Semaphorin3A在肾脏病中的作用和意义
The Role and Significance of Semaphorin3A in Renal Disease
DOI: 10.12677/ACM.2021.119599, PDF, HTML, XML, 下载: 570  浏览: 750 
作者: 朱琳菊, 罗朋立:青海大学研究生院,青海 西宁
关键词: SemaphorinsSema3A肾小球肾脏疾病Semaphorins Sema3A Glomerular Kidney Disease
摘要: Semaphorins家族是一类经典的神经元轴突导向排斥性因子。最近大量研究表明,该家族除了在神经系统发挥作用外,在肾脏发育与肾脏疾病中也起着重要作用及意义。在发育中的肾小球、成人足细胞及集合小管中均发现信号素3A (Semaphorin3A或Sema3A)及其受体neuropilin 1表达,该文将对现阶段Sema3A在肾脏发育及肾脏疾病所起作用最新研究进展进行综述。
Abstract: The Semaphorins family is a classic class of neuronal axon-guided repulsion factors. A large number of recent studies have shown that the family plays an important role in the development of kidney and kidney disease in addition to its role in the nervous system. The expression of Semaphorin3A and its receptor Neuropilin 1 has been found in developing glomeruli, adult podocytes and collecting tubules. Here, we review the recent research progress of the Semaphorins family and the role of Sema3A in kidney development and kidney diseases.
文章引用:朱琳菊, 罗朋立. Semaphorin3A在肾脏病中的作用和意义[J]. 临床医学进展, 2021, 11(9): 4105-4112. https://doi.org/10.12677/ACM.2021.119599

1. Sema3A的来源及生物学作用

Semaphorins最初是神经系统发展的导向信号,后来在多个系统疾病均有报导。Semaphorins家族有2种蛋白,分别为分泌型糖蛋白和膜依赖型糖蛋白,目前在20多种哺乳动物体内已发现semaphorin蛋白,这些蛋白有类似结构特点,比如保守400氨基酸结构域(“sema”域),据其结构特点及氨基酸序列分为8类,第1、2类包含无脊椎动物信号素,第3~7类包括22个脊椎动物信号蛋白,第8类包含病毒信号素,膜依赖型糖蛋白是Semaphorin1,4~7,分泌型糖蛋白是Semaphorin2,3,8 [1] [2] [3]。Semaphorins通过与结合受体neuropilins和信号受体plexins结合,启动信号通路发挥生物学作用 [4]。近年研究表明Semaphorins在心血管、肺发育、癌症以及免疫系统疾病中起到不同程度调节作用 [5] [6] [7] [8] [9]。Sema3A有7种分泌蛋白(Sema3A~Sema3G)、其各成分及受体均在肾脏被发现 [10] [11]。其中Sema3A由足细胞和肾小管表达,其受体NP-1和NP-2定位于血管内皮细胞。在体外,肾小管上皮细胞和肾小球内皮细胞同时表达 Semaphoris及受体,Reidy K J [12] 等人发现在小鼠肾脏发育过程中Sema3A位于S形小体和输尿管芽,在成熟肾脏中其存在于足细胞、远端小管和集合管。此外,其对输尿管分支形成起着负性调节作用 [13]。Neuropilins是单次跨膜蛋白,其能以双倍体模式提高血管内皮生长因子164 (VEGF164)与其受体结合亲和力,VEGF164和Sema3A竞争性与neuropilin-1结合,它们的信号通路相互作用并调节肾脏发育 [14]。在培养足细胞中,重组Sema3A抑制足细胞素的表达,减少SD蛋白、足细胞素、nephrin和CD2AP之间的相互作用,并通过抑制AKT的磷酸化诱导足细胞凋亡 [15] [16]。

