凸面式探头超声支气管镜的研究进展
Research Progress of Convex Probe Endobronchial Ultrasond
DOI: 10.12677/ACM.2021.1112843, PDF, HTML, XML, 下载: 306  浏览: 505 
作者: 郑 丽*, 江德鹏#:重庆医科大学附属第二医院,重庆
关键词: 凸面式探头超声支气管镜针吸活检术肺癌Convex Probe Endobronchial Ultrasound Needle Aspiration Biopsy Lung Cancer
摘要: 胸部CT的普及提高了肺部疾病的发现率,肺病介入技术逐步发展并受到重视。凸面式探头超声支气管镜(Convex probe endobronchial ultrasound, CP-EBUS)是常用的介入技术之一,临床上广泛用以引导穿刺活检,有较高的诊断率及安全性。近几年为提高活检的诊断率及标本的质量,相应的超声技术、穿刺针及快速细胞学技术随之发展及应用。此外,凸面式探头超声支气管镜的适应症不断扩大,不断有新的临床应用报道,可能成为其未来发展趋势。本文就CP-EBUS近年来取得的进展进行综述,为扩展CP-EBUS的应用及未来发展提供方向。
Abstract: The popularity of chest CT has improved the detection rate of pulmonary disease, and the intervention technology of pulmonary disease is developing rapidly and valued by doctors. Convex probe endobronchial ultrasound (CP-EBUS) is one of the most commonly used intervention techniques, widely used to guide puncture biopsies in clinical applications with high diagnostic rates and safety. In recent years, in order to improve the diagnostic rate of biopsy and the quality of specimens, the corresponding ultrasound technology, puncture needle and rapid on-site evaluation have been developed and applied. In addition, the indications of convex probe endobronchial ultrasound are constantly increased, and new clinical applications have been reported, which be future trends. This paper summarizes the progress of CP-BEUS in recent years and provides a direction for exploring new applications and future development.
文章引用:郑丽, 江德鹏. 凸面式探头超声支气管镜的研究进展[J]. 临床医学进展, 2021, 11(12): 5705-5710. https://doi.org/10.12677/ACM.2021.1112843

1. 引言

凸面式探头超声支气管镜已广泛应用在临床中,近年来随着该技术的发展,弹性成像、快速现场评估以及新型穿刺针的开发与应用提高了超声引导下经支气管活检技术(EBUS-TBNA)在纵隔疾病中的诊断准确性及有效性,ACCP指南推荐其作为非小细胞肺癌的诊断和分期的首选技术之一 [1]。为了提高CPEBUS-TBNA的诊断率,弹性成像技术、快速现场评估、新型穿刺针等技术正在发展。其临床适应症也在不断扩展,诊断肺栓塞、罕见的血管肿瘤、应用在辅助肺癌放疗、化疗药物注射、肺栓塞溶栓等治疗方面,以及引导纵隔冷冻活检。

2. CP-EBUS的构成

凸面式探头超声支气管镜是将凸形超声换能器合并到柔性支气管镜的尖端换能器,它的外径为6.9 mm,仪器通道为2 mm,斜视角度为30˚,深度为50 mm,可形成与支气管镜插入方向平行的灰度图像,通过仪器通道的专用经支气管针吸活检术(Transbronchial needle aspiration, TBNA)匹配的22G针可实现超声气管镜引导下实时活检 [2],也是它最重要的应用方式。CP-EBUS应用了超声技术来辅助成像,其主要优点之一是获取样本时提供实时指导。

3. 超声支气管镜引导下针吸活检术(EBUS-TBNA)

CP-EBUS最初是为胸腔内淋巴结病变而开发的工具,随后通过临床医生的努力与技术改革逐渐成为一种安全、成熟的技术,应用于非小细胞肺癌的诊断和分期、肺良性病变及其他纵隔疾病的诊断中,不要求所有患者深度镇静状态下接受手术,减少了纵隔镜的使用。根据ESGE、ERS和ESTS的指南,对于CT扫描或PET/CT检查发现纵隔和/或肺门淋巴结异常的患者,推荐腔内超声检查作为首选程序 [3]。为提高EBUS-TNBA的诊断率及效率,相应的技术也在不断发展。

