创伤性颅脑损伤预后血液生物标记物的研究进展
Research Progress of Blood Biomarkers for Prognosis of Traumatic Brain Injury
DOI: 10.12677/ACM.2021.1111756, PDF, HTML, XML, 下载: 450  浏览: 699 
作者: 李 显:青海大学研究生院,青海 西宁;贺瑛福:青海大学附属医院,青海 西宁
关键词: 颅脑损伤标记物预后Traumatic Brain Injury Marker Prognosis
摘要: 创伤性颅脑损伤(traumatic brain injury, TBI)一直以来是造成青年人死亡、致残及地区经济负担的重要原因。由于机动车的普及,TBI的发病率在急剧提高。TBI多表现为局部的脑挫裂伤、脑血肿、脑白质束损伤及脑组织肿胀,其病情发展迅速且多变,严重威胁患者的生命安全。短暂的低灌注和低氧血症可能导致继发性损伤,导致更差的短期和长期预后。细胞损伤释放的特异性生物标记物可作为诊断TBI和评估损伤严重程度的一种手段。这些生物标志物可以通过实验室从血液样本中检测出来。目前已经研究了几十种TBI生物标志物,与其相关的研究正在增加。我们回顾最近的文献,并选择了12个快速简单准确评估TBI预后的生物标志物进行综述。
Abstract: Traumatic brain injury (TBI) has always been an important cause of death, disability and regional economic burden for young people. Due to the popularity of motor vehicles, the incidence of TBI is increasing sharply. TBI is mostly manifested as local brain contusion, cerebral hematoma, brain white matter tract injury and brain tissue swelling. Its condition develops rapidly and changeably, which seriously threatens the life safety of patients. Transient hypoperfusion and hypoxemia may lead to secondary injury, leading to worse short-term and long-term prognosis. Specific biomarkers released by cell damage can be used as a means to diagnose TBI and assess the severity of damage. At present, dozens of TBI biomarkers have been studied, and the related research is increasing. We reviewed the recent literature and selected 12 biomarkers for rapid, simple and accurate assessment of the prognosis of TBI for review.
文章引用:李显, 贺瑛福. 创伤性颅脑损伤预后血液生物标记物的研究进展[J]. 临床医学进展, 2021, 11(11): 5124-5131. https://doi.org/10.12677/ACM.2021.1111756

1. 引言

创伤性颅脑损伤(traumatic brain injury, TBI)的定义是外部物理力量引起的脑功能的破坏,或脑病理生理的紊乱 [1] [2]。据估计,全球每年有5000多万人患有TBI,其中约一半的世界人口可能在一生中患有一次或多次TBI。中国TBI患者的数量超过了大多数国家,给社会和家庭带来了巨大的负担。我国TBI发生最常见的原因是道路交通事故 [3]。目前,TBI的诊断主要基于患者的神经系统检查,此外还使用影像放射学技术,如计算机断层扫描(CT)或磁共振成像(MRI)。格拉斯哥昏迷评分(GCS)可根据患者认知行为来评估颅脑损伤的严重程度。仅仅基于临床表现和放射学结果来预测TBI预后具有挑战性,因为相似损伤的患者往往会有不同的预后。TBI还会随着时间的推移而演变,损伤发展分为两个不同的阶段,即原发性损伤阶段和继发性损伤阶段。第一阶段的发生是头部撞击过程中所经历的机械力的直接结果,这可能会破坏脑实质,影响血脑屏障的完整性。第二阶段是由外周免疫细胞和免疫活性神经细胞激活所介导的神经炎症反应。此时细胞因子、生长因子和黏附分子等可透过血脑屏障渗透到血液中,或者通过淋巴系统输送到血液中 [4]。最新的研究显示,生物标志物不仅可诊断包括脑震荡在内的不同严重程度的TBI,而且可以预测预后。目前一系列血液生物标志物目前正处于临床研究阶段,现将不同类型TBI血液生物标记物的研究进展进行综述。

