特发性肺纤维化的分子生物标记物研究进展
Advances in Molecular Biomarkers of Idiopathic Pulmonary Fibrosis
DOI: 10.12677/ACM.2022.121004, PDF, HTML, XML, 下载: 381  浏览: 551 
作者: 朱 祥:上海交通大学医学院苏州九龙医院呼吸与危重症医学科,江苏 苏州
关键词: 肺纤维化特发性生物标记物进展Pulmonary Fibrosis Idiopathic Biomarkers Progress
摘要: 特发性肺纤维化(Idiopathic pulmonary fibrosis, IPF)是一种病因不明的间质性肺炎,其中位生存期2~4年。早期IPF一般是无症状的,常常导致诊断及治疗延迟。到目前为止,还没有很好的临床生物标记物可以准确地对IPF进行诊断、评估病情及预后。但是随着IPF研究的不断深入及大量样本的佐证,它们有可能成为有助于诊断、监测疾病进展和治疗效果的有用工具。本文对IPF相关的新的临床生物标志物进行综述,为提高临床诊治提供一定参考。
Abstract: Idiopathic pulmonary fibrosis (IPF) is an interstitial pneumonia of unknown etiology, with a median survival of 2~4 years. Early IPF is usually asymptomatic and often results in delayed diagnosis and treatment. So far, there is no good clinical biomarker that can accurately diagnose, evaluate the condition and prognosis of IPF. However, with further research on IPF and the support of large numbers of samples, they may become useful tools for diagnosis, monitoring of disease progression and treatment effectiveness. In this paper, new clinical biomarkers related to IPF were reviewed to provide some reference for improving clinical diagnosis and treatment.
文章引用:朱祥. 特发性肺纤维化的分子生物标记物研究进展[J]. 临床医学进展, 2022, 12(1): 19-24. https://doi.org/10.12677/ACM.2022.121004

1. 前言

特发性肺纤维化(Idiopathic pulmonary fibrosis, IPF)是一种病因不明的慢性、不可逆性发展的肺部疾病,以进行性加重的呼吸困难为主要表现,以不可逆的肺功能下降和寻常型间质性肺炎为主要特征 [1]。由于各个地区数据收集方法和分类术语的差异,目前该疾病的流行病学调查结果差异较大,其发病情况每年每10万人中有2例至60例不等 [2] [3]。IPF一般预后较差,诊断后的中位生存时间为2~4年 [4]。由于不同的临床表型,疾病的病程是可变的 [5]。IPF早期可能是无症状的,随着疾病进展逐渐出现刺激性咳嗽及进行性呼吸困难,就诊时肺部影像已呈现明显蜂窝肺表现,治疗难度大。目前指南推荐的2种抗纤维化药物为尼达尼布和吡非尼酮,可减缓疾病进展和改善预后 [6]。随着对疾病认识的不断加深,生物标志物在疾病的发展、诊断及治疗评估中发挥着越来越重要的作用 [7] [8]。但目前生物标志物仍然很难准确预测IPF的病程和对单个患者的治疗反应。这篇综述旨在对IPF相关的新近热点临床生物标志物进行综述,希望对临床有所帮助。

2. SFTPA2

肺表面活性物质相关蛋白A2 (SFTPA2/SP-A2)是最先发现且在肺泡II型上皮细胞中表达含量最为丰富的蛋白之一。SFTPA2由n端至c端依次为4个结构域:n端区、胶原样区、茎区和C型凝集素糖识别域 [9]。其中C型凝集素糖识别域突变可能导致异常蛋白前体的形成,此种异常蛋白在细胞内积聚,可引起内质网应激。如果内质网长期处于应激状态或者内质网应激严重的情况下,可以诱导未折叠蛋白(unfolded protein response, UPR)的激活。内质网应激和UPR的异常激活,导致肺泡上皮细胞(alveolar epithelial cell, AEC)损伤和修复能力丧失,造成AEC凋亡,进而导致肺纤维化的产生 [10]。最近Lv Liu等 [11] 采用全外显子组测序来研究国内一IPF家族的候选基因,采用Realtime-PCR和Western blotting对鉴定的突变体进行体外功能研究。通过检测发现IPF患者存在SFTPA2基因位点p.N207Y突变,其功能研究进一步证实该基因点突变可影响A549细胞SFTPA2的分泌,诱导内质网应激和细胞凋亡,与肺纤维化形成有明显相关。由于SFTPA2水平可以在支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)和血液中测量,它们可以在识别肺纤维化家族中的危险个体方面发挥作用。