3.1. 弹性成像

CP-EBUS分别可使用灰阶、血流多普勒和弹性成像三种模式,弹性成像作为一种新的超声成像技术,作为病理诊断的补充,在无创性诊断中的作用越来越受到重视。弹性成像原理是纵隔淋巴结或病灶受压后变形程度不同会在超声下显示为不同的颜色或测量为剪切波速 [4],由于大多数炎症过程不改变淋巴结的弹性结构,而癌性转移导致淋巴结实质呈局限或弥漫性硬浸润,可在超声上呈现不同的颜色模式。最早弹性成像直接应用在乳腺病变 [5],逐渐广泛应用于甲状腺、胰腺、前列腺、肝脏等病变和内窥镜超声 [6] - [11] 中。Izumo等人 [12] 首次将弹性成像分为三种类型,类型1:非蓝色(绿色、黄色和红色);类型2:部分蓝色,部分非蓝色(绿色、黄色和红色);类型3,主要为蓝色。以1型为“良性”,3型为“恶性”,最终与病理对照其敏感度、特异度、阳性预测值、阴性预测值和诊断准确率分别为100%、92.3%、94.6%、100%和96.7%。除评分的定性方法外,弹性成像可通过应变率比值、组织弥散定量分析、硬区域比率等定量方法评估。Wu [13] 等人的荟萃分析纳入17项研究,共分析2000多个淋巴结,包含了定性和定量评估的研究,结果表明EBUS弹性成像诊断肺门纵隔淋巴结的敏感性、特异性、阳性似然比、阴性似然比和诊断优势比分别为0.90、0.78、4.1、0.12和33。因为弹性成像主要反映组织的硬度,因此良性淋巴结内的纤维化和恶性淋巴结内的中央坏死可能影响弹性评估的准确性。尽管弹性成像对鉴别淋巴结良恶性有较高的敏感度和特异度,可指导淋巴结的选择,减少穿刺次数等优势 [14],但其作为无创检查仍有局限性,且主观性较强。为了减少弹性成像图像选择的主观性,Zhi X等人 [15] 设计了弹性成像的自动图像选择模型,专家组、实习组与模型组分别选择弹性成像中最具代表性的三张图片,最终三组在定性评估上选取的三幅图像之间没有统计学差异,而在四种定量方法上,模型组的变异系数值低于专家组和实习组中,说明机器学习模型具有很好的稳定性。总的来说,弹性成像作为无创诊断优于灰阶、血流多普勒,可以在病理诊断阴性或样本不足时辅助诊断,不过由于目前基因分型、下一代测序技术的广泛应用及重要意义,弹性成像仍然不能取代获取病理组织的过程。

