mazuy, A. and Jakus, J. (2018) The Microbiome in Dermatology. Clinics in Dermatology, 36, 390-398.
https://doi.org/10.1016/j.clindermatol.2018.03.012
[11] Grice, E.A. (2014) The Skin Microbiome: Potential for Novel Diagnostic and Therapeutic Approaches to Cutaneous Disease. Seminars in Cutaneous Medicine and Surgery, 33, 98-103.
https://doi.org/10.12788/j.sder.0087
[12] Perez Perez, G.I., Gao, Z., Jourdain, R., Ramirez, J., Gany, F., Clavaud, C., et al. (2016) Body Site Is a More Determinant Factor than Human Population Diversity in the Healthy Skin Microbiome. PLoS ONE, 11, e0151990.
https://doi.org/10.1371/journal.pone.0151990
[13] Byrd, A.L., Belkaid, Y. and Segre, J.A. (2018) The Human Skin Microbiome. Nature Reviews Microbiology, 16, 143-155.
https://doi.org/10.1038/nrmicro.2017.157
[14] Grice, E.A., Kong, H.H., Renaud, G., Young, A.C., Bouffard, G.G., Blakesley, R.W., et al. (2008) A Diversity Profile of the Human Skin Microbiota. Genome Research, 18, 1043-1050.
https://doi.org/10.1101/gr.075549.107
[15] Prast-Nielsen, S., Tobin, A.M., Adamzik, K., Powles, A., Hugerth, L., Sweeney, C., et al. (2019) Investigation of the Skin Microbiome: Swabs vs. Biopsies. British Journal of Dermatology, 181, 572-579.
https://doi.org/10.1111/bjd.17691
[16] Nakatsuji, T., Chiang, H.I., Jiang, S.B., Nagarajan, H., Zengler, K. and Gallo, R.L. (2013) The Microbiome Extends to Subepidermal Compartments of Normal Skin. Nature Communications, 4, Article No. 1431.
https://doi.org/10.1038/ncomms2441
[17] Brooks, J.P., Edwards, D.J., Harwich Jr., M.D., Rivera, M.C., Fettweis, J.M., Serrano, M.G., et al. (2015) The Truth about Metagenomics: Quantifying and Counteracting Bias in 16S rRNA Studies. BMC Microbiology, 15, Article No. 66.
https://doi.org/10.1186/s12866-015-0351-6
[18] Gerasimidis, K., Bertz, M., Quince, C., Brunner, K., Bruce, A., Combet, E., et al. (2016) The Effect of DNA Extraction Methodology on Gut Microbiota Research Applications. BMC Research Notes, 9, Article No. 365.
https://doi.org/10.1186/s13104-016-2171-7
[19] Meisel, J.S., Hannigan, G.D., Tyldsley, A.S., SanMiguel, A.J., Hodkinson, B.P., Zheng, Q., et al. (2016) Skin Microbiome Surveys Are Strongly Influenced by Experimental Design. Journal of Investigative Dermatology, 136, 947-956.
https://doi.org/10.1016/j.jid.2016.01.016
[20] Quan, C., Chen, X.Y., Li, X., Xue, F., Chen, L.H., Liu, N., et al. (2020) Psoriatic Lesions Are Characterized by Higher Bacterial Load and Imbalance between Cutibacterium and Corynebacterium. Journal of the American Academy of Dermatology, 82, 955-961.
https://doi.org/10.1016/j.jaad.2019.06.024
[21] Fyhrquist, N., Muirhead, G., Prast-Nielsen, S., Jeanmougin, M., Olah, P., Skoog, T., et al. (2019) Microbe-Host Interplay in Atopic Dermatitis and Psoriasis. Nature Communications, 10, Article No. 4703.
https://doi.org/10.1038/s41467-019-12253-y
[22] Chang, H.W., Yan, D., Singh, R., Liu, J., Lu, X., Ucmak, D., et al. (2018) Alteration of the Cutaneous Microbiome in Psoriasis and Potential Role in Th17 Polarization. Microbiome, 6, Article No. 154.
https://doi.org/10.1186/s40168-018-0533-1
[23] Tomida, S., Nguyen, L., Chiu, B.H., Liu, J., Sodergren, E., Weinstock, G.M., et al. (2013) Pan-Genome and Comparative Genome analyses of Propionibacterium Acnes Reveal Its Genomic Diversity in the Healthy and Diseased Human Skin Microbiome. mBio, 4, e00003-13.
https://doi.org/10.1128/mBio.00003-13
[24] Gao, Z., Tseng, C.H., Strober, B.E., Pei, Z. and Blaser, M.J. (2008) Substantial Alterations of the Cutaneous Bacterial Biota in Psoriatic Lesions. PLoS ONE, 3, e2719.
https://doi.org/10.1371/journal.pone.0002719
[25] Alekseyenko, A.V., Perez-Perez, G.I., De Souza, A., Strober, B., Gao, Z., Bihan, M., et al. (2013) Community Differentiation of the Cutaneous Microbiota in Psoriasis. Microbiome, 1, Article No. 31.
https://doi.org/10.1186/2049-2618-1-31
[26] Fahlén, A., Engstrand, L., Baker, B.S., Powles, A. and Fry, L. (2012) Comparison of Bacterial Microbiota in Skin Biopsies from Normal and Psoriatic Skin. Archives of Dermatological Research, 304, 15-22.
https://doi.org/10.1007/s00403-011-1189-x
[27] Bosi, E., Monk, J.M., Aziz, R.K., Fondi, M., Nizet, V. and Palsson, B.Ø. (2016) Comparative Genome-Scale Modelling of Staphylococcus aureus Strains Identifies Strain-Specific Metabolic Capabilities Linked to Pathogenicity. Proceedings of the National Academy of Sciences of the United States of America, 113, E3801-E3809.