3. MUC5B

黏蛋白5B (mucin-5 subtype B, MUC5B)是一种由终末气道黏液腺细胞所产生的黏蛋白。在2011年Seibold等 [12] 利用全基因组连锁扫描,发现IPF患者的MUC5B表达是无IPF患者的14.1倍,且与MUC5B表达增加相关等位基因为rs35705950。该研究显示野生型等位基因纯合子的表达是未受影响受试者的37.4倍。亦有研究报道MUC5B rs35705950突变是迄今发现的最强的危险因子,占IPF发病风险因素的30%~35% [13]。目前研究显示亚洲患者中的频率较低(突变组7% vs健康对照组2%),但其携带的风险似乎与欧洲人种风险相当 [14]。国内研究 [15] [16] 同样显示IPF患者该基因的突变频率高于健康人群,表明该变异与我国IPF发病明显相关。Rs35705950基因点突变后可引起MUC5B异常合成增加,当干细胞再生修复受伤的细支气管和肺泡上皮时,过多的MUC5B蛋白可能通过干扰肺泡上皮细胞与细胞外基质的交互作用,导致肺泡上皮化失败,阻碍远端肺组织的正常修复,导致慢性纤维增生 [17]。此外过多的MUC5B可能损害粘液纤毛功能,导致吸入物质(如空气污染物、香烟烟雾、微生物等)的过量滞留,并随着时间的推移,肺损伤的病灶可能引起瘢痕组织持续性纤维增生,导致肺纤维化逐渐进展 [18]。目前MUC5B多态性与IPF预后及评估药物治疗效果关系仍未明确,仍需进一步研究探索。

4. SAP130

剪接体相关蛋白130 (Spliceosome-associated protein 130, SAP130)亦可以称为SF3b-3,是剪接因子3b (splicing factor, SF3b)重要的组成部分之一,正常位于活细胞的细胞核中,当细胞死亡或受损时可以扩散并释放到细胞外环境中 [19]。SF3b是一种由包括SAP49、SAP130、SAP145等七种蛋白质组成分子量为450 kDa的蛋白质复合体 [20]。SF3b与U2核小核糖核蛋白复合物(U2 snRNP)结合,形成功能性的17SU2 snRNP聚合体,最终以ATP依赖的方式与内含子pre-mRNA分支点位点相互结合。因此SF3b在剪接体组装过程中,对于识别分支点和选择3’剪接位点至关重要 [21]。而SAP130是SF3b中唯一不能与前剪接体复合体中的mRNA前体交联的亚基,其在体内主要和STAGA (SPT3-TAFII31-GCN5L-ACETYLASE,转录共激活物–组蛋白乙酰转移酶复合物)特异性结合。STAGA在体内主要参与前mRNA的剪接,并和DNA损伤结合因子相互作用,实现染色质修饰、DNA转录和转录偶联 [22]。SAP130则充当STAGA的功能转换器和整个剪接机制的转录调节器。

此外SAP130还可以与Mincle (巨噬细胞诱导C型凝集素)受体特异性结合,在各种感染或非感染性炎症下触发促炎信号 [23]。尤其在非感染性炎症方面,Gong等 [24] 发现活动性Crohn’s disease (CD)患者血清及结肠组织中SAP130水平显著升高,且与疾病严重程度显著相关。而2020年Liu [25] 第一次揭示SAP130在IPF患者全身和局部肺室中的临床意义。IPF患者的血清SAP130水平明显高于对照组(824.2 ± 29.84 vs 413.8 ± 19.77 pg/mL, P < 0.0001);通过对肺组织免疫组化发现,与对照组相比,SAP130在正常肺泡组织中呈稀疏表达,而在IPF患者中SAP130弥漫性分布于肺泡上皮内壁间。在肺功能方面,IPF患者SAP130水平与DLCO、FEV1呈负相关,说明SAP130水平越高,病情越严重。肺部影像同样有类似发现,病情稳定患者血清SAP130水平与HRCT纤维化程度呈正相关。但是该研究样本量较少,还需要更多前瞻性多中心研究和大量病例来验证。