3.2. 快速现场评估

快速现场评估(ROSE)是指在细针穿刺或组织活检操作过程中,对标本进行实时的细胞形态学分析,可在CP-EBUS操作过程中立即反馈所获取标本的充分性,根据形态学标准提供初步诊断,保证样本的充分性。虽在对于ROSE对EBUS-TBNA的益处有一些争议,但ROSE在指南中的地位逐渐上升,2018年肺病理学会指出对于疑似肺癌、纵隔或肺门淋巴结肿大和/或中央型肺癌的患者,只要可行,证据支持在每一次EBUS-TBNA手术中加入ROSE [16]。在Caupena C [17] 等人的一项包括64名患者和637个淋巴结样本的回顾性研究中,ROSE诊断与最终细胞学诊断一致的612例(96.1%),不一致25例(3.9%)。ROSE的敏感度、特异度、NPV、PPV和总体准确度分别为0.83、0.99、0.98、0.97和0.98。一项随机对照试验表明ROSE在EBUS-TBNA基因分型上增加了10%成功率。尽管没有检测到两组之间的统计学差异,但具有临床意义 [18]。若ROSE提示样本不足,可指导操作者通过更换靶点、改变穿刺部位、深度、角度等重新取样,理论上可实现减少穿刺针数,缩短穿刺时间。然而一项纳入了5个研究(包括EBUS-TBNA和传统TBNA)、共618名受试者的荟萃分析 [19] 报道在纵隔淋巴结采样中加入ROSE并不能提高EBUS-TBNA和c-TBNA的诊断率,也不能缩短手术时间,并发症发生率无明显差异。其中有研究表明ROSE可以减少每个患者所需的穿刺针数,以及在做出最终诊断时所需要额外的支气管镜检查程序。相比传统TBNA来说,ROSE在EBUS中的获益相对较少,因此,需要进一步研究ROSE对EBUS-TBNA中的医疗成本的影响,因为成本效益分析可以为EBUS-TBNA的操作中实施ROSE的价值提供的更多信息。

3.3. 穿刺针

目前临床上使用较多的穿刺针为19G、21G、22G,总的来说各项研究对穿刺针的评估有样本量、诊断率、样本充分性三个维度。最初22G型号针头是设计与CP-EBUS匹配的,随后推出了直径更大的21G、19G型号穿刺针,期待通过提高穿刺针的直径来达到提高样本量从而提高诊断率的目的。事实上,直径的增加并不能完全转化为提高样本充分性或诊断率。不同研究分别以组织重量、体积或表面积 [20] [21] [22] 作为标准,证明19G针在样本量上的确有一定的优越性,而样本充分性的比较则存在争议 [20] [22],在诊断率上不同穿刺针的无明显差异 [20] [21] [22]。自2016年ACCP建议发布以来,关于针头大小对EBUS结果影响的研究有所增加,还没有显示出诊断率受针头大小的影响的证据。

随后推出了口径更小的25G针头,目前在EBUS中的研究较少,其特点是口径小、锐度高,有利于到达靶部位,以及淋巴结创伤和血液污染更少,但代价是采样组织数量较少,并且能和薄型凸探头搭配可以到达更远端的淋巴结和肺内病变 [23]。但Okubo Y等人的研究报道25G针头诊断率为96.9%,并且样本足够进行基因分型 [24]。对比其他穿刺针,Stoy等人的另一项研究显示在EBUS-TBNA期间,22G和25G针获得的细胞学样本的下一代测序(NGS)成功率相似 [25]。Yang Li等人的研究也证实25G针与22G针相比具有相似的诊断率,且穿刺时间和频率更少 [26]。虽然目前多数观点认为25G在肺癌的诊断率与其他针头无显著差异,但对于其他疾病所致淋巴结肿大,如结节病,25G的诊断率不一定具有优势 [27] 此外,还需要大样本、多中心的前瞻性研究来证明25G针头是否具有更多优势以及样本是否充足,因为随着基因突变检测、程序性死亡配体1 (PD-L1)表达检测和下一代测序(NGS)的需求增加,对于样本量的要求随之增加,25G能否满足上述需求还是值得探究的问题。

4. 未来发展

CP-EBUS目前主要于引导TBNA应用于纵隔占位性病变的诊断,但其适应症仍在不断扩展,此外有CP-EBUS用于诊断肺栓塞 [28] [29] 及罕见的肺血管肿瘤等 [30] 报道。治疗上,EBUS应用于引导植入碘-125放射性粒子进行局部放射治疗 [31]、超声支气管镜引导下经支气管针头注射化疗药物用于治疗肺肿瘤 [32],以及在肺栓塞的动物模型上引动进行溶栓治疗 [33]。不难看出CP-EBUS应用前景广泛,上述应用今后可能在临床大范围推广。