https://doi.org/10.1073/pnas.1523199113
[28] Tett, A., Pasolli, E., Farina, S., Truong, D.T., Asnicar, F., Zolfo, M., et al. (2017) Unexplored Diversity and Strain-Level Structure of the Skin Microbiome Associated with Psoriasis. NPJ Biofilms and Microbiomes, 3, Article No. 14.
https://doi.org/10.1038/s41522-017-0022-5
[29] Chu, H. and Mazmanian, S.K. (2013) Innate Immune Recognition of the Microbiota Promotes Host-Microbial Symbiosis. Nature Immunology, 14, 668-675.
https://doi.org/10.1038/ni.2635
[30] Belkaid, Y. and Hand, T.W. (2014) Role of the Microbiota in Immunity and Inflammation. Cell, 157, 121-141.
https://doi.org/10.1016/j.cell.2014.03.011
[31] Chen, J.Q., Szodoray, P. and Zeher, M. (2016) Toll-Like Receptor Pathways in Autoimmune Diseases. Clinical Reviews in Allergy & Immunology, 50, 1-17.
https://doi.org/10.1007/s12016-015-8473-z
[32] Garcia-Rodriguez, S., Arias-Santiago, S., Perandrés-López, R., Castellote, L., Zumaquero, E., Navarro, P., et al. (2013) Increased Gene Expression of Toll-Like Receptor 4 on Peripheral Blood Mononuclear Cells in Patients with Psoriasis. Journal of the European Academy of Dermatology and Venereology, 27, 242-250.
https://doi.org/10.1111/j.1468-3083.2011.04372.x
[33] Ma, J.Y., Shao, S. and Wang, G. (2020) Antimicrobial Peptides: Bridging Innate and Adaptive Immunity in the Pathogenesis of Psoriasis. Chinese Medical Journal, 133, 2966-2975.
https://doi.org/10.1097/CM9.0000000000001240
[34] Büchau, A.S. and Gallo, R.L. (2007) Innate Immunity and Antimicrobial Defense Systems in Psoriasis. Clinics in Dermatology, 25, 616-624.
https://doi.org/10.1016/j.clindermatol.2007.08.016
[35] Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y.H., Homey, B., et al. (2007) Plasmacytoid Dendritic Cells Sense Self-DNA Coupled with Antimicrobial Peptide. Nature, 449, 564-569.
https://doi.org/10.1038/nature06116
[36] Ganguly, D., Chamilos, G., Lande, R., Gregorio, J., Meller, S., Facchinetti, V., et al. (2009) Self-RNA-Antimicrobial Peptide Complexes Activate Human Dendritic Cells through TLR7 and TLR8. Journal of Experimental Medicine, 206, 1983-1994.
https://doi.org/10.1084/jem.20090480
[37] Morizane, S., Yamasaki, K., Mühleisen, B., Kotol, P.F., Murakami, M., Aoyama, Y., et al. (2012) Cathelicidin Antimicrobial Peptide LL-37 in Psoriasis Enables Keratinocyte Reactivity against TLR9 Ligands. Journal of Investigative Dermatology, 132, 135-143.
https://doi.org/10.1038/jid.2011.259
[38] Zhang, L.J., Sen, G.L., Ward, N.L., Johnston, A., Chun, K., Chen, Y., et al. (2016) Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-β Production by Epidermal Keratinocytes during Skin Injury. Immunity, 45, 119-130.
https://doi.org/10.1016/j.immuni.2016.06.021
[39] Gregorio, J., Meller, S., Conrad, C., Di Nardo, A., Homey, B., Lauerma, A., et al. (2010) Plasmacytoid Dendritic Cells Sense Skin Injury and Promote Wound Healing through Type I Interferons. Journal of Experimental Medicine, 207, 2921-2930.
https://doi.org/10.1084/jem.20101102
[40] Lowes, M.A., Suárez-Fariñas, M. and Krueger, J.G. (2014) Immunology of Psoriasis. Annual Review of Immunology, 32, 227-255.
https://doi.org/10.1146/annurev-immunol-032713-120225
[41] Chiricozzi, A., Romanelli, P., Volpe, E., Borsellino, G. and Romanelli, M. (2018) Scanning the Immunopathogenesis of Psoriasis. International Journal of Molecular Sciences, 19, Article No. 179.
https://doi.org/10.3390/ijms19010179
[42] Chen, G., Chen, Z.M., Fan, X.Y., Jin, Y.L., Li, X., Wu, S.R., et al. (2021) Gut-Brain-Skin Axis in Psoriasis: A Review. Dermatology and Therapy, 11, 25-38.
https://doi.org/10.1007/s13555-020-00466-9
[43] Tan, L., Zhao, S., Zhu, W., Wu, L., Li, J., Shen, M., et al. (2018) The Akkermansia muciniphila Is a Gut Microbiota Signature in Psoriasis. Experimental Dermatology, 27, 144-149.
https://doi.org/10.1111/exd.13463
[44] O’Neill, C.A., Monteleone, G., McLaughlin, J.T. and Paus, R. (2016) The Gut-Skin Axis in Health and Disease: A Paradigm with Therapeutic Implications. BioEssays, 38, 1167-1176.
https://doi.org/10.1002/bies.201600008
[45] Shinno-Hashimoto, H., Hashimoto, Y., Wei, Y., Chang, L., Fujita, Y., Ishima, T., et al. (2021) Abnormal Composition of Microbiota in the Gut and Skin of Imiquimod-Treated Mice. Scientific Reports, 11, Article No. 11265.
https://doi.org/10.1038/s41598-021-90480-4