5. CD163

CD163是一种大小为130 kDa的I型跨膜蛋白,几乎只在单核/巨噬细胞上表达,是富含半胱氨酸的清道夫B族受体的成员 [26]。该蛋白通常被认为是可作为M2型巨噬细胞特异性标志物 [27]。CD163可以识别血红蛋白/珠蛋白复合物,并与其结合在单核或巨噬细胞膜表面,体内细胞通过内吞的方式将结合体运送给内体和溶酶体,完成一系列的血红蛋白代谢 [28];另外CD163+巨噬细胞也参与炎症的消除、伤口愈合和血管生成的过程中 [29]。CD163不仅存在于细胞膜上,当机体发生感染性炎症、非感染性炎症或者肿瘤时,还可以从受刺激的巨噬细胞表面释放到血清中 [30]。血清可溶性CD163水平已被报道与肝硬化和系统性硬化等疾病纤维化的严重程度相关 [31] [32]。最近,有报道称血清单核细胞计数可以预测IPF的病情严重程度及预后 [33]。而单核/巨噬细胞的细胞表型主要集中在CD163的表达上,因此越来越多的研究发现CD163+在鉴别IPF、评估病情严重程度及预后有重要临床意义 [34] [35]。但目前CD163与IPF疾病相关的具体机制尚不明确,可能是CD163+巨噬细胞对与IPF相关的组织损伤具有保护作用。Ye等 [36] 报道IPF患者肺泡巨噬细胞血红素加氧酶-1表达降低。而CD163是血红素结合珠蛋白复合物的清除受体,可降低血红素加氧酶的毒性。

6. KL6

血清涎液化糖链抗原(Krebs von den Lungen-6, KL6)是在正常肺组织中,由II型肺泡细胞、呼吸性细支气管上皮细胞和支气管腺浆液细胞所分泌。其可反映肺泡损伤、II型肺泡细胞再生和多种间质性肺疾病(Interstitial lung disease, ILD)的病情活动情况 [37]。研究 [38] 发现KL-6在包括IPF在内的多种ILD患者的血清中均有升高。因此血清KL-6水平不能有效鉴别IPF与其他ILD。但有研究 [39] 显示连续测量KL-6水平可以作为评估疾病进展和预后恶化的危险因素。此外对于IPF的急性加重期,血清KL-6值明显高于稳定期患者,较高KL-6水平是AE-IPF发病的预测因素 [40]。最近的一项系统综述和Meta分析表明,IPF中KL-6水平的增加是AE风险的一个预测指标,但似乎与死亡率无关 [41]。除了血清KL-6外,支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)中的KL-6水平检测应用越来越多,有研究报道BALF中的KL-6水平似乎是区分IPF与其他ILD的一个特异性标志物 [42]。而Bennet等 [43] 研究证实,BALF中KL-6水平不仅可鉴别IPF与其他ILD,还可有效评估病情的严重程度。另外KL-6在抗纤维化治疗监测中的应用的研究也有了不错的数据。在一项研究中,吡非尼酮治疗的反应与血清KL-6的变化相关 [44];Bergantini等 [45] 对使用尼达尼布治疗的IPF患者进行血清KL-6的动态监测,发现KL-6浓度与治疗后6个月及12个月患者的用力肺活量(forced vital capacity, FVC)和一氧化碳弥散量(carbon monoxide diffusing capacity, DLCO)有显著相关性。

7. 总结

目前随着对IPF研究的不断深入,越来越多的生物标志物将被发现,希望在不久的将来,这些生物标志物能尽快在大型临床试验中得到验证,以提高疾病诊断的准确性,评估治疗效果,让患者享受精准治疗及个体化治疗带来的益处。