最近Zhang J等人提出了超声支气管镜引导下经支气管纵隔冷冻活检,在197名患者的随机对照试验中,相比TBNA组,冷冻活检组总诊断率更高,其中对转移性淋巴结病变的诊断率相似而对少见肿瘤和良性病变的诊断率更高,并发症发生率相似 [34]。冷冻活检的样本量及结构保留优于针吸活检,而安全性无显著差异,这可能成为EBUS引导下活检的发展趋势,尤其是在肺癌之外的纵隔疾病之中优势更突出,但仍需更多的临床研究证实。

5. 总结

综上,CP-EBUS是一种成熟、安全的技术,目前普遍地应用在肺癌的诊断和分期以及纵隔和肺门淋巴结病变的诊断中,并在一些少见的纵隔疾病、治疗中有不错的表现,随着生物医学工程和成像技术的不断进步将会丰富其适应症、提高诊断效率及安全性,未来可能安全地应用于更多的临床疾病。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Gould, M., Donington, J., Lynch, W., et al. (2013) Evaluation of Individuals with Pulmonary Nodules: When Is It Lung Cancer? Diagnosis and Management of Lung Cancer, 3rd ed.: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143, e93S-e120S.
https://doi.org/10.1378/chest.12-2351
[2] Yasufuku, K., Nakajima, T., Chiyo, M., et al. (2007) Endobronchial Ultrasonography: Current Status and Future Directions. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2, 970-979.
https://doi.org/10.1097/JTO.0b013e318153fd8d
[3] Vilmann, P., Clementsen, P., Colella, S., et al. (2015) Combined Endobronchial and Esophageal Endosonography for the Diagnosis and Staging of Lung Cancer: European Society of Gastrointestinal Endoscopy (ESGE) Guideline, in Cooperation with the European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS). Endoscopy, 47, 545-559.
https://doi.org/10.1055/s-0034-1392040
[4] Dietrich, C., Jenssen, C. and Herth, F. (2016) Endobronchial Ultrasound Elastography. Endoscopic Ultrasound, 5, 233-238.
https://doi.org/10.4103/2303-9027.187866
[5] Garra, B., Cespedes, E., Ophir, J., et al. (1997) Elastography of Breast Lesions: Initial Clinical Results. Radiology, 202, 79-86.
https://doi.org/10.1148/radiology.202.1.8988195
[6] Lyshchik, A., Higashi, T., Asato, R., et al. (2005) Thyroid Gland Tumor Diagnosis at US Elastography. Radiology, 237, 202-211.
https://doi.org/10.1148/radiol.2363041248
[7] Nemakayala, D., Patel, P., Rahimi, E., et al. (2016) Use of Quantitative Endoscopic Ultrasound Elastography for Diagnosis of Pancreatic Neuroendocrine Tumors. Endoscopic Ultrasound, 5, 342-345.
https://doi.org/10.4103/2303-9027.191680
[8] Cochlin, D., Ganatra, R. and Griffiths, D. (2002) Elastography in the Detection of Prostatic Cancer. Clinical Radiology, 57, 1014-1020.
https://doi.org/10.1053/crad.2002.0989
[9] Sandrin, L., Fourquet, B., Hasquenoph, J., et al. (2003) Transient Elastography: A New Noninvasive Method for Assessment of Hepatic Fibrosis. Ultrasound in Medicine & Biology, 29, 1705-1713.
https://doi.org/10.1016/j.ultrasmedbio.2003.07.001
[10] Okasha, H., Mansour, M., Attia, K., et al. (2014) Role of High Resolution Ultrasound/Endosonography and Elastography in Predicting Lymph Node Malignancy. Endoscopic Ultrasound, 3, 58-62.
https://doi.org/10.4103/2303-9027.121252
[11] Sivokozov, I., Silina, T., Korolev, V., et al. (2014) The First Experience in Using Elastography in Combination with Endobronchial Ultrasonography for Mediastinal Pathology: Preliminary Assessment of Feasibility and Comparison of Characteristics via Different Approaches. Vestnik rentgenologii i radiologii, 4, 13-19.
[12] Izumo, T., Sasada, S., Chavez, C., et al. (2014) Endobronchial Ultrasound Elastography in the Diagnosis of Mediastinal and Hilar Lymph Nodes. Japanese Journal of Clinical Oncology, 44, 956-962.
