血管紧张素转换酶2与动脉粥样硬化相关性的研究进展
Research Progress on Relationship between Angiotensin Converting Enzyme 2 and Atherosclerosis
DOI: 10.12677/ACM.2022.122122, PDF, HTML, XML, 下载: 280  浏览: 394 
作者: 金浩楠, 陈 鹏:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明
关键词: 血管紧张素转换酶2动脉粥样硬化炎症反应Angiotensin Converting Enzyme 2 Atherosclerosis Inflammatory Response
摘要: 血管紧张素转换酶2 (ACE2)是肾素–血管紧张素系统(RAS)的负调节因子,通过抑制Ang II并催化产生Ang-(1-7),起着保护血管、抑制炎症反应的作用。近年研究表明,在AS发生发展过程中,ACE2可以增加Ang-(1-7)的含量并增加体内超氧化物歧化酶的活性,从而保护内皮细胞免受炎症反应的影响,起到早期预防动脉粥样硬化的作用。现就ACE2对AS的治疗作用的潜在机制作一简要综述。以期为临床应用ACE2治疗AS提供参考。
Abstract: Angiotensin converting enzyme 2 (ACE2) is a negative regulator of renin-angiotensin system (RAS). By inhibiting Ang II and catalyzing it to produce Ang-(1-7), ACE2 has effect in protecting blood vessel, inhibiting inflammatory reaction. Recent studies have shown that during the occurrence and development of AS, ACE2 can increase the content of Ang-(1-7) and increase the activity of superoxide dismutase in vivo, thus protecting endothelial cells from inflammatory response and playing an early role in preventing atherosclerosis. In order to provide reference for the clinical application of ACE2, this review briefly shows the potential mechanisms of ACE2 in the treatment of AS.
文章引用:金浩楠, 陈鹏. 血管紧张素转换酶2与动脉粥样硬化相关性的研究进展[J]. 临床医学进展, 2022, 12(2): 846-851. https://doi.org/10.12677/ACM.2022.122122

1. 动脉粥样硬化(Atherosclerosis)

动脉粥样硬化(atherosclerosis, AS)是一种常见的心血管疾病,常常伴随着其他疾病(高血压、冠心病等)的发生发展而不断变化,并严重影响人们的健康与生命安全,是老年人最常见的死亡原因之一。动脉管壁增厚、管腔缩小,内膜上有脂质沉积,单核巨噬细胞浸润,出现泡沫细胞,血管平滑肌的增生与迁移等都是AS最明显的特征变现。动脉粥样硬化一般被认为是一种慢性的炎症性的疾病 [1],在AS的各个阶段中,炎症都扮演着极其重要的角色,是生理和病理学改变的共同基础 [2]。

2. 血管紧张素转换酶2 (Angiotensin Converting Enzyme 2)

血管紧张素转换酶2 (ACE2)是血管紧张素转换酶(ACE)的同系物 [3],其已经被证明是RAS系统的负调节因子 [4],通过ACE2-Ang-(1-7)-Mas轴对心血管系统进行调控。ACE2可将Ang I和Ang II转化为对血管有保护作用的血管紧张素-(1-9) (Ang-(1-9))和血管紧张素-(1-7) (Ang-(1-7)),因此可通过增加ACE2的浓度,进而降低Ang II的浓度并提高Ang-(1-7)的浓度来治疗动脉粥样硬化 [5] [6],并提高斑块的稳定性,从而降低斑块脱落带来的一系列的心血管疾病的风险。

3. ACE2与AS

3.1. ACE2与炎症反应

炎症反应在动脉粥样硬化形成和发展的过程中有着极其重要的作用,各种促炎的细胞因子广泛活跃在血管病变的过程中。炎症反应参与AS的过程大概可分为以下的8个阶段:1) 内皮细胞损伤引起炎症产生;2) 单核细胞伴随其他的白细胞入炎症产生部位;3) 单核细胞趋化蛋白等参与后,进一步促进炎症蔓延至内膜;4) 单核细胞转化为巨噬细胞,吞噬大量脂蛋白后,形成泡沫细胞(AS形成的重要标志);5) 泡沫细胞能够分泌大量的炎症因子以及促进氧化的物质,造成炎症的进一步蔓延;6) 巨噬细胞死亡后在炎症部位形成脂质斑块;7) 炎症反应被逐渐放大,斑块形成纤维帽并逐渐增强;8) 纤维帽的破裂,血栓形成并造成心肌梗死、卒中等 [7]。

