蛋白质降解技术
Protein Degradation Technology
DOI: 10.12677/HJMCe.2022.101003, PDF, 下载: 518  浏览: 840 
作者: 高杰克, 李晨帆, 方成涛, 张 敏*:浙江师范大学,化学与生命科学学院,浙江 金华
关键词: 蛋白质降解Protein Degradation
摘要: 由于小分子药物通过占据驱动抑制蛋白水平的局限性,越来越多的蛋白质降解技术得到了发展,这些降解技术通过降解靶标蛋白的方式调控蛋白质水平,它们的出现,为肿瘤等疾病治疗提供了潜在的策略。
Abstract: Due to the limitations of small molecule drugs to control protein levels by occupancy drive, an in-creasing number of protein degradation technologies have been developed that modulate protein levels by degrading target proteins, and their emergence offers potential strategies for the treat-ment of diseases such as oncology.
文章引用:高杰克, 李晨帆, 方成涛, 张敏. 蛋白质降解技术[J]. 药物化学, 2022, 10(1): 21-26. https://doi.org/10.12677/HJMCe.2022.101003

参考文献

[1] Lai, A.C. and Crews, C.M. (2017) Induced Protein Degradation: An Emerging Drug Discovery Paradigm. Nature Re-views Drug Discovery, 16, 101-114.
https://doi.org/10.1038/nrd.2016.211
[2] Gong, L., Cui, D., Xiong, X. and Zhao, Y. (2020) Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. Advances in Experimental Medicine and Biology, 1217, 317-347.
https://doi.org/10.1007/978-981-15-1025-0_19
[3] Dang, C.V., Reddy, E.P., Shokat, K.M. and Soucek, L. (2017) Drugging the “Undruggable” Cancer Targets. Nature Reviews. Cancer, 17, 502-508.
https://doi.org/10.1038/nrc.2017.36
[4] Cromm, P.M. and Crews, C.M. (2017) Targeted Protein Degradation: from Chemical Biology to Drug Discovery. Cell Chemical Biology, 24, 1181-1190.
https://doi.org/10.1016/j.chembiol.2017.05.024
[5] Caianiello, D.F., Zhang, M., Ray, J.D., Howell, R.A., Swart-zel, J.C., Branham, E.M.J., Chirkin, E., Sabbasani, V.R., Gong, A.Z., McDonald, D.M., Muthusamy, V. and Spiegel, D.A. (2021) Bifunctional Small Molecules That Mediate the Degradation of Extracellular Proteins. Nature Chemical Bi-ology, 17, 947-953.
https://doi.org/10.1038/s41589-021-00851-1
[6] Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M. and Deshaies, R.J. (2001) Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences of the United States of America, 98, 8554-8559.
https://doi.org/10.1073/pnas.141230798
[7] Scudellari, M. (2019) Protein-Slaying Drugs Could Be the Next Blockbuster Therapies. Nature, 567, 298-300.
https://doi.org/10.1038/d41586-019-00879-3
[8] Hershko, A. and Ciechanover, A. (1998) The Ubiquitin System. Annual Review of Biochemistry, 67, 425-479.
https://doi.org/10.1146/annurev.biochem.67.1.425
[9] Maniaci, C. and Ciulli, A. (2019) Bifunctional Chemical Probes Inducing Protein-Protein Interactions. Current Opinion in Chemical Biology, 52, 145-156.
https://doi.org/10.1016/j.cbpa.2019.07.003
[10] Bond, M.J. and Crews, C.M. (2021) Proteolysis Targeting Chime-ras (PROTACs) Come of Age: Entering the Third Decade of Targeted Protein Degradation. RSC Chemical Biology, 2, 725-742.
https://doi.org/10.1039/D1CB00011J
[11] Flanagan, J.J. and Neklesa, T.K. (2019) Targeting Nuclear Receptors with PROTAC Degraders. Molecular and Cellular Endocrinology, 493, Article ID: 110452.
https://doi.org/10.1016/j.mce.2019.110452
[12] Chan, K.H., Zengerle, M., Testa, A. and Ciulli, A. (2018) Impact of Target Warhead and Linkage Vector on Inducing Protein Degradation: Comparison of Bromodomain and Ex-tra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET Inhibi-tor Scaffolds. Journal of Medicinal Chemistry, 61, 504-513.