参考文献

[1] Wells, A.U. (2020) Pamrevlumab in Idiopathic Pulmonary Fibrosis. The Lancet Respiratory Medicine, 8, 2-3.
https://doi.org/10.1016/S2213-2600(19)30339-X
[2] Duchemann, B., Annesi-Maesano, I., De Naurois, C.J., Sanyal, S., Brillet, P.Y., Brauner, M., et al. (2017) Prevalence and Incidence of Interstitial Lung Diseases in a Multi-Ethnic County of Greater Paris. European Respiratory Journal, 50, Article ID: 1602419.
https://doi.org/10.1183/13993003.02419-2016
[3] Esposito, D.B., Lanes, S., Donneyong, M., Holick, C.N., Lasky, J.A., Lederer, D., et al. (2015) Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation. American Journal of Respiratory and Critical Care Medicine, 192, 1200-1207.
https://doi.org/10.1164/rccm.201504-0818OC
[4] Raghu, G., Remy-Jardin, M., Myers, J.L., Richeldi, L., Ryerson, C.J., Lederer, D.J., et al. (2018) Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 198, e44-e68.
https://doi.org/10.1164/rccm.201807-1255ST
[5] Buendía-Roldán, I., Mejía, M., Navarro, C. and Selman, M. (2017) Idiopathic Pulmonary Fibrosis: Clinical Behavior and Aging Associated Comorbidities. Respiratory Medicine, 129, 46-52.
https://doi.org/10.1016/j.rmed.2017.06.001
[6] 叶俏, 代华平. 特发性肺纤维化诊断和治疗中国专家共识[J]. 中华结核和呼吸杂志, 2016, 39(6): 427-432.
[7] Hadjicharalambous, M.R. and Lindsay, M.A. (2020) Idiopathic Pulmonary Fibrosis: Pathogenesis and the Emerging Role of Long Non-Coding RNAs. International Journal of Molecular Sciences, 21, Article No. 524.
https://doi.org/10.3390/ijms21020524
[8] Inoue, Y., Kaner, R.J. and Guiotetal, J. (2020) Diagnosticand Prognostic Biomarkers for Chronic Fibrosing Interstitial Lung Diseases with a Progressive Phenotype. Chest, 158, 646-659.
https://doi.org/10.1016/j.chest.2020.03.037
[9] 姚灵, 李南方, 姚晓光, 等. 肺泡表面活性物质相关蛋白A的研究进展[J]. 医学研究杂志, 2019, 48(12): 24-27.
[10] Chambers, J.E. and Marciniak, S.J. (2014) Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 2. Protein Misfolding and ER Stress. American Journal of Physiology-Cell Physiology, 307, C657-C670.
https://doi.org/10.1152/ajpcell.00183.2014
[11] Liu, L., Qin, J.L., Guo, T., Chen, P., Ouyang, R., Peng, H., et al. (2020) Identification and Functional Characterization of a Novel Surfactant Protein A2 Mutation (p.N207Y) in a Chinese Family with Idiopathic Pulmonary Fibrosis. Molecular Genetics & Genomic Medicine, 8, Article No. e1393.
https://doi.org/10.1002/mgg3.1393
[12] Seibold, M.A., Wise, A.L., Speer, M.C., Steele, M.P., Brown, K.K., Loyd, J.E., et al. (2011) A Common MUC5B Promoter Polymorphism and Pulmonary Fibrosis. New England Journal of Medicine, 364, 1503-1512.
https://doi.org/10.1056/NEJMoa1013660
[13] Noth, I., Zhang, Y., Ma, S.F., et al. (2013) Genetic Variants Associated with Idiopathic Pulmonary Fibrosis Susceptibility and Mortality: A Genome-Wide Association Study. The Lancet Respiratory Medicine, 1, 309-317.
https://doi.org/10.1016/S2213-2600(13)70045-6
[14] Peljto, A.L., Selman, M., Kim, D.S., Murphy, E., Tucker, L., Pardo, A., et al. (2015) The MUC5B Promoter Polymorphism Is Associated with Idiopathic Pulmonary Fibrosis in a Mexican Cohort But Is Rare among Asian Ancestries. Chest, 147, 460-464.
https://doi.org/10.1378/chest.14-0867
[15] Wang, C., Zhuang, Y., Guo, W., Cao, L., Zhang, H., Xu, L., et al. (2014) Mucin 5B Promoter Polymorphism Is Associated with Susceptibility to Interstitial Lung Diseases in Chinese Males. PLoS ONE, 9, Article ID: e104919.
https://doi.org/10.1371/journal.pone.0104919
[16] 宋永娜, 王林纳, 翟建霞, 等. MUC5B启动子rs35705950、rs868903基因多态性与特发性肺纤维化的相关性研究[J]. 临床肺科杂志, 2021, 26(5): 682-686.
[17] Kolb, M., White, E.S. and Gauldie, J. (2016) Mucking around in the Genome: MUC5B in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 193, 355-357.
