高迁移率族蛋白B1在呼吸系统疾病中的研究进展
Research Progress of High-Mobility Group Box Protein B1 in Respiratory Diseases
DOI: 10.12677/ACM.2021.1111731, PDF, HTML, XML, 下载: 431  浏览: 10,598  科研立项经费支持
作者: 邵润玉, 张彩莲*, 郭晋兰, 李 欣, 门 凯:延安大学附属医院呼吸科三病区,陕西 延安
关键词: HMGB1哮喘肺纤维化慢阻肺肺炎肺癌HMGB1 Asthma Pulmonary Fibrosis COPD Pneumonia Lung Cancer
摘要: 促炎因子高迁移率族蛋白盒(High Mobility Group Box Protein)是一种非组蛋白且普遍存在的染色体蛋白,富含构成高迁移率族蛋白家族一部分的活性染色质,由人类hmgb1基因(13q12)编码,特别是高迁移率族蛋白具有特定的基序,即脱氧核糖核酸结合域。高迁徙率族蛋白家族有四个成员(HMGB1-4),其中HMGB1蛋白(也称为HMG1、HMG-1、HMG 1、amphoterin、p30)是整个HMG家族蛋白中表达频率最高的。本文就HMGB1在呼吸系统疾病中的作用、应用和潜在的诊断应用作一综述,以期为上述疾病诊断和治疗提供新思路。
Abstract: The proinflammatory factor high-mobility group box protein (HMGB) is a non-histone and ubiquitous chro-mosomal protein found enriched in active chromatin forming part of the high mobility group family of proteins and is encoded by the HMGB1 gene (13q12) in human. In particular HMGBs have specific motifs that are DNA-binding domains. The HMGBs are composed of four categories (HMGB1-4). HMGB1 (also known as HMG1, HMG-1, HMG 1, amphoterin, p30) is the most frequently expressed of the entire HMG family proteins. This review aim is to analyse advances on HMGB1 role, employment and potential diagnostic application in disease of respiratory system. It is expected to provide new ideas for the diagnosis and treatment of these diseases.
文章引用:邵润玉, 张彩莲, 郭晋兰, 李欣, 门凯. 高迁移率族蛋白B1在呼吸系统疾病中的研究进展[J]. 临床医学进展, 2021, 11(11): 4976-4982. https://doi.org/10.12677/ACM.2021.1111731

1. 引言

随着社会人口老龄化和环境因素的影响,呼吸功能损害的各种呼吸系病不断增加,是危害我国人民健康的常见疾病,而近年医疗技术水平不断提高,人们更加关注疾病的预防、早期发现、早期诊断及早期治疗。最近,一些研究表明,HMGB1作为促炎介质在不同的急性和慢性免疫疾病中起着关键作用,且与哮喘、肺纤维化、慢阻肺、肺炎、肺癌等肺部疾病的发展密切相关。HMGB1在呼吸系统各疾病中的潜在价值目前已成为研究热点。

2. HMGB1与哮喘

哮喘是一种复杂的疾病,其特征是反复发作且可逆的气流阻塞,与气道高反应性(AHR)和气道炎症相关。哮喘目前影响全球约3亿人,带来巨大的社会经济负担 [1] [2]。直到最近,哮喘的病因和发病机制仍然难以捉摸。然而,很明显,由炎性细胞因子释放诱导的气道炎症是该疾病慢性化和进展的原因 [3] [4]。为了提高对该疾病的认识,已经发现了新的气道炎症和呼吸道疾病生物标志物,其中包括HMGB1。

HMGB1是一种重要的蛋白,通过与RAGE和toll样受体(TRL)相互作用,经过一系列反应,导致一些细胞因子(TNF-α、IL-4和IL-6)的增加,这些是固有炎症反应的特征 [5],因此,HMGB1的增加与许多炎症性疾病有关,如过敏性哮喘等。