2. Sema3A的发现及结构特征

1993年Luo [1] 等人首次发现脊椎动物类semaphorin成员是通过在鸡脑内提炼得到Sema3A,又称鸡coilapsin-1 [3],鸡Sema3A Ig结构域和基尾可增强sema结构域在生长锥塌陷中的作用,进一步对Sema3A结构研究发现,其被蛋白质水解酶加工成95或65 kDa异构体蛋白质。在COOH末端加工位点切割成95 k亚型,进一步裂解为65 k形式 [16]。Sema3A由sema结构域、丛蛋白–信号素–肌醇结构域(PSI)、免疫球蛋白结构域(Ig)、富含胱氨酸结构域(CRD)等组成 [17]。Sema3A信号受体分别为神经纤毛蛋白1 (neuropilin1)和神经丛蛋白A1 (plexinA1),它们分别与Sema3A结合,并且在酪氨酸激酶(RTK),ErbB2,Met相互作用下增强Sema3A效应 [18]。研究发现semaphorin与它的受体蛋白plexin1和NP-1形成的稳定复合体连接后才能介导下级信号传导,从而发挥生物学作用,因此,NP-1/plexin复合体是Sema3A受体 [19]。

3. 在肾脏发育中的作用

3.1. 对肾小球发育的作用

近年来一些研究表明Sema3A在肾脏发育的多个方面发挥着重要作用 [20]。早期研究发现Sema3A及其受体存在于肾脏发育过程及成熟肾脏,其和血管内皮细胞生长因子(vascular en-dothelial growth factor, VEGF)协同调节内皮细胞产生 [23]。研究发现足细胞和肾小管表达Sema3A,其受体NP-1和NP-2位于血管内皮细胞。在肾脏发育过程中,VEGF直接化学吸引外源性内皮细胞,并引导它们向发育中的肾单位迁移,缺氧可加速并放大该过程,同时可被抗VEGF中和抗体阻止 [21] [22]。Reidy K J应用功能丧失和获得型小鼠模型,通过TUNEL检测Sema3A过表达对细胞凋亡影响,结果显示,Sema3A过表达肾小球的凋亡细胞较对照组增加了8倍,WT1免疫染色证实凋亡的主要是肾小球内皮细胞。重组Sema3A抑制肾小球内皮细胞对化学吸引刺激的迁移反应,从而减少肾小球内皮细胞向胚胎肾的迁移,用光学显微镜观察Sema3A阴性肾小球毛细血管管腔发育不良,环内细胞核增多,总之,Sema3A缺失促进内皮细胞存活和迁移,进而导致毛细血管管腔发育不良、影响肾血管结构形成,在器官形成过程中足细胞Sema3A过表达可通过影响肾小球内皮细胞凋亡和足细胞分化等影响肾小球发育,因此,严格调节Sema3A剂量在维持正常肾小球发育和肾小球滤过屏障功能尤为重要 [12]。另一项研究检测Sema3A诱导足细胞凋亡的具体凋亡途径,发现这一作用通过降低Akt磷酸化实现,足细胞有一个功能性自分泌的Sema3A系统,Sema3A通过诱导足细胞凋亡,下调podocin,减少podocin/CD2AP和podocin/nephrin相互作用,从而维持裂隙横膈膜的内稳态 [15]。

3.2. 对肾小管发育的作用

研究证实Sema3A及受体NP-1在发育中的肾小球中均表达,也可在成人足细胞和集合小管中持续表达 [10] [23]。Ranganathan P [24] 等通过诱导肾缺血再灌注(IR)急性肾损伤模型,应用免疫组织化学定位证实Sema3A定位于足细胞、远端和集合管上皮细胞,IR后染色增强,IR后,受损的近端肾小管上皮细胞中也有Sema3A表达。RT-PCR结果显示,野生型(WT)小鼠的NP-1表达增加并且小鼠肾脏出现广泛的肾小管坏死、刷状缘缺失和铸型形成,Sema3A突变小鼠显示正常的管状结构,同时抑制IR诱导的炎症介质和胶质细胞源性神经营养因子(GDNF)表达,接受假手术或IR的WT和Sema3A突变小鼠促进肾小管上皮细胞凋亡,这一作用通过cidea依赖机制实现。在WT小鼠中,IR诱导TNF、IL-1、IL-6、toll样受体4 (TLR4)和ICAM-1的mRNA表达增加,Sema3A突变小鼠抑制其表达,且证实与肾脏中性粒细胞浸润减少有关。