https://doi.org/10.1164/rccm.201512-2360ED
[18] Nakano, Y., Yang, I.V., Walts, A.D., Watson, A.M., Helling, B.A., Fletcher, A.A., et al. (2016) MUC5B Promoter Variant rs35705950 Affects MUC5B Expression in the Distal Airways in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 193, 464-466.
https://doi.org/10.1164/rccm.201509-1872LE
[19] Yamasaki, S., Ishikawa, E., Sakuma, M., Hara, H., Ogata, K. and Saito, T. (2008) Mincle Is an ITAM-Coupled Activating Receptor That Senses Damaged Cells. Nature Immunology, 9, 1179-1188.
https://doi.org/10.1038/ni.1651
[20] Das, B.K., Xia, L., Palandjian, L., Gozani, O., Chyung, Y. and Reed, R. (1999) Characterization of a Protein Complex Containing Spliceosomal Proteins SAPs 49, 130, 145, and 155. Molecular and Cellular Biology, 19, 6796-6802.
https://doi.org/10.1128/MCB.19.10.6796
[21] Caspary, F., Shevchenko, A., Wilm, M. and Séraphin, B. (1999) Partial Purification of the Yeast U2 snRNP Reveals a Novel Yeast Pre-mRNA Splicing Factor Required for Pre-Spliceosome Assembly. EMBO J, 18, 3463-3474.
https://doi.org/10.1093/emboj/18.12.3463
[22] Martinez, E., Palhan, V.B., Tjernberg, A., Lymar, E.S., Gamper, A.M., Kundu, T.K., et al. (2001) Human STAGA Complex Is a Chromatin-Acetylating Transcription Coactivator That Interacts with Pre-mRNA Splicing and DNA Damage-Binding Factors in Vivo. Molecular and Cellular Biology, 21, 6782-6795.
https://doi.org/10.1128/MCB.21.20.6782-6795.2001
[23] Chiffoleau, E. (2018) C-Type Lectin-Like Receptors as Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Frontiers in Immunology, 9, Article No. 227.
https://doi.org/10.3389/fimmu.2018.00227
[24] Gong, W., Guo, K., Zheng, T., Fang, M., Xie, H., Li, W., et al. (2020) Preliminary Exploration of the Potential of Spliceosome-Associated Protein 130 for Predicting Disease Severity in Crohn’s Disease. Annals of the New York Academy of Sciences, 1462, 128-138.
https://doi.org/10.1111/nyas.14240
[25] Liu, K., Liu, D., Feng, Y., Zhang, H., Zeng, D., Liu, Q., et al. (2020) Spliceosome-Associated Protein 130: A Novel Biomarker for Idiopathic Pulmonary Fibrosis. Annals of Translational Medicine, 8, Article No. 986.
https://doi.org/10.21037/atm-20-4404
[26] Martínez, V.G., Moestrup, S.K., Holmskov, U., Mollenhauer, J. and Lozano, F. (2011) The Conserved Scavenger Receptor Cysteine-Rich Super Family in Therapy and Diagnosis. Pharmacological Reviews, 63, 967-1000.
https://doi.org/10.1124/pr.111.004523
[27] Gordon, S. and Martinez, F.O. (2010) Alternative Activation of Macrophages: Mechanism and Functions. Immunity, 32, 593-604.
https://doi.org/10.1016/j.immuni.2010.05.007
[28] Fabriek, B.O., Dijkstra, C.D. and van den Berg, T.K. (2005) The Macrophage Scavenger Receptor CD163. Immunobiology, 210, 153-160.
https://doi.org/10.1016/j.imbio.2005.05.010
[29] Guo, L., Akahori, H., Harari, E., Smith, S.L., Polavarapu, R., Karmali, V., et al. (2018) CD163+ Macrophages Promote Angiogenesis and Vascular Permeability Accompanied by Inflammation in Atherosclerosis. Journal of Clinical Investigation, 128, 1106-1124.
https://doi.org/10.1172/JCI93025
[30] Weaver, L.K., Hintz-Goldstein, K.A., Pioli, P.A., Wardwell, K., Qureshi, N., Vogel, S.N., et al. (2006) Pivotal Advance: Activation of Cell Surface Toll-Like Receptors Causes Shedding of the Hemoglobin Scavenger Receptor CD163. Journal of Leukocyte Biology, 80, 26-35.
https://doi.org/10.1189/jlb.1205756
[31] Hassan, W.A., Baraka, E.A., Elnady, B.M., Gouda, T.M. amd Fouad, N. (2016) Serum Soluble CD163 and Its Association with Various Disease Parameters in Patients with Systemic Sclerosis. European Journal of Rheumatology, 3, 95-100.
https://doi.org/10.5152/eurjrheum.2016.15088