2. 星形胶质细胞生物标志物

2.1. 神经元特异性烯醇化酶(NSE)

NSE是葡萄糖代谢过程中催化2-磷酸甘油酸转化为磷酸烯醇丙酮酸的糖酵解酶。NSE在神经元和神经内分泌细胞中浓度较高,当其释放入血液中可作为反映颅脑损伤严重程度的特异性标记物 [5]。研究发现,NSE血清水平与颅脑损伤严重程度呈正相关,可准确预测重型TBI患者死亡及不良预后 [6]。NSE作为TBI的特异性标志物缺点:一是其半衰期长达20小时以上,限制其预测TBI进展及干预治疗的价值,二是其红细胞中大量表达,这需要研究人员测量血液中NSE时需使用溶血校正,三是脑外多种来源NSE的发现限制了其作为TBI独立血液生物标志物的价值 [7]。

2.2. 泛素C-末端水解酶-L1 (UCH-L1)

UCH-L1是一种主要存在于神经元胞体胞浆中的蛋白质 [8]。这是最新蛋白质组学研究确定的为数不多的TBI生物标记物候选之一。临床研究显示,UCH-L1可以区分局灶性和弥漫性脑损伤,而且可良好预测TBI预后 [9] [10]。病例对照试验研究显示,重型颅脑损伤组中(GCS < 9)脑脊液和血清中UCH-L1的平均水平显著高于非颅脑损伤组(p < 0.05)。另一项关于轻中度颅脑损伤患者的前瞻性队列研究(GCS 9~15)发现血清UCH-L1水平可预测CT扫描是否存在颅脑损伤以及是否需神经外科干预 [11]。一项研究对96例TBI患者与199例非TBI患者进行了比较发现。头颅CT正常患者血清UCH-L1平均为0.62 ng/mL,而TBI患者的血清UCH-L1平均为1.62 ng/ml。需要外科手术治疗的TBI患者的平均UCH-L1血清水平更高,为2.57 ng/mL [12]。因为以上均为单中心研究发现,故UCH-L1作为TBI患者血清生物标记物需要更多前瞻性纵向研究中进行验证。

3. 细胞死亡生物标志物

3.1. S100B蛋白

S100B是星形胶质细胞一种钙结合蛋白。这可能是迄今为止研究最多的TBI生物标记物。S100B在中枢神经系统中的成熟星形胶质细胞和周围神经系统中的雪旺细胞中表达 [13]。S100B的生理功能被广泛研究,但尚不完全清楚。其中一些功能包括诱导轴突延伸、星形胶质细胞增生和轴突增殖。虽然S100B主要由星形胶质细胞表达,但其来源并非仅局限于中枢神经系统,在脂肪细胞、软骨细胞、黑色素瘤细胞和造血细胞中也检测到该蛋白 [14]。据报道,颅脑损伤患者血清中的S100B水平显著升高。S100B在TBI发生后迅速释放,其短暂的半衰期(<60分钟)使其成为TBI早期良好的生物标记物 [9] [15]。血清S100B升高被证明与TBI的临床及影像学严重程度相关,并可预测不良结局。85例重型TBI患者(GCS ≤ 8)观察队列研究显示,血清S100B水平升高(>1.13 ng/mL)预测死亡的敏感性为100%,调整后的优势比(OR) > 5可以预测不良预后 [17]。研究还发现,经外科手术干预后的重型TBI患者血清S100B水平显著降低,这可能提示S100B可作为重型TBI患者治疗效果的监测工具 [16] [17] [18]。但是一些作者认为S100B升高只是反映了血脑屏障破坏,导致蛋白质从外周渗漏到脑室内,并非反映神经元损伤的程度 [19]。

3.2. 胶质纤维酸性蛋白(GFAP)