3.3. 对足细胞发育的作用

Yizhen Sang [25] 等人通过阿霉素(Dox)诱导小鼠足细胞损伤模型,研究了Sema3A在足细胞损伤中的病理作用,并检测Sema3A抑制剂(Sema3A-I)所起作用,结果表明Dox组足细胞中Sema3A表达增加,nephrin表达降低,进一步行组织病理学检查显示Dox组中有大量管状铸型且尿蛋白水平明显升高,而Dox + Sema3A-I组与对照组之间没有明显差异,证实了Sema3A-I对Dox诱导的足细胞损伤具有保护作用。通过裂解-Caspase3染色和TUNEL染色检测细胞凋亡进一步研究Sema3A-I保护Dox诱导的足细胞损伤机制,Dox组的C-Caspase3及 TUNEL阳性细胞较对照组多,表明Sema3A-I抑制Dox诱导的足细胞凋亡。此外,RT-qPCR结果显示,Dox处理足细胞中Sema3A显著增加了Bax mRNA的表达,可被Sema3A-I部分阻断。c-Jun N-末端激酶(JNK)途径是丝裂原活化蛋白激酶(MAPK)途径的重要级联信号之一,在增殖、分化、迁移和凋亡等多方面发挥作用 [26]。通过免疫荧光染色磷酸化显示Dox组肾小球中c-Jun (p-c-Jun)阳性细胞增加,说明Dox诱导的细胞凋亡和肾损伤可能依赖于JNK/c-Jun信号通路。目前已报道了多种Sema3A抑制剂,Tian等人将表没食子儿茶素没食子酸酯(EGCG)应用于LPS诱导的AKI [27] [28],其是绿茶茶多酚主要成分。结果表明,LPS诱导后,肾小管Sema3A的表达增加,Sema3A上调可能通过Rac1/NF-κB p65和JNK途径促进肾脏炎症和TEC凋亡发挥致病作用 [27]。此外,Kumagai 等人找到一种高选择性Sema3A抑制剂(SM-345431,长春花酮) [29]。其理化性质与SM-216289 (黄曲霉毒素)相同,有更高的理化性质,其从真菌青霉菌培养液中被分离出来,直接与Sema3A相互作用抑制Sema3A与NRP1的结合,通过抗凋亡来保护Dox诱导的足细胞损伤,研究报导Sema3A通过Sema3A-NRP1/JNK轴调节细胞凋亡 [24] [27]。JNK/c-Jun通路属于MAPK信号,由环境应激、细胞因子 [30] [31] 激活,可促进多种细胞凋亡 [31]。除了JNK通路外,Janus激酶/信号转导子和转录激活子(JAK/STAT)、蛋白激酶B(Akt)以及细胞外信号调节激酶(ERK)和p38的其他MAPK通路在细胞凋亡中也发挥重要作用。Wen等人报道,通过敲除plexinA4抑制Sema3A信号从而降低JNK巨噬细胞磷酸化,其余未变化 [32],表明Sema3A对JNK信号具有特异性。凋亡信号调节激酶1 (ASK1)是调节JNK/c-Jun通路的另一因子(属于丝裂原活化蛋白激酶激酶(MAPKKK)家族) [33]。综上所述,Sema3A在足细胞损伤中发挥重要作用并可能成为足细胞损伤的治疗策略。