C反应蛋白(CRP)、白细胞介素6 (IL-6)、粘附分子、基质金属蛋白酶(MMPs)等是AS炎症发展的重要标志 [8]。其中CRP在健康的血管壁中几乎不存在,但是在AS的早期阶段就发现其表达明显增加,并随着病情的不断发展而不断积累,因而CRP通常可以作为对于AS患者诊断、治疗和检测提供我们需要的信息,并能够依据CRP的表达量来预测病情的严重程度以及心血管死亡风险 [9] [10]。IL-6在不稳定的斑块中表达水平明显升高,因而IL-6在未来可能可以作为预测AS斑块稳定性的潜在的检测指标 [11]。与AS有关的粘附分子有选择素家族、免疫球蛋白超家族(IgSF)和整合素家族。其中P选择素的表达水平与AS的病变程度与斑块稳定性有明显的相关性 [12]。细胞间粘附分子-1 (ICAM-1)在AS病变早期的早期有明显表达,而血管细胞粘附分子-1 (VCAM-1)则在AS病变的晚期表达明显增加 [13]。整合素则参与了整个AS发展的全过程,因而可以作为一个潜在的治疗靶点。MMPs则和斑块的易损性密切相关,其中MMP-9是预测AS斑块易损性最重要的生物学指标之一 [14]。

参与AS炎症的已知通路有TLR-4 (Toll-Like Receptor 4)、NF-κB、JAK-STAT信号通路等,这些通路在炎症激活、脂质积累、泡沫细胞形成、斑块易损等方面发挥了重要作用 [8]。

在前期的研究中已经证实ACE2对于炎症反应有着强大的抑制作用。Sriramula等人的研究表明ACE2的过表达能够抑制Ang II所诱导的TNF-α,IL-1β and IL-6等的表达 [15];Jin等人的研究表明在ACE2缺乏的小鼠主动脉中,单核细胞趋化蛋白-1 (MCP-1)、IL-6的表达增加 [16];Sahara等人的通过对ApoE基因敲除小鼠和ApoE/ACE2双基因敲除小鼠的研究进一步表明ACE2的缺乏会导致VCAM-1、MMP-9等的表达增加,同时通过添加人重组的ACE2蛋白(rhACE2)后,各种炎症因子均和正常组的小鼠表达相似,表明ACE2通过抑制炎症反应的方式,来参与到治疗动脉粥样硬化的过程中 [17]。

3.2. ACE2与血管增殖的关系

在血管异常增殖与迁移的过程中,我们发现Ang II/AT1被激活,并通过RAS系统持续影响血管平滑肌细胞(VSMC)的生长、分化和增殖 [18]。通过研究我们发现,ACE2能够抑制Ang II介导的血管的增殖与生长,并通过调节Janus激酶2 (JAK2)-STAT3-SOCS3和profilin-1 Akt/ERK信号通路而发挥作用 [4] [16] [19]。与此同时,在血管平滑肌细胞中,机械拉伸会增加ACE2的启动子活性,但不影响其mRNA表达的稳定性,这表明机械拉伸主要在转录水平上影响ACE2的表达。这个过程涉及激活蛋白-1 (AP-1),它直接与ACE2相互作用。PKCβII和JNK1/2也与拉伸介导的ACE2表达有关。研究发现生理拉伸会上调血管平滑肌细胞中ACE2的表达,可以此抑制血管平滑肌细胞的增殖 [20]。

3.3. ACE2与斑块稳定

纤维帽、脂质核心和大量的炎症细胞共同组成了AS斑块,而纤维帽的厚度和胶原含量对于斑块的稳定性起着重要作用 [21]。一方面,ACE2能够抑制Ang II,从而抑制基质金属蛋白酶(MMP)削弱纤维帽,从而增加斑块的稳定性。另一方面,ACE2能够催化生成Ang-(1-7),经过其长期治疗的高胆固醇血症小鼠中,我们发现其AS斑块内胶原含量增加,中性粒细胞和巨噬细胞浸润减少,进而增强了AS斑块的稳定性 [22]。

3.4. 以ACE2为靶点的AS防治策略

综上所述,ACE2可以通过多种方式影响AS的发生发展(图1)。在对ApoE敲基因小鼠的相关研究中发现,ACE2的过表达使得小鼠颈动脉窦内的AS病变尺寸减小 [23];小鼠全身过表达ACE2时,抑制了AS的发生发展,并在高脂喂养兔子中也发现ACE2有类似的作用 [24],同时也发现,在ACE2功能缺失或者突变的情况下,小鼠的AS情况更加严重,同时炎症因子与斑块稳定性降低。并发现了小鼠JNK1/2和ERK1/2的磷酸化作用增强,并说明了ACE2通过抑制Ang II部分介导了炎症反应。在最近的研究中也发现,H2S对于AS的抑制作用和可能是通过ACE2调节Ang II实现的 [25]。Yang的研究表明增加内源性的ACE2/Ang-(1-7)是治疗AS和稳定斑块的潜在有效途径 [26]。