GFAP是星形胶质细胞特异性标记物,其逐渐成为最可靠的TBI生物标志物。临床研究发现,与对照组相比,重型TBI患者血清GFAP水平升高约100倍,并与不良结局相关 [20]。TBI患者入院当天血清GFAP平均水平为6.77 pg/mL,明显高于对照组(平均0.7 pg/mL)。TBI患者血清GFAP水平在伤后第一天达到峰值,在随后第一周逐渐下降。与其他候选分子(如S100B、NSE)相比,GFAP作为颅脑损伤生物标志物的优势在于其脑部特异性表达和释放 [21] [22] [23]。研究表明颅外损伤不会导致TBI患者血清GFAP水平升高,无脑外伤的其他部位多发损伤患者血清GFAP水平正常 [21] [24]。

4. 迟发性轴索损伤和脱髓鞘生物标志物

4.1. 神经丝蛋白(NF)

NF属于“IV类”中间丝(直径10 nm)。它们只存在于神经元中 [25]。NF以神经纤维束的形式存在,是一种主要的细胞骨架成分,其功能主要是为轴突提供结构支持和调节轴突直径。NF由三个不同分子量的多肽亚基组成:神经丝–轻蛋白(NF-L;68K)、神经丝–中蛋白(NF-M;150K)和神经丝–重蛋白(NF-H;200K)。磷酸化的NF-H (pNF-H)富含轴突,是良好的免疫组织化学生物标记物 [26]。所有这三个NF亚基都容易受到蛋白酶的攻击,如钙蛋白酶和组织蛋白酶-B/D。蛋白被水解后,特别是细胞膜破坏后,其可以从细胞释放到细胞外液中。实验性TBI血液中发现有PNF-H释放。研究发现,重型TBI患者的脑脊液和血清样本中(NF-M)蛋白浓度升高。同时pNF-H似乎是儿童TBI患者死亡率的预测因子。此外,在美式橄榄球运动员和TBI受试者中,血清NF-L整个赛季中都会出现升高 [25]。最重要的是,与其他类型TBI生物标记物相比,NF蛋白释放到血液中是在TBI发生后几天。因此,它可能反映正在进行的轴突变性,并可能与慢性TBI患者认知功能衰退相关 [26]。Joshua W. [27] 等人认为血清pNF-H检测可能有助于确定哪些TBI患者需要CT成像来评估其损伤的严重程度。

4.2. 髓鞘碱性蛋白(MBP)

髓鞘碱性蛋白(MBP)是神经元轴突周围髓鞘的主要成分,血清MBP水平升高被认为是反应髓轴突损伤的生物标记物 [28]。研究发现,儿童及成人重型TBI患者血清中MBP都会出现升高 [29]。尽管血清MBP对预测重型TBI患者预后具有高度特异性,但其低敏感性限制其成为轻型TBI危险分层工具生物标记物的价值 [30]。

5. 促炎和抗炎生物标志物

5.1. 白细胞介素-6 (IL-6)

IL-6是一种多功能细胞因子,具有促炎和抗炎两种特性,这取决于它调节的信号通路 [31]。中枢神经系统炎症反应过程,激活的小胶质细胞和星形胶质细胞促进IL-6的产生。IL-6被认为是炎症反应的主要调节因子,可对感染及组织损伤进行短期防御。在大鼠模型中,IL-6似乎通过提高神经元的存活率来起到保护作用。血液及脑脊液中检测到的IL-6水平较高一直与不良预后和更高的死亡风险相关 [32]。重型TBI患者48小时内血液中IL-6的升高已证明与不良的长期临床预后相关。研究发现,重型TBI男性患者中,死亡患者的血清IL-6浓度显著高于存活患者。而且IL-6浓度在住院的第一天最高,浓度增加与多器官衰竭、脓毒症和不良的神经预后相关 [33]。通过格拉斯哥预后评分(GOS)对重型TBI患者预后进行量化预后发现,较高的IL-6水平与较低的GOS评分相关。一个以男性患者为主(97.7%)的重型TBI队列研究中,血清IL-6的升高与创伤后6个月的GOS评分(1~3分)显示的不良预后相关。血清IL-6已被确定为预测孤立性TBI后颅内压升高的可能候选生物标记物,但是IL-6对合并多发伤的重型TBI患者的颅内压水平没有预测价值 [34]。