https://doi.org/10.1093/jjco/hyu105
[13] Wu, J., Sun, Y., Wang, Y., et al. (2021) Diagnostic Value of Endobronchial Ultrasound Elastography for Differentiating benign and Malignant Hilar and Mediastinal Lymph Nodes: A Systematic Review and Meta-Analysis. Medical Ultrasonography.
https://doi.org/10.11152/mu-2971
[14] Zarogoulidis, P., Sapalidis, K., Fyntanidou, V., et al. (2019) Evaluating the Use of Elastography in Endobronchial Ultrasound Technique as a Diagnostic Approach for Mesothorax Lymphadenopathy. Expert Review of Respiratory Medicine, 13, 1153-1159.
https://doi.org/10.1080/17476348.2019.1677466
[15] Zhi, X., Li, J., Chen, J., et al. (2021) Automatic Image Selection Model Based on Machine Learning for Endobronchial Ultrasound Strain Elastography Videos. Frontiers in Oncology, 11, Article ID: 673775.
https://doi.org/10.3389/fonc.2021.673775
[16] Jain, D., Allen, T., Aisner, D., et al. (2018) Rapid On-Site Evaluation of Endobronchial Ultrasound-Guided Transbronchial Needle Aspirations for the Diagnosis of Lung Cancer: A Perspective from Members of the Pulmonary Pathology Society. Archives of Pathology & Laboratory Medicine, 142, 253-262.
https://doi.org/10.5858/arpa.2017-0114-SA
[17] Caupena, C., Esteban, L., Jaen, A., et al. (2020) Concordance between Rapid On-Site Evaluation and Final Cytologic Diagnosis in Patients Undergoing Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Non-Small Cell Lung Cancer Staging. American Journal of Clinical Pathology, 153, 190-197.
https://doi.org/10.1093/ajcp/aqz146
[18] Trisolini, R., Cancellieri, A., Tinelli, C., et al. (2015) Randomized Trial of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration with and without Rapid On-site Evaluation for Lung Cancer Genotyping. Chest, 148, 1430-1437.
https://doi.org/10.1378/chest.15-0583
[19] Sehgal, I.S., Dhooria, S., Aggarwal, A.N., et al. (2018) Impact of Rapid On-Site Cytological Evaluation (ROSE) on the Diagnostic Yield of Transbronchial Needle Aspiration during Mediastinal Lymph Node Sampling: Systematic Review and Meta-Analysis. Chest, 153, 929-938.
https://doi.org/10.1016/j.chest.2017.11.004
[20] Wolters, C., Darwiche, K., Franzen, D., et al. (2019) A Prospective, Randomized Trial for the Comparison of 19-G and 22-G Endobronchial Ultrasound-Guided Transbronchial Aspiration Needles; Introducing a Novel End Point of Sample Weight Corrected for Blood Content. Clinical Lung Cancer, 20, e265-e273.
https://doi.org/10.1016/j.cllc.2019.02.019
[21] Czarnecka-Kujawa, K., Tremblay, A., Yasufuku, K., et al. (2018) A Preclinical Evaluation Comparing the Performance of a Novel 19-G Flexible Needle to a Commercially Available 22-G EBUS-TBNA Sampling Needle. Respiration; International Review of Thoracic Diseases, 95, 55-62.
https://doi.org/10.1159/000480154
[22] Dooms, C., Vander Borght, S., Yserbyt, J., et al. (2018) A Randomized Clinical Trial of Flex 19G Needles versus 22G Needles for Endobronchial Ultrasonography in Suspected Lung Cancer. Respiration; International Review of Thoracic Diseases, 96, 275-282.