Figure 1. ACE2 and AS diagram

图1. ACE2与AS关系图

因此,通过增加ACE2的表达,不仅可以降低Ang II的含量,还能将其转化为Ang-(1-7),进一步对AS起到抑制作用。ACE2表达的增加还能提高体内超氧化歧化酶的活性,抑制炎症反应,进而保护血管内皮细胞免受炎症的损伤,阻断动脉粥样硬化的发生,起到早期预防的作用 [27]。而Ang-(1-7)表达的增加,抑制了平滑肌细胞的增殖与迁移,减少MMP-9的表达并减轻中性粒细胞与巨噬细胞的浸润,起到稳定斑块的作用 [22]。综合以上研究,我们发现ACE2-Ang-(1-7)-Mas轴在动脉粥样硬化的发生发展中起着重要作用。

4. 展望

在现阶段,动脉粥样硬化依旧是一种不可治愈的疾病,虽然他汀类药物能够有效地抑制AS的发展,但是ACE2-Ang-(1-7)-Mas受体轴研究可能能够让治疗AS出现一副崭新的局面。由于COVID-19是通过ACE2进入人体,因而对于ACE2的研究将会出现巨大的突破,这对于研究ACE2对于AS等心血管疾病的治疗作用也有着巨大的推动作用,并且可能在治疗AS上取得突破性进展,因而对于ACE2的研究有着巨大的临床意义和现实价值。