5.2. 白细胞介素-8 (IL-8)

IL-8是一种具有趋化性的促炎细胞因子,由多种免疫细胞产生,包括单核细胞、巨噬细胞和其他组织细胞。研究表明,重型TBI患者24小时内血液中IL-8的升高与死亡风险有关。一项对24名重型TBI患者的研究发现,伤后10小时内血清中IL-8的升高可以准确预测一个月内的死亡率。而且,IL-8浓度似乎在伤后24~48小时内最高,在伤后的1~5天都会有升高 [35]。中重型TBI患者伤后6~24小时血液IL-8水平升高,与6个月时格拉斯哥预后量表扩展评分(GOSE) 1至4分所代表的不良预后相关,以及与伤后12个月出现抑郁症状相关 [31] [33] [35]。

5.3. 白细胞介素-10 (IL-10)

IL-10是一种具有强大抗炎和免疫调节功能的细胞因子。其作用之一是抑制肿瘤坏死因子-α (TNF-α)、白细胞介素-6 (IL-6)和白细胞介素-1 (IL-1)。一项大多为中重度TBI男性患者的队列研究发现IL-10水平升高与损伤严重程度呈正相关 [33]。研究发现,血清IL-10升高与死亡率也相关。IL-10水平较高(>90 pg/ml)的重型TBI患者死亡率比IL-10水平较低(<50 pg/ml)高6倍 [32]。尽管多项研究报告IL-10水平升高与重型TBI预后不良相关,但一项研究认为IL-10水平在有利和不利结果之间无显著差异 [36]。

5.4. 肿瘤坏死因子α (TNF-α)

在炎症反应中,TNF-α在启动和调节细胞因子级联过程中起着核心作用 [36]。TNF-α主要由单核细胞和巨噬细胞等免疫细胞产生。研究发现,血清TNF-α升高与ICP升高有关 [37]。但也有人认为,成年男性重型TBI患者脑脊液TNF-α水平与ICP、脑灌注压(CPP)和GOSE评分之间没有显著相关性。然而,当TNF-α与其他炎症因子(IL-6、IL-10)同时纳入时,它与GOS评分在1~3之间代表的6个月不良预后相关 [33] [35] [36]。这表明,一组细胞因子的预测性能要比单个预测因子的所提供预测信息要更多。

6. 其他TBI生物标记物

6.1. 胶质原纤维酸性蛋白(GFAP)

急性血浆GFAP水平与预后不良(GOSE ≤ 4) (AUC, 0.74)或预后良好(GOSE ≥ 7) (AUC, 0.65)相关。在死亡或预后不良患者中,血清GFAP显著升高,并预测了6个月后的神经预后 [37]。而且另一项研究证实,血清GFAP和UCH-L1蛋白浓度可准确预测重型TBI患者的预后,且效果优于S100B [33] [34] [35]。此外儿童TBI患者损伤第一天测定的血清GFAP与儿童脑功能分类评分所确定的6个月功能结局相关 [38]。

6.2. Tau蛋白

血清Tau蛋白可预测重型TBI预后,预后不良组Tau蛋白的浓度明显高于预后良好组。最新研究也显示,对重型TBI患者随访6个月,预后良好组血清Tau蛋白(74.26 pg/ml)显著低于预后不良组(127.32 pg/ml) [39]。但是Tau蛋白的预测准确性仍需大量前瞻性研究进行验证。