最近的研究已经阐明了免疫系统的作用,这得益于对两种典型的细胞因子IL-4和IL-13 (由辅助T细胞2型细胞(Th2)、嗜碱性粒细胞和乳腺细胞型过敏免疫系统分泌)的分析,这两种细胞因子参与了哮喘和过敏等病理情况,特别是IL-4Rα,它是IL-4同源受体中的一个亚基,IL-4Rα亚基和其他受体是STAT-6的激活因子,可激活信号转导器和因子-6 (STAT-6)的转录,STAT-6的激活可导致幼稚T-细胞分化为Th2效应细胞,并调节由IL-4和IL-13诱导的Th2趋化因子的产生 [6] [7],对于机体接受抗原的刺激从而释放IL-4非常重要,在免疫系统中发挥着主要作用。此外,已观察到IL-4、IL-13和STAT-6在过敏性哮喘Th2型免疫应答中的气道高反应性、炎症以及粘液产生的进展中具有基础性作用。因此,IL-4/STAT-6通路可作为HMGB1与哮喘之间联系的媒介参与哮喘的发病机制。

相关研究证明哮喘患者的HMGB-1痰水平及esRAGE水平明显高于健康对照组,且HMGB-1痰水平与疾病的严重程度基本一致,HMGB1或RAGE水平与FEV1%呈负相关,与中性粒细胞百分比呈正相关,与治疗前相比,治疗后中性粒细胞百分比、HMGB1和RAGE水平降低。Hou等人建立的慢性哮喘小鼠模型,表明接受了HMGB1抗体治疗后,模型动物表现出IgE、炎性细胞积累、气道高反应性(AHR)、粘液生成、平滑肌厚度和肺胶原水平的降低 [8]。在卵蛋白诱导的气道超敏反应的小鼠模型中,一种HMGB1抗体可:1) 显著抑制HMGB1的肺表达;2) 抑制HMGB1诱导的气道中性粒细胞浸润;3) 使白细胞介素-23 (IL-23)水平和气道高反应性降低;4) 减少辅助T细胞17型(Th17)分泌IL-17、IL-4和IFN-γ,此外,嗜酸性气道炎症、非特异性气道阻力和气道反应性在这些动物中也显著降低 [9],故HMGB1可作为哮喘潜在治疗靶点以进一步深入探索研究。

3. HMGB1与慢性阻塞性肺疾病

慢性阻塞性肺疾病(慢阻肺)的特征是进行性气流阻塞和气道炎症,基因与环境的相互作用、感染和慢性炎症以及氧化应激参与了该疾病的发病机制 [10],目前的抗炎疗法在维持肺功能和慢性阻塞性肺疾病症状方面效果不佳 [10] [11]。这强调了寻找疾病发病机制中涉及的新分子靶点以阻断病理进展的必要性。

烟雾颗粒刺激是COPD炎症进展的主要危险因素之一,香烟可刺激气道上皮细胞释放HMGB1等多种模式相关分子,HMGB1与RAGE、TLR2和TLR4相互作用,后者转导激活蛋白激酶(MAPKs)和核因子kappaB (NF-κB)的细胞内信号,从而刺激促炎细胞因子的释放 [12],导致炎症的维持。但要明确的是,即使报告的HMGB1受体列表相当广泛,许多声称作为HMGB1受体的受体系统实际上是与HMGB1紧密结合的分子受体,只有两个受体系统,RAGE和Toll样受体4 (TLR4)是完全被确认为已建立的HMGB1受体 [13]。