https://doi.org/10.1021/acs.jmedchem.6b01912
[13] Han, X., Wang, C., Qin, C., Xiang, W., Fernandez-Salas, E., Yang, C.Y., Wang, M., Zhao, L., Xu, T., Chinnaswamy, K., Delproposto, J., Stuckey, J. and Wang, S. (2019) Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 62, 941-964.
https://doi.org/10.1021/acs.jmedchem.8b01631
[14] Burslem, G.M., Smith, B.E., Lai, A.C., Jaime-Figueroa, S., McQuaid, D.C., Bondeson, D.P., Toure, M., Dong, H., Qian, Y., Wang, J., Crew, A.P., Hines, J. and Crews, C.M. (2018) The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology, 25, 67-77.e3.
https://doi.org/10.1016/j.chembiol.2017.09.009
[15] Konstantinidou, M., Li, J., Zhang, B., Wang, Z., Shaabani, S., Ter Brake, F., Essa, K. and Domling, A. (2019) PROTACs—A Game-Changing Technology. Expert Opinion on Drug Discovery, 14, 1255-1268.
https://doi.org/10.1080/17460441.2019.1659242
[16] Banik, S.M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N.M. and Bertozzi, C.R. (2020) Lysosome-Targeting Chimaeras for Degradation of Extracellular Proteins. Nature, 584, 291-297.
https://doi.org/10.1038/s41586-020-2545-9
[17] Ahn, G., Banik, S.M., Miller, C.L., Riley, N.M., Cochran, J.R. and Bertozzi, C.R. (2021) LYTACs That Engage the Asialoglycoprotein Receptor for Targeted Protein Degradation. Nature Chemical Biology, 17, 937-946.
https://doi.org/10.1038/s41589-021-00770-1
[18] Zhou, Y., Teng, P., Montgomery, N.T., Li, X. and Tang, W. (2021) Development of Triantennary N-Acetylgalactosamine Conjugates as Degraders for Extracellular Proteins. ACS Central Science, 7, 499-506.
https://doi.org/10.1021/acscentsci.1c00146
[19] García De La Torre, J., Huertas, M.L. and Carrasco, B. (2000) Calculation of Hydrodynamic Properties of Globular Proteins from Their Atomic-Level Structure. Biophysical Journal, 78, 719-730.
https://doi.org/10.1016/S0006-3495(00)76630-6
[20] Takahashi, D., Moriyama, J., Nakamura, T., Miki, E., Takahashi, E., Sato, A., Akaike, T., Itto-Nakama, K., Arimoto, H. (2019) AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Molecular Cell, 76, 797-810.e10.
https://doi.org/10.1016/j.molcel.2019.09.009
[21] Xie, T., Lim, S.M., Westover, K.D., Dodge, M.E., Ercan, D., Ficarro, S.B., Udayakumar, D., Gurbani, D., Tae, H.S., Riddle, S.M., Sim, T., Marto, J.A., Jänne, P.A., Crews, C.M. and Gray, N.S. (2014) Pharmacological Targeting of the Pseudokinase Her3. Nature Chemical Biology, 10, 1006-1012.
https://doi.org/10.1038/nchembio.1658
[22] Gao, N., Chu, T.-T., Li, Q.-Q., Lim, Y.-J., Qiu, T., Ma, M.-R., Hu, Z.-W., Yang, X.-F., Chen, Y.-X., Zhao, Y.-F. and Li, Y.-M. (2017) Hydrophobic Tagging-Mediated Degradation of Alzheimer’s Disease Related Tau. RSC Advances, 7, 40362-40366.
https://doi.org/10.1039/C7RA05347A
[23] Gao, N., Huang, Y.-P., Chu, T.-T., Li, Q.-Q., Zhou, B., Chen, Y.-X., Zhao, Y.-F. and Li, Y.-M. (2019) TDP-43 Specific Re-duction Induced by Di-Hydrophobic Tags Conjugated Peptides. Bioorganic Chemistry, 84, 254-259.
https://doi.org/10.1016/j.bioorg.2018.11.042
[24] Luh, L.M., Scheib, U., Juenemann, K., Wortmann, L., Brands, M. and Cromm, P.M. (2020) Prey for the Proteasome: Targeted Protein Degradation—A Medicinal Chemist’s Perspective. Angewandte Chemie International Edition, 59, 15448-15466.
https://doi.org/10.1002/anie.202004310