https://doi.org/10.1159/000489473
[23] Fujino, K., Ujiie, H., Kinoshita, T., et al. (2019) First Evaluation of the Next-Generation Endobronchial Ultrasound System in Preclinical Models. The Annals of Thoracic Surgery, 107, 1464-1471.
https://doi.org/10.1016/j.athoracsur.2018.11.068
[24] Okubo, Y., Matsumoto, Y., Tanaka, M., et al. (2021) Clinical Validity of 25-Gauge Endobronchial Ultrasound-Guided Transbronchial Needle in Lymph Node Staging of Lung Cancer. Journal of Thoracic Disease, 13, 3033-3041.
https://doi.org/10.21037/jtd-20-3383
[25] Stoy, S., Segal, J., Mueller, J., et al. (2018) Feasibility of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Cytology Specimens for Next Generation Sequencing in Non-Small-Cell Lung Cancer. Clinical Lung Cancer, 19, 230-8.e2.
https://doi.org/10.1016/j.cllc.2017.11.010
[26] Yang, L., Gu, Y., Wang, H., et al. (2020) Novel ProCore 25-gauge Needle for Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Reduces the Puncture Time and Frequency, with Comparable Diagnostic Rate for Mediastinal and Hilar Lymphadenopathy. Thoracic Cancer, 11, 748-753.
https://doi.org/10.1111/1759-7714.13332
[27] Sakaguchi, T., Inoue, T., Miyazawa, T., et al. (2021) Comparison of the 22-gauge and 25-gauge Needles for Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Respiratory Investigation, 59, 235-239.
https://doi.org/10.1016/j.resinv.2020.10.003
[28] Sariaydin, M., Günay, S., Günay, E., et al. (2016) Endobronchial Ultrasound: An Unusual Diagnostic Tool for Pulmonary Embolism. The American Journal of Emergency Medicine, 34, 684.e1-2.
https://doi.org/10.1016/j.ajem.2015.07.081
[29] Dhillon, S. and Harris, K. (2016) Endobronchial Ultrasound for the Detection of Chronic Pulmonary Artery Thrombus. Endoscopic Ultrasound, 5, 272-273.
https://doi.org/10.4103/2303-9027.187893
[30] Harbhajanka, A., Dahoud, W., Michael, C., et al. (2019) Cytohistological Correlation, Immunohistochemistry and Murine Double Minute Clone 2 Amplification of Pulmonary Artery Intimal Sarcoma: A Case Report with Review of Literature. Diagnostic Cytopathology, 47, 494-497.
https://doi.org/10.1002/dc.24131
[31] Xu, T., Peng, W., Gu, X., et al. (2019) Endobronchial Ultrasound-Guided Iodine-125 Radioactive Seed Implantation as a Novel Therapy for Mediastinal Tumors. Cancer Biotherapy & Radiopharmaceuticals, 34, 547-550.
https://doi.org/10.1089/cbr.2019.2818
[32] Mori, V., Roy, G., Bates, J., et al. (2019) Cisplatin Pharmacodynamics Following Endobronchial Ultrasound-Guided Transbronchial Needle Injection into Lung Tumors. Scientific Reports, 9, Article No. 6819.
https://doi.org/10.1038/s41598-019-43270-y
[33] Inage, T., Fujino, K., Motooka, Y., et al. (2021) Thrombolysis of Pulmonary Emboli via Endobronchial Ultrasound-Guided Transbronchial Needle Injection. The Annals of Thoracic Surgery, 112, 395-404.
https://doi.org/10.1016/j.athoracsur.2020.08.043
[34] Zhang, J., Guo, J., Huang, Z., et al. (2021) Transbronchial Mediastinal Cryobiopsy in the Diagnosis of Mediastinal Lesions: A Randomised Trial. The European Respiratory Journal, 2021, Article ID: 2100055.
https://doi.org/10.1183/13993003.00055-2021