相关研究报道,Shang等人率先注意到COPD患者血浆HMGB1浓度增高 [14],Hanbyeol在2017年体外实验中发现抑制RAGE可以逆转COPD的肺气肿 [15],这项研究表明RAGE在COPD中具有相当重要的保护作用。2018年有相关研究显示慢阻肺小鼠中HMGB1与TLR4的浓度水平均高于正常小鼠,且肺功能提示FEV与HMGB1、TLR4负相关,HMGB1的mRNA、蛋白质表达在实验组升高 [16],这表明HMGB1/TLR4通路在慢阻肺发病及进展中的作用。Wang等人研究了核NF-κB如何影响COPD动物模型中HMGB1的表达,他们给48只大鼠(正常对照组、慢性阻塞性肺病大鼠和慢性阻塞性肺病伴缺氧大鼠)服用NF-κB抑制剂,研究显示COPD影响的大鼠肺组织中HMGB1 mRNA、蛋白质和NF-κB表达水平的增加,HMGB1 mRNA和蛋白表达与NF-κB蛋白表达呈正相关,服用NF-κB抑制剂后,肺组织中的HMGB1 mRNA和蛋白表达显著降低 [17]。这些研究可为肺气肿/COPD治疗提供了新思路,但目前相关研究不多,且为体外实验,HMGB1及其受体RAGE、TLR4在慢阻肺疾病进展对患者肺功能、预后、并发症等多种因素产生的影响,仍需进一步明确其作用。

4. HMGB1与肺纤维化

肺纤维化(PF)是一种肺间质性疾病,常与肺癌相关。PF的中位生存期为3年 [18],PF的特征是肺瘢痕和肌瘤的形成、炎症、血管渗漏、肌成纤维细胞聚集和细胞外基质蛋白的沉积 [19] [20],PF可增加其他疾病的易感性,如肺炎、气胸、肺动脉高压、肺栓塞,并最终导致呼吸和心力衰竭 [21] [22]。接触有害物质(如石棉、污染物和香烟)以及患有自身免疫性疾病、结节病、慢性阻塞性肺病和病毒感染等疾病均可增加患PF的风险 [19] [23]。

HMGB1在肺纤维化和气道重塑中起重要作用。HMGB1刺激活性氧(ROS)的产生,增加α-平滑肌动蛋白(α-sma)、转化生长因子β (TGF-β)和胶原沉积,诱导成纤维细胞向肌成纤维细胞分化,并增加MUC8 (MUC8是一种黏液蛋白,表示PF中常见的异常肺泡上皮)基因表达 [24] [25]。

HMGB1-RAGE轴在PF炎症病理中发挥重要作用,与纤维化组织的重塑和沉积有关。据报道,RAGE水平升高与肺损伤的改善和肺泡上皮细胞凋亡的减少有关,但在博莱霉素诱导的PF模型中,博来霉素给药14天后野生型小鼠存活率为29%,而RAGE敲除小鼠存活率为100%,且纤维化沉积水平和气道TGf‐β1的浓度均降低 [26],因此可能HMGB1/RAGE在促纤维化过程中的相互作用和信号传导在PF的发生发展中发挥作用。

HMGB1介导的NF-κB激活可通过SMAD-STAT-3信号通路诱导α-sma和TGF-β1的上调,激活的STAT-3通路可以增加α-sma、胶原沉积和总气道的白细胞,并可以诱导细胞增殖和TGF-β依赖的肌成纤维细胞分化 [25] [27] [28],Zhang等人报道了肺泡上皮细胞暴露于TGF-β1可促进HMGB1的表达,降低RAGE的表达。通过吡啶二硫代氨基甲酸酯(PDTC)抑制NF-κB可减少水肿、炎症的组织学标记物、HMGB1诱导的TGF-β1释放、胶原蛋白-1水平和α-sma表达 [25] [29]。Zhang等人也报道,在PF模型中,博莱霉素处理的大鼠肺组织中的胶原纤维明显高于对照处理的大鼠,而抗HMGB1抗体的使用显著减轻了肺泡壁的增厚,降低了肺匀浆中胶原蛋白的含量,并降低了气道中总免疫细胞的数量 [30]。这些研究提示HMGB1在PF发病机制和疾病严重程度中发挥作用,而靶向RAGE或HMGB1的化合物虽已用于PF模型,但这些化合物的临床疗效仍有待确定。HMGB1可能是一个新的治疗靶点,有可能降低PF中的死亡率和症状严重程度。