4. 在肾脏疾病中作用及意义

4.1. 急性肾损伤

在诊断性冠状动脉造影和经皮冠状动脉介入治疗(PCI)中常引起造影剂致急性肾损伤(CI-AKI)。李宁 [34] 等人研究在接受PCI的患者中,尿Sema3A水平能否预测CI-AKI的发展。研究纳入168例接受选择性PCI治疗的稳定型心绞痛患者,采用Sema3A和中性粒细胞明胶酶相关脂质沉积(NGAL) ELISA试剂盒对基线检查及PCI术后2、6、12、24、36、48 h的尿液样本进行分析。ROC分析显示,PCI后2小时389.5 pg/mg信号素3A的临界值处的敏感性94%,特异性为75%,PCI后2小时94.4 ng/mg NGAL的临界值处对应74%的敏感性和82%的特异性。Logistic回归显示,PCI后2小时和6小时的Sema3A水平是AKI的重要预测因子。先前动物实验证明信号素3A位于肾脏远端小管,可能参与调节上皮细胞的增殖和迁移其水平在肾脏再灌注后3小时内升高,而血肌酐在24小时升高 [35]。证实尿Sema3A是CI-AKI的早期预测性生物标志物。NGAL是一种21 kda的花萼状蛋白,由toll样受体激活分泌,通过先天非特异性免疫应答抑制炎症反应 [36]。尿NGAL近年来也成为CI-AKI的检测指标之一。在研究中,将NGAL与Sema3A对CI-AKI的预测效果进行比较:在PCI术后2、6和12 h,尿Sema3A和NGAL水平均明显升高。ROC显示,PCI术后2 h Sema3A的ROC AUC (工作者曲线下面积)高于NGAL。与NGAL相比,Sema3A更可靠,这些为进一步CI-AKI临床研究的治疗策略提供新思路。

4.2. 糖尿病肾病

糖尿病肾病(DN)是糖尿病微血管并发症之一,是导致患者致死率和致残率的主要原因,最终血糖控制不佳进展至终末期肾病 [37]。高糖(HG)致足细胞损伤、肾脏氧化应激和炎症反应是导致DN进展的因素 [38] [39] [40]。研究表明Sema3A可由足细胞产生并影响其发育,Sema3A过表达会破坏肾小球滤过屏障,从而导致大量蛋白尿、足突消失。PlexinA1是Sema3A的主要信号受体,其通过多种细胞信号途径包括整合素、MICAL (与CasL相互作用的分子)、CRMP (塌陷反应介体蛋白)和小GTPase,以及受体酪氨酸激酶等相互作用来调节细胞形状和骨架 [4]。MICALs (细胞质黄氧合酶蛋白)直接结合plexinA受体,通过抑制肌动蛋白聚集、结合和分支,导致F-肌动蛋白丢失,从而将细胞外信号素与肌动蛋白和细胞骨架连接起来 [41] [42]。在糖尿病患者中,Sema3A通过nephrin、αvβ3整合素和MICAL1与plexinA1之间相互作用导致弥漫性足细胞足突消失和F-肌动蛋白塌陷。敲除MICAL1敲除或抑制Sema3A结合可消除这一改变。此外,体内抑制Sema3A或敲除plexinA1可明显缓解糖尿病肾病 [43]。先前体内研究报导,外源性给予重组Sema3A破坏足细胞足突后可导致出现短暂性大量蛋白尿 [44]。缺乏配体时,Sema3A受体促进整合素–基质相互作用保持细胞附着和极化,反之,Sema3A与plexinA1结合通过GTP水解介导RAS失活,抑制整合素–基质相互作用,导致细胞收缩和极性破坏 [45]。通过敲除Sema3A或服用Sema3A抑制肽可显著降低蛋白尿,降低肾脏氧化应激 [46]。另陈景福 [47] 等人应用动物实验发现MiR-203-3p通过Sema3A调节NF/κB信号通路的活性,从而介导炎症和氧化应激,促进足细胞损伤。综上,Sema3A过表达促进了糖尿病肾病进展,并有望成为糖尿病肾病的新的潜在治疗靶点。