[32] Zhang, Y., Huang, C., Nie, Y., Liu, Q., Xiao, N., Liu, L., et al. (2021) Soluble CD163 Is a Predictor of Mortality in Patients with Decompensated Cirrhosis. Frontiers in Medicine, 8, Article ID: 698502.
https://doi.org/10.3389/fmed.2021.698502
[33] Scott, M.K.D., Quinn, K., Li, Q., Carroll, R., Warsinske, H., Vallania, F., et al. (2019) Increased Monocyte Count as a Cellular Biomarker for Poor Outcomes in Fibrotic Diseases: A Retrospective, Multicentre Cohort Study. Lancet Respiratory Medicine, 7, 497-508.
https://doi.org/10.1016/S2213-2600(18)30508-3
[34] Yamashita, M., Saito, R., Yasuhira, S., Fukuda, Y., Sasamo, H., Sugai, T., et al. (2018) Distinct Profiles of CD163-Positive Macrophages in Idiopathic Interstitial Pneumonias. Journal of Immunology Research, 2018, Article ID: 1436236.
https://doi.org/10.1155/2018/1436236
[35] Yamashita, M., Utsumi, Y., Nagashima, H., Nitanai, H. and Yamauchi, K. (2021) S100A9/CD163 Expression Profiles in Classical Monocytes as Biomarkers to Discriminate Idiopathic Pulmonary Fibrosis from Idiopathic Nonspecific Interstitial Pneumonia. Scientific Reports, 11, Article No. 121
https://doi.org/10.1038/s41598-021-91407-9 35.
[36] Ye, Q., Dalavanga, Y., Poulakis, N., Sixt, S.U., Guzman, J. and Costabel, U. (2008) Decreased Expression of Haem Oxygenase-1 by Alveolar Macrophages in Idiopathic Pulmonary Fibrosis. European Respiratory Journal, 31, 1030-1036.
https://doi.org/10.1183/09031936.00125407
[37] Ishikawa, N., Hattori, N., Yokoyama, A. and Kohno, N. (2012) Utility of KL-6/MUC1 in the Clinical Management of Interstitial Lung Diseases. Respiratory Investigation, 50, 3-13.
https://doi.org/10.1016/j.resinv.2012.02.001
[38] Xue, M., Guo, Z., Zhou, L., et al. (2020) Evaluation of the Diagnostic Efficacies of Serological Markers Kl-6, SP-A, SP-D, CCL2, and CXCL13 in Idiopathic Interstitial Pneumonia A67. Structure-Function Relationship, 98, 534-545.
[39] Guo, L., Yang, Y., Liu, F., Jiang, C., Yang, Y., Pu, H., et al. (2020) Clinical Research on Prognostic Evaluation of Subjects with IPF by Peripheral Blood Biomarkers, Quantitative Imaging Characteristics and Pulmonary Function Parameters. Archivos de Bronconeumología, 56, 365-372.
https://doi.org/10.1016/j.arbres.2019.08.020
[40] Ohshimo, S., Ishikawa, N., Horimasu, Y., Hattori, N., Hirohashi, N., Tanigawa, K., et al. (2014) Baseline KL-6 Predicts Increased Risk for Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Respiratory Medicine, 108, 1031-1039.
https://doi.org/10.1016/j.rmed.2014.04.009
[41] Aloisio, E., Braga, F., Puricelli, C. and Panteghini, M. (2021) Prognostic Role of Krebs von den Lungen-6 (KL-6) Measurement in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Clinical Chemistry and Laboratory Medicine d, 59, 1400-1408.
https://doi.org/10.1515/cclm-2021-0199
[42] Zhu, C., Zhao, Y.B., Kong, L.F., Li, Z.H. and Kang, J. (2016) The Expression and Clinical Role of KL-6 in Serum and BALF of Patients with Different Diffuse Interstitial Lung Diseases. Chin. Chinese Journal of Tuberculosis and Respiratory Diseases, 39, 93-97.
[43] Bennett, D., Salvini, M., Fui, A., Cillis, G., Cameli, P., Mazzei, M.A., et al. (2019) Calgranulin B and KL-6 in Bronchoalveolar Lavage of Patients with IPF and NSIP. Inflammation, 42, 463-470.
https://doi.org/10.1007/s10753-018-00955-2
[44] Bonella, F., Ohshimo, S., Boerner, E., et al. (2015) Serum Kl-6 Levels Correlate with Response to Pirfenidone in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 191, Article No. A4398.
[45] Bergantini, L., Bargagli, E., Cameli, P., Cekorja, B., Lanzarone, N., Pianigiani, L., et al. (2019) Serial KL-6 Analysis in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Respiratory Investigation, 57, 290-291.
https://doi.org/10.1016/j.resinv.2019.02.001