5. HMGB1与肺炎

肺炎是一种主要影响肺泡的肺部炎症状态。肺炎的主要原因是肺实质感染,其症状常表现为干咳、胸痛、发烧和呼吸困难 [31]。肺炎可由细菌、病毒和真菌引起。全球每年有100万5岁以下儿童死于肺炎,比死于任何其他儿童传染病,包括艾滋病毒、疟疾和结核病的人数还要多 [32]。根据肺炎发生的环境,肺炎可分为:1) 社区获得性肺炎(CAP),2) 医院获得性肺炎,3) 卫生保健获得性肺炎和4)吸入性肺炎 [33] [34]。

细菌,包括肺炎支原体、肺炎链球菌、金黄色葡萄球菌和大肠杆菌,已经被证明可以诱导HMGB1释放到小鼠的气道中 [35]。病毒,如人类腺病毒和甲型流感病毒,可以引起HMGB1的释放,随后通过激活NF-κB诱导HMGB1介导的炎症反应 [36]。此外,这些病原体不仅通过与RAGE等模式识别受体(PRRs)相互作用促进HMGB1的表达和释放,而且还上调这些受体的表达 [37],加剧下游的级联反应,从而导致炎症反应。

据报道,与健康人群相比,不同类型肺炎患者肺泡灌洗液(BALF)、痰液和血浆中HMGB1水平显著升高,研究表明肺炎患者血浆/血清中HMGB1浓度升高,并在医院治疗的整个过程中保持升高 [38]。但有趣的是,Wang等报道肺炎患者在抗生素治疗后血浆HMGB1水平下降,此外,血浆HMGB1水平与肺炎严重程度指数(PSI)评分呈正相关 [39],提示HMGB1水平可能指示肺炎严重程度,尽管在其他研究中未观察到这种相关性,这样的结果可能是样本量小、肺炎的病原体不同或住院期间的其他混杂因素引起的。这些研究提示,显著升高的HMGB1水平可能是肺炎的一个生物标志物,但并不表明肺炎的预后。

使用抗HMGB1抗体的研究可显示HMGB1介导肺炎的病理,在众多以HMGB1为靶点的小鼠肺炎模型中,单克隆抗体不仅减轻了炎症性肺损伤,而且降低了呼吸机相关肺炎、金黄色葡萄球菌肺炎、甲型流感病毒亚型H5N1和H1N1引起的肺炎小鼠肺中的细菌负荷 [40]。在小鼠和人腺病毒感染的上皮细胞中,通过用抗HMGB1抗体中和HMGB1,可使HMGB1介导的炎症反应减轻,同时HMGB1受体(如TLR4, TLR9, RAGE)的表达和NF-κB的活化减少 [36] [40]。因此,这些研究表明HMGB1介导了肺炎的发病机制以及可作为治疗切入点进一步深入探索。

6. HMGB1与肺癌

肺癌是严重威胁人类生命健康的常见恶性肿瘤之一,其致死率高的主要原因是浸润性生长及转移,而肿瘤细胞的浸润、转移主要与蛋白的表达有关。在肺癌病理类型中,大约80%~85%为非小细胞肺癌 [41] [42]。

HMGB1作为一种染色质蛋白与肿瘤发生及发展密切相关,细胞外HMGB1通过激活RAGE/JNK/NF-κB通路诱导炎症,从而产生非小细胞肺癌(NSCLC)的癌前病变 [43]。此外,HMGB1-RAGE信号可以激活NF-κB、MAPK和IV型胶原酶(MMP2/9)通路,从而诱发癌细胞生长、入侵和转移 [44]。肺癌患者细胞外HMGB1水平升高与不良预后相关,与健康个体相比,非小细胞肺癌(NSCLC)患者的血清HMGB1水平显著升高 [45],血清HMGB1水平不仅与肿瘤大小和肺癌进展分期呈正相关,而且在肿瘤切除1个月后显著降低 [46],这些研究表明,血清HMGB1水平升高可作为NSCLC诊断和预后的生物标志物。肺癌导致血清中HMGB1水平的升高可能是由于癌细胞中HMGB1产生和释放的增加,在肿瘤发展的早期阶段,快速的细胞生长大于有限的血液供应和生理空间,导致缺血环境,诱导局部坏死,坏死通常出现在肿瘤的核心区域 [47],这进一步增加了HMGB1的产生和释放。