4.3. 狼疮性肾炎

系统性红斑狼疮(Systemic lupus erythematosus, SLE)是一种好发于育龄期妇女累及多脏器的自身免疫性疾病。可出现颊部红斑、关节炎、蛋白尿等多系统改变。Toumal等人 [48] 认为(抗B淋巴细胞刺激因子)对轻型SLE有益。近年来,以调节细胞或分子为靶点减少炎症和恢复自身耐受性成为治疗热点。Sema3A是抑制免疫介导炎症的调节因子之一。据报道,Sema3A在分化的巨噬细胞和活化的T细胞上均表达,在树突状细胞/T细胞共培养物中添加Sema3A可显著抑制T细胞增殖 [49]。Sema-3A抑制CD3/CD28介导的MEK/ERK1/2信号激活,抑制细胞因子分泌、延缓细胞周期进程 [50] [51]。研究发现,Sema3A主要表达于CD19 + CD25高表达细胞上,SLE患者的Bregs表达低,且与疾病严重程度相关。证明Sema3A是该细胞亚群的独特标记物 [52]。血清低水平Sema3A与疾病活动、肾损害和抗心磷脂抗体的存在呈负相关。TLR-9在记忆性B细胞中的过表达与SLE中IL-10和IL-6细胞因子、抗双链DNA抗体的产生有关。将Sema3A与SLE患者的B细胞共培养降低TLR-9的表达,减轻炎症过程,同时SLE患者B细胞NP-1及Sema3A表达降低,表明低水平Sema3A可能在免疫介导疾病的发病机制中起重要作用 [53]。此外,CD72也影响B细胞活性,与重组Sema3A共培养后CD72表达上调,通过ITIM基序抑制BCR信号或CD40-40L信号,SLE患者B细胞表面CD72的表达较对照组低 [54]。研究表明,Sema3A在狼疮性肾炎患者肾小管中过表达,Sema3A过表达与蛋白尿和慢性指数呈负相关。其可以作为LGN肾小管损伤的组织学标志物 [55]。Bejar [56] 首次在SLE小鼠模型中证明Sema3A在治疗和预防肾小球损伤方面起到重要作用。预防性地将Sema3A注射到NZB/W小鼠中时,无蛋白尿的时间明显长于注射空载体的对照小鼠。在蛋白尿开始时注射Sema3A,恶化为严重蛋白尿的时间推迟,Sema3A治疗组小鼠的存活率升高,肾小球和肾小管损伤减少,而对照组小鼠肾小球炎症和肾小管损伤进展快且存活率低。大部分对照组都有肾小球内的IgG和C3沉积,Sema3A注射到SLE小鼠中,肾小球炎症和免疫复合物沉积减轻,存活时间延长。研究表明Sema3A通过NP-1/Plexin-A1轴信号影响小鼠树突状细胞的迁移。进一步研究发现,在单核细胞向巨噬细胞分化过程中,Sema3A结合受体NP-1、NP-2、信号受体A1和A2的表达增加,且在M2分化过程中Sema3A的表面结合增加。此外,Sema3A诱导单核细胞来源的巨噬细胞凋亡,并与抗Fas CH11抗体协同调节凋亡,因此表明Sema3A可诱导巨噬细胞凋亡和调节先天性炎症条件 [57]。Sema3A在免疫介导的炎症性疾病中可能成为一种潜在的治疗策略。

5. 讨论与展望

体内、外实验均证实Sema3A在肾脏的发生发展过程中起着重要的作用。近年研究表明,Sema3A在糖尿病肾病、急性肾损伤及系统性红斑狼疮等自身免疫性疾病发展中也起到一定作用。进一步的理解Sema3A在肾脏疾病中作用及意义,将有可能成为疾病分型、预后、诊断的标志物或临床上肾脏疾病的一个新的治疗靶点。