6.3. 中链脂肪酸

线粒体在脑损伤相关病理生理学和能量代谢中发挥重要作用。中链脂肪酸(癸酸和辛酸)作为氧化磷酸化的解耦剂和代谢抑制剂可造成线粒体功能障碍 [40]。一些研究也表明,癸酸和辛酸在脑能量代谢中发挥作用,可造成脂质和蛋白质氧化损伤。中链脂肪酸容易穿过血脑屏障 [41]。研究发现,两种中链脂肪酸(癸酸和辛酸)在TBI中升高,并与TBI患者的预后不良相关。在已建立的CRASH临床模型中加入中链脂肪酸,可显著改善对患者预后的预测 [42]。

7. 结论

综上所述,TBI生物标记物是一种有广泛应用前景的预测预后工具,其可改善患者的治疗和管理。生物标记物不仅有助于制定或改进TBI的治疗指南,对TBI损伤机制的研究和药物靶点的识别均有帮助。其随时间变化指导治疗,可潜在降低临床治疗的风险和成本。生物标记物的潜在性别和年龄差异,以及对治疗干预的敏感性需要在未来的研究中进一步检测。生物标记物检测的快速发展,在TBI管理和治疗方面有很大的前景,但是其效能的反复验证又是漫长的过程。

参考文献

[1] Stein, D.M., Feather, C.B. and Napolitano, L.M. (2017) Traumatic Brain Injury Advances. Critical Care Clinics, 33, 1-13.
https://doi.org/10.1016/j.ccc.2016.08.008
[2] Dixon, K.J. (2017) Pathophysiology of Traumatic Brain Injury. Physical Medicine & Rehabilitation Clinics of North America, 28, 215-225.
https://doi.org/10.1016/j.pmr.2016.12.001
[3] Jiang, J.Y., Gao, G.Y., Feng, J.F., Mao, Q., Chen, L.G., Yang, X.F., et al. (2019) Traumatic Brain Injury in China. The Lancet Neurology, 18, 286-295.
https://doi.org/10.1016/S1474-4422(18)30469-1
[4] Maas, A.I.R., Menon, D.K., Adelson, P.D., Andelic, N., Bell, M.J., Belli, A., et al. (2017) Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. Lancet Neurology, 16, 987-1048.
https://doi.org/10.1016/S1474-4422(17)30371-X
[5] Liu, M., Chi, Z., Liu, W., Luo, P., Zhang, L., Wang, Y., et al. (2015) A Novel Rat Model of Blast-Induced Traumatic Brain Injury Simulating Different Damage Degree: Implications for Morphological, Neurological, and Biomarker Changes. Frontiers in Cellular Neuroscience, 9, Article No. 168.
https://doi.org/10.3389/fncel.2015.00168
[6] Topolovec-Vranic, J., Pollmann-Mudryj, M.A., Ouchterlony, D., Klein, D., Spence, J., Romaschin, A., et al. (2011) The Value of Serum Biomarkers in Prediction Models of Outcome after Mild Traumatic Brain Injury. Journal of Trauma & Acute Care Surgery, 71, S478-S486.
https://doi.org/10.1097/TA.0b013e318232fa70
[7] Berger, P.R. (2006) The Use of Serum Biomarkers to Predict Outcome after Traumatic Brain Injury in Adults and Children. Journal of Head Trauma Rehabilitation, 21, 315-333.
https://doi.org/10.1097/00001199-200607000-00004
[8] Buonora, J.E., Yarnell, A.M., Lazarus, R.C., Mousseau, M., Latour, L.L., Rizoli, S.B., et al. (2015) Multivariate Analysis of Traumatic Brain Injury: Development of an Assessment Score. Frontiers in Neurology, 6, Article No. 68.
https://doi.org/10.3389/fneur.2015.00068
[9] Papa, L., Lewis, L.M., Silvestri, S., Falk, J.L., Giordano, P., Brophy, G.M., et al. (2012) Serum Levels of Ubiquitin C-Terminal Hydrolase Distinguish Mild Traumatic Brain Injury from Trauma Controls and Are Elevated in Mild and Moderate Traumatic Brain Injury Patients with Intracranial Lesions and Neurosurgical Intervention. The Journal of Trauma and Acute Care Surgery, 72, 1335-1344.
https://doi.org/10.1097/TA.0b013e3182491e3d
[10] Mondello, S., Linnet, A., Buki, A., Robicsek, S., Gabrielli, A., Tepas, J., et al. (2012) Clinical Utility of Serum Levels of Ubiquitin C-Terminal Hydrolase as a Biomarker for Severe Traumatic Brain Injury. Neurosurgery, 70, 666-675.