HMGB1也被认为通过调节自噬(通过激活丝裂原激活蛋白激酶(MEK)-细胞外信号调节激酶(ERK)信号通路调控自噬体的形成)来促进NSCLC的耐药。研究显示在多西他赛治疗的肺腺癌细胞中,HMGB1从细胞核向细胞质转移以抑制自噬,促进细胞对多西他赛的耐药,而通过抑制HMGB1的易位,可减弱这种自噬保护,则细胞恢复对多西他赛的敏感性 [48]。因此,有关HMGB1的研究可能为调节肿瘤的发生、发展和转移提供新的治疗方法。

7. 结语

呼吸系统疾病是全球性的、严重的公共卫生问题。临床上可选用抗胆碱药、糖皮质激素等药物治疗此类疾病,但其长期应用有不同程度的毒副作用且效果不佳。因此迫切需要寻找新的治疗靶点及开发新的治疗药物。HMGB1不仅参与了哮喘、肺纤维化、慢阻肺、肺炎、肺癌等疾病的发展,抑制HMGB1相关信号的激活还能减少炎症细胞的聚集、抑制炎症因子分泌、减少促纤维化因子释放及抑制肿瘤细胞迁移、侵袭等,对多种呼吸系统疾病具有潜在治疗价值。但更深地阐述HMGB1在呼吸系统疾病发生、发展过程中的具体机制,探究HMGB1相关信号通路抑制物在疾病治疗中的效果和科学性,仍需更多的实验依据。