参考文献

[1] Luo, Y., Raible, D., Raper, J. and Collapsin, A. (1993) A Protein in Brain That Induces the Collapse and Paralysis of Neuronal Growth Cones. Cell, 75, 217-227.
https://doi.org/10.1016/0092-8674(93)80064-L
[2] Kolodkin, A.L., Matthes, D.J. and Goodman, C.S. (1993) The Semaphorin Genes Encode A Family of Transmembrane and Secreted Growth Cone Guidance Molecules. Cell, 75, 1389-1399.
https://doi.org/10.1016/0092-8674(93)90625-Z
[3] Goodman, C.S., Kolodkin, A.L., Luo, Y., Püschel, A.W. and Raper, J.A. (1999) Unified Nomenclature for the Semaphorins/Collapsins. Cell, 97, 551-552.
https://doi.org/10.1016/S0092-8674(00)80766-7
[4] Tran, T.S., Kolodkin, A.L. and Bharadwaj, R. (2007) Semaphorin Regulation of Cellular Morphology. Annual Review of Cell and Developmental Biology, 23, 263-292.
https://doi.org/10.1146/annurev.cellbio.22.010605.093554
[5] Zhang, Y., Singh, M.K., Degenhardt, K.R., Lu, M.M., Bennett, J., Yoshida, Y., et al. (2009) Tie2Cre-Mediated Inactivation of PlexinD1 Results in Congenital Heart, Vascular and Skeletal Defects. Developmental Biology, 325, 82-93.
https://doi.org/10.1016/j.ydbio.2008.09.031
[6] Rehman, M. and Tamagnone, L. (2013) Semaphorins in Cancer: Biological Mechanisms and Therapeutic Approaches. Seminars in Cell and Developmental Biology, 24, 179-189.
https://doi.org/10.1016/j.semcdb.2012.10.005
[7] Kang, S. and Kumanogoh, A. (2013) Semaphorins in Bone Development, Homeostasis, and Disease. Seminars in Cell and Developmental Biology, 24, 163-171.
https://doi.org/10.1016/j.semcdb.2012.09.008
[8] Hyota, T. and Atsushi, K. (2012) Diverse Roles for Semaphorin-Plexin Signaling in the Immune System. Trends in Immunology, 33, 127-135.
https://doi.org/10.1016/j.it.2012.01.008
[9] Hinck, L. (2004) The Versatile Roles of “Axon Guidance” Cues in Tissue Morphogenesis. Developmental Cell, 7, 783-793.
https://doi.org/10.1016/j.devcel.2004.11.002
[10] Villegas, G. and Tufro, A. (2002) Ontogeny of Semaphorins 3A and 3F and Their Receptors Neuropilins 1 and 2 in the Kidney. Mechanisms of Development, 119, S149-S153.
https://doi.org/10.1016/S0925-4773(03)00108-4
[11] Perälä, N., Sariola, H. and Immonen, T. (2012) More than Nervous: The Emerging Roles of Plexins. Differentiation: Research in Biological Diversity, 83, 77-91.
https://doi.org/10.1016/j.diff.2011.08.001
[12] Reidy, K.J., Villegas, G., Teichman, J., Veron, D., Shen, W., Jimenez, J., et al. (2009) Semaphorin3a Regulates Endothelial Cell Number and Podocyte Differentiation during Glomerular Development. Development, 136, 3979-3989.
https://doi.org/10.1242/dev.037267
[13] Reidy, K. and Tufro, A. (2011) Semaphorins in Kidney Development and Disease: Modulators of Ureteric Bud Branching, Vascular Morphogenesis, and Podocyte-Endothelial Crosstalk. Pediatric Nephrology, 26, 1407-1412.
https://doi.org/10.1007/s00467-011-1769-1
[14] Kolodkin, A.L., Levengood, D.V., Rowe, E.G., Tai, Y.-T., Giger, R.J. and Ginty, D.D. (1997) Neuropilin Is a Semaphorin III Receptor. Cell, 90, 753-762.
https://doi.org/10.1016/S0092-8674(00)80535-8
[15] Guan, F., Villegas, G., Teichman, J., Mundel, P. and Tufro, A. (2006) Autocrine Class 3 Semaphorin System Regulates Slit Diaphragm Proteins and Podocyte Survival. Kidney International, 69, 1564-1569.
https://doi.org/10.1038/sj.ki.5000313
[16] Klostermann, A., Lohrum, M., Adams, R.H. and Püschel, A.W. (1998) The Chemorepulsive Activity of the Axonal Guidance Signal Semaphorin D Requires Dimerization. The Journal of Biological Chemistry, 273, 7326-7331.
https://doi.org/10.1074/jbc.273.13.7326
[17] Gherardi, E., Love, C.A., Esnouf, R.M. and Yvonne Jones, E. (2004) The Sema Domain. Current Opinion in Structural Biology, 14, 669-678.