https://doi.org/10.1227/NEU.0b013e318236a809
[11] Li, J., Yu, C., Sun, Y. and Li, Y. (2015) Serum Ubiquitin C-Terminal Hydrolase L1 as a Biomarker for Traumatic Brain Injury: A Systematic Review and Meta-Analysis. The American Journal of Emergency Medicine, 33, 1191-1196.
https://doi.org/10.1016/j.ajem.2015.05.023
[12] Takala, R., Posti, J.P., Runtti, H., Newcombe, V.F., Outtrim, J., Katila, A.J., et al. (2016) Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury. World Neurosurgery, 87, 8-20.
https://doi.org/10.1016/j.wneu.2015.10.066
[13] Frankel, M., Fan, L.Q., et al. (2019) Association of Very Early Serum Levels of S100B, Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and Spectrin Breakdown Product with Outcome in ProTECT III. Journal of Neurotrauma, 36, 2863-2871.
https://doi.org/10.1089/neu.2018.5809
[14] Di Battista, A.P., Buonora, J.E., Rhind, S.G., Hutchison, M.G., Baker, A.J., Rizoli, S.B., et al. (2015) Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury:Potential Utility of a Multi-Marker Approach in Characterizing Outcome. Frontiers in Neurology, 6, Article No. 110.
https://doi.org/10.3389/fneur.2015.00110
[15] Egea-Guerrero, J.J., Murillo-Cabezas, F., Gordillo-Escobar, E., Rodríguez-Rodríguez, A., Enamorado-Enamorado, J., Revuelto-Rey, J., et al. (2013) S100B Protein May Detect Brain Death Development after Severe Traumatic Brain Injury. Journal of Neurotrauma, 30, 1762-1769.
https://doi.org/10.1089/neu.2012.2606
[16] Rainey, T., Lesko, M., Sacho, R., Lecky, F. and Childs, C. (2009) Predicting Outcome after Severe Traumatic Brain Injury Using the Serum S100B Biomarker: Results Using a Single (24h) Time-Point. Resuscitation, 80, 341-345.
https://doi.org/10.1016/j.resuscitation.2008.11.021
[17] Thelin, E.P., Nelson, D.W., Bellander, B.M. (2017) A Review of the Clinical Utility of Serum S100B Protein Levels in the Assessment of Traumatic Brain Injury. Acta Neurochirurgica, 159, 209-225.
https://doi.org/10.1007/s00701-016-3046-3
[18] Bouvier, D., Balayssac, D., Durif, J., Mourgues, C., Sarret, C., Pereira, B., et al. (2019) Assessment of the Advantage of the Serum S100B Protein Biomonitoring in the Management of Paediatric Mild Traumatic Brain Injury—PROS100B: Protocol of a Multicentre Unblinded Stepped Wedge Cluster Randomised Trial. BMJ Open, 9, Article ID: e027365.
https://doi.org/10.1136/bmjopen-2018-027365
[19] Thelin, E.P., Jeppsson, E., Frostell, A., Svensson, M., Mondello, S., Bellander, B.M., et al. (2016) Utility of Neuron-Specific Enolase in Traumatic Brain Injury; Relations to S100B Levels, Outcome, and Extracranial Injury Severity. Critical Care, 20, Article No. 285.
https://doi.org/10.1186/s13054-016-1450-y
[20] Lei, J., Gao, G., Feng, J., Jin, Y., Wang, C., Mao, Q., et al. (2015) Glial Fibrillary Acidic Protein as a Biomarker in Severe Traumatic Brain Injury Patients: A Prospective Cohort Study. Critical Care, 19, Article No. 362.