参考文献

[1] Ross, R. (1999) Atherosclerosis—An Inflammatory Disease. The New England Journal of Medicine, 340, 115-126.
https://doi.org/10.1056/NEJM199901143400207
[2] Libby, P., Ridker, P.M. and Hansson, G.K. (2011) Progress and Challenges in Translating the Biology of Atherosclerosis. Nature, 473, 317-325.
https://doi.org/10.1038/nature10146
[3] Donoghue, M., Hsieh, F., Baronas, E., et al. (2000) A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Circulation Research, 87, E1-E9.
https://doi.org/10.1161/01.RES.87.5.e1
[4] Zhong, J.C., Guo, D., Chen, C.B., et al. (2011) Prevention of Angiotensin II-Mediated Renal Oxidative Stress, Inflammation and Fibrosis by Angiotensin-Converting Enzyme 2. Hypertension, 57, 314-322.
https://doi.org/10.1161/HYPERTENSIONAHA.110.164244
[5] Tesanovic, S., Vinh, A., Gaspari, T.A., et al. (2010) Vasoprotective and Atheroprotective Effects of Angiotensin (1-7) in Apolipoprote in E-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1606-1613.
https://doi.org/10.1161/ATVBAHA.110.204453
[6] Thomas, M.C., Pickering, R.J., Tsorotes, D., et al. (2010) Genetic Ace2 Deficiency Accentuates Vascular Inflammation and Atherosclerosis in the ApoE Knockout Mouse. Circulation Research, 107, 888-897.
https://doi.org/10.1161/CIRCRESAHA.110.219279
[7] Gaddam, R.R., Chambers, S. and Bhatia, M. (2014) ACE and ACE2 in Inflammation: A Tale of Two Enzymes. Inflammation & Allergy Drug Targets, 13, 224-234.
https://doi.org/10.2174/1871528113666140713164506
[8] Zhu, Y.H., Xian, X.M., Wang, Z.Z., et al. (2018) Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules, 8, Article No. 80.
https://doi.org/10.3390/biom8030080
[9] Badimon, L., Peña, E., Arderiu, G., et al. (2018) C-Reactive Protein in Atherothrombosis and Angiogenesis. Frontiers in Immunology, 9, Article No. 430.
https://doi.org/10.3389/fimmu.2018.00430
[10] Li, Y.W., Zhong, X.M., Cheng, G.C., et al. (2017) Hs-CRP and All-Cause, Cardiovascular, and Cancermortality Risk: A Meta-Analysis. Atherosclerosis, 259, 75-82.
https://doi.org/10.1016/j.atherosclerosis.2017.02.003
[11] Held, C., White, H.D., Stewart, R.A.H., et al. (2017) Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. Journal of the American Heart Association, 6, e005077.
https://doi.org/10.1161/JAHA.116.005077
[12] Green, D., Foiles, N., Chan, C.L., et al. (2010) An Association between Clotting Factor VII and Carotid Intima-Media Thickness: The CARDIA Study. Stroke, 41, 1417-1422.
https://doi.org/10.1161/STROKEAHA.110.580100
[13] Fotis, L., Agrogiannis, G., Vlachos Ioannis, S., et al. (2012) Intercellular Adhesion Molecule (ICAM)-1 and Vascular Cell Adhesion Molecule (VCAM)-1 at the Early Stages of Atherosclerosis in a Rat Model. In Vivo, 26, 243-250.
[14] Konstantino, Y., Nguyen, T.T., Wolk, R., et al. (2009) Potential Implications of Matrix Metalloproteinase-9 in Assessment and Treatment of Coronary Artery Disease. Biomarkers, 14, 118-129.
https://doi.org/10.1080/13547500902765140
[15] Sriramula, S., Cardinale, J.P., Lazartigues, E., et al. (2011) ACE2 Overexpression in the Paraventricular Nucleus Attenuates Angiotensin II-Induced Hypertension. Cardiovascular Research, 92, 401-408.
https://doi.org/10.1093/cvr/cvr242
[16] Jin, H.Y., Song, B., Oudit, G.Y., et al. (2012) ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production. PLoS ONE, 7, e38502.
https://doi.org/10.1371/journal.pone.0038502
[17] Sahara, M., Ikutomi, M., Morita, T., et al. (2014) Deletion of Angiotensin-Converting Enzyme 2 Promotes the Development of Atherosclerosis and Arterial Neointima Formation. Cardiovascular Research, 101, 236-246.
https://doi.org/10.1093/cvr/cvt245
[18] Mehta, P.K. and Griendling, K.K. (2006) Angiotensin II Cell Signaling: Physiological and Pathological Effects in the Cardiovascular System. American Journal of Physiology. Cell Physiology, 292, C82-C97.
https://doi.org/10.1152/ajpcell.00287.2006
[19] Song, B., Jin, H.Y., Yu, X., et al. (2013) Angiotensin-Converting Enzyme 2 Attenuates Oxidative Stress and VSMC Proliferation via the JAK2/STAT3/SOCS3 and Profilin-1/MAPK Signaling Pathways. Regulatory Peptides, 185, 44-51.
https://doi.org/10.1016/j.regpep.2013.06.007
[20] Song, J.T., Qu, H.Y., Hu, B., et al. (2020) Physiological Cyclic Stretch Up-Regulates Angiotensin-Converting Enzyme 2 Expression to Reduce Proliferation and Migration of Vascular Smooth Muscle Cells. Bioscience Reports, 40, BSR20192012.
https://doi.org/10.1042/BSR20192012
[21] Schroeder, A.P. and Falk, E. (1995) Vulnerable and Dangerous Coronary Plaques. Atherosclerosis, 118, S141-S149.
https://doi.org/10.1016/0021-9150(95)90081-0
[22] Fraga-Silva, R.A., Savergnini, S.Q., Montecucco, F., et al. (2014) Treatment with Angiotensin-(1-7) Reduces Inflammation in Carotid Atherosclerotic Plaques. Thrombosis and Haemostasis, 111, 736-747.
https://doi.org/10.1160/TH13-06-0448
[23] Lovren, F., Pan, Y., Quan, A., et al. (2008) Angiotensin Converting Enzyme-2 Confers Endothelial Protection and Attenuates Atherosclerosis. American Journal of Physiology: Heart and Circulatory Physiology, 295, H1377-H1384.
https://doi.org/10.1152/ajpheart.00331.2008
[24] Zhang, C., Zhao, Y.X., Zhang, Y.H., et al. (2010) Angiotensin-Converting Enzyme 2 Attenuates Atherosclerotic Lesions by Targeting Vascular Cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 15886-15891.
https://doi.org/10.1073/pnas.1001253107
[25] Lin, Y.J., Zeng, H.S., Gao, L., et al. (2017) Hydrogen Sulfide Attenuates Atherosclerosis in a Partially Ligated Carotid Artery Mouse Model via Regulating Angiotensin Converting Enzyme 2 Expression. Frontiers in Physiology, 8, Article No. 782.
https://doi.org/10.3389/fphys.2017.00782
[26] Yang, J.M., Yang, X.Y., Meng, X., et al. (2015) Endogenous Activated Angiotensin-(1-7) Plays a Protective Effect against Atherosclerotic Plaques Unstability in High Fat Diet Fed ApoE Knockout Mice. International Journal of Cardiology, 184, 645-652.
https://doi.org/10.1016/j.ijcard.2015.03.059
[27] Zhang, Y.H., Zhang, Y.H., Dong, X.F., et al. (2015) ACE2 and Ang-(1-7) Protect Endothelial Cell Function and Prevent Early Atherosclerosis by Inhibiting Inflammatory Response. Inflammation Research, 64, 253-260.
https://doi.org/10.1007/s00011-015-0805-1