基金项目

受资助基金号:81860014。

NOTES

*通讯作者Email: zcl@yau.edu.cn

参考文献

[1] Di Candia, L., Gomez, E., Venereau, E., et al. (2017) HMGB1 Is Upregulated in the Airways in Asthma and Potentiates Airway Smooth Muscle Contraction via TLR4. Journal of Allergy and Clinical Immunology, 140, 584-587.
https://doi.org/10.1016/j.jaci.2016.11.049
[2] Papi, A., Brightling, C., Pedersen, S.E., et al. (2018) Asthma. The Lancet, 391, 783-800.
https://doi.org/10.1016/S0140-6736(17)33311-1
[3] Thomas, R., Paolo, S., Pierre-Olivier, B., et al. (2018) Diagnosis and Management of Asthma—The Swiss Guidelines. Respiration; International Review of Thoracic Diseases, 95, 364-380.
https://doi.org/10.1159/000486797
[4] Gong, F., Pan, Y.H., Huang, X., et al. (2017) From Bench to Bedside: Therapeutic Potential of Interleukin-9 in the Treatment of Asthma. Experimental and Therapeutic Medicine, 13, 389-394.
https://doi.org/10.3892/etm.2017.4024
[5] Marsh, A.M., Nguyen, A.H., Parker, T.M., et al. (2017) Clinical Use of High Mobility Group Box 1 and the Receptor for Advanced Glycation end Products in the Prognosis and Risk Stratification of Heart Failure: A Literature Review. Canadian Journal of Physiology and Pharmacology, 95, 253-259.
https://doi.org/10.1139/cjpp-2016-0299
[6] Liu, Y., Zhang, H., Ni, R., et al. (2017) IL-4R Suppresses Airway Inflammation in Bronchial Asthma by Inhibiting the IL-4/STAT6 Pathway. Pulmonary Pharmacology and Therapeutics, 43, 32-38.
https://doi.org/10.1016/j.pupt.2017.01.006
[7] Chen, S., Wang, Y., Gong, G., et al. (2015) Ethyl Pyruvate Attenuates Murine Allergic Rhinitis Partly by Decreasing High Mobility Group Box 1 Release. Experimental Biology and Medicine, 240, 1490-1499.
https://doi.org/10.1177/1535370214566563
[8] Hou, C., Kong, J., Liang, Y., et al. (2015) HMGB1 Contributes to Allergen-Induced Airway Remodeling in a Murine Model of Chronic Asthma by Modulating Airway Inflammation and Activating Lung Fibroblasts. Cellular & Molecular Immunology, 12, 409-423.
https://doi.org/10.1038/cmi.2014.60
[9] Shim, E.-J., Chun, E., Lee, H.-S., et al. (2012) The Role of High-Mobility Group Box-1 (HMGB1) in the Pathogenesis of Asthma. Clinical & Experimental Allergy, 42, 958-965.
https://doi.org/10.1111/j.1365-2222.2012.03998.x
[10] 陈亚红. 2021年GOLD慢性阻塞性肺疾病诊断、治疗及预防全球策略解读[J]. 中国医学前沿杂志(电子版), 2021, 13(1): 16-37.
[11] Kim, V., Rogers, T.J. and Criner, G.J. (2008) New Concepts in the Pathobiology of Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 5, 478-485.
https://doi.org/10.1513/pats.200802-014ET
[12] Yang, H., et al. (2012) Novel Insights for High Mobility Group Box 1 Protein-Mediated Cellular Immune Response in Sepsis: A Systemic Review. World Journal of Emergency Medicine, 3, 165-171.
https://doi.org/10.5847/wjem.j.issn.1920-8642.2012.03.001
[13] Huan, Y., Haichao, W. and Ulf, A. (2020) Targeting Inflammation Driven by Hmgb1. Frontiers in Immunology, 11, 484.
https://doi.org/10.3389/fimmu.2020.00484
[14] Shang, G.-H., Jia, C.-Q., Tian, H., et al. (2009) Serum High Mobility Group Box Protein 1 as a Clinical Marker for Non-Small Cell Lung Cancer. Respiratory Medicine, 103, 1949-1953.
https://doi.org/10.1016/j.rmed.2009.05.019
[15] Lee, H., Park, J., Kim, W.J., et al. (2017) Blockade of Rage Ameliorates Elastase-Induced Emphysema Development and Progression via Rage-Damp Signaling. The FASEB Journal, 31, 2076-2098.
https://doi.org/10.1096/fj.201601155R
[16] Liu, W., Liu, Z.G., Zhang, W.D. and Cai, S.X. (2018) Ulinastatin Protects the Lungs of Copd Rats through the Hmgb1/tlr4 Signaling Pathway. Oncology Letters, 16, 4057-4063.