https://doi.org/10.1186/s13054-015-1081-8
[21] Czeiter, E., Mondello, S., Kovacs, N., Sandor, J., Gabrielli, A., Schmid, K., et al. (2012) Brain Injury Biomarkers May Improve the Predictive Power of the Impact Outcome Calculator. Journal of Neurotrauma, 29, 1770-1778.
https://doi.org/10.1089/neu.2011.2127
[22] Gao, J. and Zheng, Z. (2016) Development of Prognostic Models for Patients with Traumatic Brain Injury: A Systematic Review. International Journal of Clinical and Experimental Medicine, 8, 19881-19885.
[23] Shemilt, M., Boutin, A., Lauzier, F., Zarychanski, R., Moore, L., McIntyre, L.A., et al. (2019) Prognostic Value of Glial Fibrillary Acidic Protein in Patients with Moderate and Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Critical Care Medicine, 47, e522-e529.
https://doi.org/10.1097/CCM.0000000000003728
[24] Mcmahon, P.J, Panczykowski, D., Yue, J.K., Puccio, A.M., Inoue, T., Sorani, M.D., et al. (2014) Measurement of the GFAP-BDP Biomarker for the Detection of Traumatic Brain Injury Compared to CT and MRI. Journal of Neurotrauma, 32, 527-533.
https://doi.org/10.1089/neu.2014.3635
[25] Vartanian, M.G., Cordon, J.J., Kupina, N.C., Schielke, G.P., Posner, A., Raser, K.J., et al. (1996) Phenytoin Pretreatment Prevents Hypoxic-Ischemic Brain Damage in Neonatal Rats. Brain Research Developmental Brain Research, 95, 169-175.
https://doi.org/10.1016/0165-3806(96)00073-9
[26] Korley, F.K., Nikolian, V.C., Williams, A.M., Dennahy, I.S., Weykamp, M. and Alam, H.B. (2018) Valproic Acid Treatment Decreases Serum Glial Fibrillary Acidic Protein and Neurofilament Light Chain Levels in Swine Subjected to Traumatic Brain Injury. Journal of Neurotrauma, 35, 1185-1191.
https://doi.org/10.1089/neu.2017.5581
[27] Žurek, J. and Fedora, M. (2012) The Usefulness of S100B, NSE, GFAP, NF-H, Secretagogin and Hsp70 as a Predictive Biomarker of Outcome in Children with Traumatic Brain Injury. Acta Neurochirurgica, 154, 93-103.
https://doi.org/10.1007/s00701-011-1175-2
[28] Rakhit, S., Nordness, M.F., Lombardo, S.R., Cook, M., Smith, L. and Patel, M.B. (2020) Management and Challenges of Severe Traumatic Brain Injury. Seminars in Respiratory and Critical Care Medicine, 42, 127-144.
https://doi.org/10.1055/s-0040-1716493
[29] Ottens, A.K., Golden, E.C., Bustamante, L., Hayes, R.L., Denslow, N.D. and Wang, K.K.W. (2010) Proteolysis of Multiple Myelin Basic Protein Isoforms after Neurotrauma: Characterization by Mass Spectrometry. Journal of Neurochemistry, 104, 1404-1414.
https://doi.org/10.1111/j.1471-4159.2007.05086.x
[30] Liu, M.C., Akle, V., Zheng, W., Kitlen, J., O’Steen, B., Larner, S.F., et al. (2006) Extensive Degradation of Myelin Basic Protein Isoforms by Calpain Following Traumatic Brain Injury. Journal of Neurochemistry, 98, 700-712.
https://doi.org/10.1111/j.1471-4159.2006.03882.x
[31] Rose-John, S. (2012) IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6. International Journal of Biological Sciences, 8, 1237-1247.
https://doi.org/10.7150/ijbs.4989