[17] Wang, C.M., Jiang, M. and Wang, H.J. (2013) Effect of NF-κB Inhibitor on High-Mobility Group Protein B1 Expression in a COPD Rat Model. Molecular Medicine Reports, 7, 499-502.
https://doi.org/10.3892/mmr.2012.1181
[18] Schwartz, D.A. (2016) Idopathich Pulmonary Fibrosis Is a Complex Genetic Disorder. Transactions of the American Clinical and Climatological Association, 127, 34-45.
[19] King, T.E., Pardo, A. and Selman, M. (2011) Idiopathic Pulmonary Fibrosis. The Lancet, 378, 1949-1961.
https://doi.org/10.1016/S0140-6736(11)60052-4
[20] Li, L.-C., Gao, J. and Li, J. (2014) Emerging Role of HMGB1 in Fibrotic Diseases. Journal of Cellular and Molecular Medicine, 18, 2331-2339.
https://doi.org/10.1111/jcmm.12419
[21] Hubbard, R.B., Smith, C., Le Jeune, I., et al. (2008) The Association between Idiopathic Pulmonary Fibrosis and Vascular Disease. American Journal of Respiratory and Critical Care Medicine, 178, 1257-1261.
https://doi.org/10.1164/rccm.200805-725OC
[22] Sprunger, D.B., Olson, A.L., Huie, T.J., et al. (2012) Pulmonary Fibrosis Is Associated with an Elevated Risk of Thromboembolic Disease. European Respiratory Journal, 39, 125-132.
https://doi.org/10.1183/09031936.00041411
[23] Shigemitsu, H. and Azuma, A. (2011) Sarcoidosis and Interstitial Pulmonary Fibrosis; Two Distinct Disorders or Two Ends of the Same Spectrum. Current Opinion in Pulmonary Medicine, 17, 303-307.
https://doi.org/10.1097/MCP.0b013e3283486d52
[24] Kim, D.E., Min, K., Kim, J.S., et al. (2012) High-Mobility Group Box-1 Protein Induces Mucin 8 Expression through the Activation of the JNK and PI3K/Akt Signal Pathways in Human Airway Epithelial Cells. Biochemical and Biophysical Research Communications, 421, 436-441.
https://doi.org/10.1016/j.bbrc.2012.03.131
[25] Wang, Q., Wang, J., Wang, J., et al. (2017) HMGB1 Induces Lung Fibroblast to Myofibroblast Differentiation through NF-κB-Mediated TGF-β1 Release. Molecular Medicine Reports, 15, 3062-3068.
https://doi.org/10.3892/mmr.2017.6364
[26] He, M., Kubo, H., Ishizawa, K., et al. (2007) The Role of the Receptor for Advanced Glycation EN-Products in Lung Fibrosis. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 293, L1427-L1436.
https://doi.org/10.1152/ajplung.00075.2007
[27] Pedroza, M., Le, T.T., Lewis, K., et al. (2016) STAT-3 Contributes to Pulmonary Fibrosis through Epithelial Injury and Fibroblast-Myofibroblast Differentiation. FASEB Journal, 30, 129-140.
https://doi.org/10.1096/fj.15-273953
[28] Tang, L.-Y., Heller, M., Meng, Z., et al. (2017) Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway. Journal of Biological Chemistry, 292, 4302-4312.
https://doi.org/10.1074/jbc.M116.773085
[29] Li, C., Yu, Y., Li, W., et al. (2017) Phycocyanin Attenuates Pulmonary Fibrosis via the TLR2-MyD88-NF-κB Signaling Pathway. Scientific Reports, 7, Article No. 5843.
https://doi.org/10.1038/s41598-017-06021-5
[30] Hamada, N., Maeyama, T., Kawaguchi, T., et al. (2008) The Role of High Mobility Group Box1 in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 39, 440-447.
https://doi.org/10.1165/rcmb.2007-0330OC
[31] Grief, S.N. and Loza, J.K. (2018) Guidelines for the Evaluation and Treatment of Pneumonia. Primary Care: Clinics in Office Practice, 45, 485-503.
https://doi.org/10.1016/j.pop.2018.04.001
[32] López Del Prado, G.R., Hernán García, C., Moreno Cea, L., et al. (2014) Malaria in Developing Countries. The Journal of Infection in Developing Countries, 8, 1-4.
https://doi.org/10.3855/jidc.4610