[32] Santarsieri, M., Kumar, R.G., Kochanek, P.M., Berga, S. and Wagner, A.K. (2015) Variable Neuroendocrine-Immune Dysfunction in Individuals with Unfavorable Outcome after Severe Traumatic Brain Injury. Brain, Behavior, and Immunity, 45, 15-27.
https://doi.org/10.1016/j.bbi.2014.09.003
[33] Olivecrona, Z., Dahlqvist, P. and Koskinen, L. (2013) Acute Neuro-Endocrine Profile and Prediction of Outcome after Severe Brain Injury. Scandinavian Journal of Trauma Resuscitation & Emergency Medicine, 21, Article No. 33.
https://doi.org/10.1186/1757-7241-21-33
[34] Donegan, J.J., Girotti, M., Weinberg, M.S. and Morilak, D.A. (2014) A Novel Role for Brain Interleukin-6: Facilitation of Cognitive Flexibility in Rat Orbitofrontal Cortex. Journal of Neuroscience, 34, 953-962.
https://doi.org/10.1523/JNEUROSCI.3968-13.2014
[35] Kushi, H., Saito, T., Makino, K. and Hayashi, N. (2003) L-8 Is a Key Mediator of Neuroinflammation in Severe Traumatic Brain Injuries. In: Kuroiwa, T., et al., Eds., Brain Edema XII, Vol. 86, Springer, Vienna, 347-350.
https://doi.org/10.1007/978-3-7091-0651-8_74
[36] Garcia, J.M., Stillings, S.A., Leclerc, J.L., Phillips, H., Edwards, N.J., Robicsek, S.A., et al. (2017) Role of Interleukin-10 in Acute Brain Injuries. Frontiers in Neurology, 8, Article No. 244.
https://doi.org/10.3389/fneur.2017.00244
[37] Montgomery, S.L. and Bowers, W.J. (2011) Tumor Necrosis Factor-alpha and the Roles It Plays in Homeostatic and Degenerative Processes within the Central Nervous System. Journal of Neuroimmune Pharmacology, 7, 42-59.
https://doi.org/10.1007/s11481-011-9287-2
[38] Zwirner, J., Lier, J., Franke, H., Hammer, N., Matschke, J., Trautz, F., et al. (2021) GFAP Positivity in Neurons Following Traumatic Brain Injuries. International Journal of Legal Medicine, 135, 2323-2333.
https://doi.org/10.1007/s00414-021-02568-1
[39] Ilzecki, M., Przywara, S., Ilzecka, J., Grabarska, A., Terlecki, P., Stepulak, A., et al. (2016) Serum Microtubule Associated Protein Tau and Myelin Basic Protein as the Potential Markers of Brain Ischaemia-Reperfusion Injury in Patients Undergoing Carotid Endarterectomy. Acta Angiologica, 22, 37-43.
https://doi.org/10.5603/AA.2016.0008
[40] Saw, M.M., Chamberlain, J., Barr, M., Morgan, M.P., Burnett, J.R. and Ho, K.M. (2014) Differential Disruption of Blood-Brain Barrier in Severe Traumatic Brain Injury. Neurocritical Care, 20, 209-216.
https://doi.org/10.1007/s12028-013-9933-z
[41] Man, J.P., Wen, Y.L., Ahn, Y.H., Lee, P.H., Choi, S., Kim, K.R., et al. (2009) The Free Fatty Acid Metabolome in Cerebral Ischemia Following Human Mesenchymal Stem Cell Transplantation in Rats. Clinica Chimica Acta, 402, 25-30.
https://doi.org/10.1016/j.cca.2008.12.022
[42] Orešič, M., Posti, J.P., Kamstrup-Nielsen, M.H., Takala, R.S.K., Lingsma, H.F., Mattila, I., et al. (2016) Human Serum Metabolites Associate with Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine, 12, 118-126.
https://doi.org/10.1016/j.ebiom.2016.07.015