[33] Barbier, F. andremont, A., Wolff, M., et al. (2013) Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Recent Advances in Epidemiology and Management. Current Opinion in Pulmonary Medicine, 19, 216-228.
https://doi.org/10.1097/MCP.0b013e32835f27be
[34] Ottosen, J. and Evans, H. (2014) Pneumonia: Challenges in the Definition, Diagnosis, and Management of Disease. Surgical Clinics of North America, 94, 1305-1317.
https://doi.org/10.1016/j.suc.2014.09.001
[35] Ding, Y., Chu, C., Li, Y.Q., et al. (2018) High Expression of HMGB1 in Children with Refractory Mycoplasma pneumoniae Pneumonia. BioMed Central, 18, 439.
https://doi.org/10.1186/s12879-018-3346-8
[36] Tang, Z., Zang, N., Fu, Y., et al. (2018) HMGB1 Mediates HAdV-7 Infection-Induced Pulmonary Inflammation in Mice. Biochemical and Biophysical Research Communications, 501, 1-8.
https://doi.org/10.1016/j.bbrc.2018.03.145
[37] Morbini, P., Villa, C., Campo, I., et al. (2006) The Receptor for Advanced Glycation end Products and Its Ligands: A New Inflammatory Pathway in Lung Disease? Modern Pathology, 19, 1437-1445.
https://doi.org/10.1038/modpathol.3800661
[38] Alpkvist, H., Athlin, S., Mölling, P., et al. (2018) High HMGB1 Levels in Sputum Are Related to Pneumococcal Bacteraemia But Not to Disease Severity in Community-Acquired Pneumonia. Scientific Reports, 8, Article No. 13428.
https://doi.org/10.1038/s41598-018-31504-4
[39] Wang, H.-L., Tsao, S.-M., Yeh, C.-B., et al. (2017) Circulating Level of High Mobility Group Box-1 Predicts the Severity of Community-Acquired Pneumonia: Regulation of Inflammatory Responses via the c-Jun N-Terminal Signaling Pathway in Macrophages. Molecular Medicine Reports, 16, 2361-2366.
https://doi.org/10.3892/mmr.2017.6892
[40] Hou, X.Q., Qin, J.L., Zheng, X.X., et al. (2014) Potential Role of High-Mobility Group Box 1 Protein in the Pathogenesis of Influenza H5N1 Virus Infection. Acta Virologica, 58, 69-75.
https://doi.org/10.4149/av_2014_01_69
[41] Ettinger, D.S., Wood, D.E., Akerley, W., et al. (2016) NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 4. Journal of the National Comprehensive Cancer Network, 14, 255-264.
https://doi.org/10.6004/jnccn.2016.0031
[42] Herbst, R.S., Morgensztern, D., et al. (2018) The Biology and Management of Non-Small Cell Lung Cancer. Nature: International Weekly Journal of Science, 553, 446-454.
https://doi.org/10.1038/nature25183
[43] Wu, L. and Yang, L. (2018) The Function and Mechanism of HMGB1 in Lung Cancer and Its Potential Therapeutic Implications. Oncology Letters, 15, 6799-6805.
https://doi.org/10.3892/ol.2018.8215
[44] Taguchi, A., Blood, D.C., del Toro, G., et al. (2000) Blockade of RAGE-Amphoterin Signalling Suppresses Tumour Growth and Metastases. Nature, 405, 354-360.
https://doi.org/10.1038/35012626
[45] Niki, M., Yokoi, T., Kurata, T., et al. (2017) New Prognostic Biomarkers and Therapeutic Effect of Bevacizumab for Patients with Non-Small-Cell Lung Cancer. Lung Cancer: Targets and Therapy, 8, 91-99.
https://doi.org/10.2147/LCTT.S138887
[46] Shang, G.-H., Jia, C.-Q., Tian, H., et al. (2009) Serum High Mobility Group Box Protein 1 as a Clinical Marker for Non-Small Cell Lung Cancer. Respiratory Medicine, 103, 1949-1953.
https://doi.org/10.1016/j.rmed.2009.05.019
[47] Carmeliet, P. (2005) Angiogenesis in Life, Disease and Medicine. Nature: International Weekly Journal of Science, 438, 932-936.
https://doi.org/10.1038/nature04478
[48] Pan, B., Chen, D., Huang, J., et al. (2014) HMGB1-Mediated Autophagy Promotes Docetaxel Resistance in Human Lung Adenocarcinoma. Molecular Cancer, 13, 165.
https://doi.org/10.1186/1476-4598-13-165