https://doi.org/10.1016/j.sbi.2004.10.010
[18] Hota, P.K. and Buck, M. (2012) Plexin Structures Are Coming: Opportunities for Multilevel Investigations of Semaphorin Guidance Receptors, Their Cell Signaling Mechanisms, and Functions. Cellular and Molecular Life Sciences, 69, 3765-3805.
https://doi.org/10.1007/s00018-012-1019-0
[19] Antipenko, A., Himanen, J.-P., van Leyen, K., Nardi-Dei, V., Lesniak, J., Barton, W.A., et al. (2003) Structure of the Semaphorin-3A Receptor Binding Module. Neuron, 39, 589-598.
https://doi.org/10.1016/S0896-6273(03)00502-6
[20] Xia, J. and Thomas, W. (2016) Semaphorins and Plexins in Kidney Disease. Nephron, 132, 93-100.
https://doi.org/10.1159/000443645
[21] Tufro, A., Norwood, V.F., Carey, R.M. and and Ariel Gomez, R. (1999) Vascular Endothelial Growth Factor Induces Nephrogenesis and Vasculogenesis. Journal of the American Society of Nephrology, 10, 2125-2134.
https://doi.org/10.1681/ASN.V10102125
[22] Tufró, A. (2000) VEGF Spatially Directs Angiogenesis during Metanephric Development in Vitro. Developmental Biology, 227, 558-566.
https://doi.org/10.1006/dbio.2000.9845
[23] Robert, B., Zhao, X. and Abrahamson, D.R. (2000) Coexpression of Neuropilin-1, Flk1, and VEGF(164) in Developing and Mature Mouse Kidney Glomeruli. American Journal of Physiology-Renal Physiology, 279, F275-F282.
https://doi.org/10.1152/ajprenal.2000.279.2.F275
[24] Punithavathi, R., Calpurnia, J., Riyaz, M., Weintraub, N.L. and Ramesh, G. (2014) Semaphorin3A-Inactivation Suppresses Ischemia-Reperfusion-Induced Inflammation and Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 307, F183-F194.
https://doi.org/10.1152/ajprenal.00177.2014
[25] Sang, Y., Tsuji, K., Inoue-Torii, A., Fukushima, K., Kitamura, S. and Wada, J. (2020) Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury. International Journal of Molecular Sciences, 21, Article No. 4099.
https://doi.org/10.3390/ijms21114099
[26] Grynberg, K., Ma, F.Y. and Nikolic-Paterson, D.J. (2017) The JNK Signaling Pathway in Renal Fibrosis. Frontiers in Physiology, 8, Article No. 829.
https://doi.org/10.3389/fphys.2017.00829
[27] Tian, X., Gan, H., Zeng, Y., Zhao, H., Tang, R. and Xia, Y. (2018) Inhibition of Semaphorin-3A Suppresses Lipopolysaccharide-Induced Acute Kidney Injury. Journal of Molecular Medicine, 96, 713-724.
https://doi.org/10.1007/s00109-018-1653-6
[28] Chu, C., Deng, J., Man, Y. and Qu, Y. (2017) Green Tea Extracts Epigallocatechin-3-Gallate for Different Treatments. BioMed Research International, 2017, Article ID: 5615647.
https://doi.org/10.1155/2017/5615647
[29] Kumagai, K., Hosotani, N., Kikuchi, K., Kimura, T. and Saji, I. (2003) A Novel Semaphorin Inhibitor Produced by a Strain of Penicillium. ChemInform, 34, 610-616.
https://doi.org/10.1002/chin.200352235
[30] Weston, C.R. and Davis, R.J. (2002) The JNK Signal Transduction Pathway. Current Opinion in Genetics & Development, 12, 14-21.
https://doi.org/10.1016/S0959-437X(01)00258-1
[31] Weston, C.R. and Davis, R.J. (2007) The JNK Signal Transduction Pathway. Current Opinion in Cell Biology, 19, 142-149.
https://doi.org/10.1016/j.ceb.2007.02.001
[32] Wen, H., Lei, Y., Eun, S.-Y. and Ting, J.P.-Y. (2010) Plexin-A4-Semaphorin 3A Signaling Is Required for Toll-Like Receptor- and Sepsis-Induced Cytokine Storm. The Journal of Experimental Medicine, 207, 2943-2957.
https://doi.org/10.1084/jem.20101138
[33] Ogier, J.M., Nayagam, B.A. and Lockhart, P.J. (2020) ASK1 Inhibition: A Therapeutic Strategy with Multi-System Benefits. Journal of molecular medicine, 98, 335-348.
https://doi.org/10.1007/s00109-020-01878-y
[34] Ning, L., Li Z. and Wei, D. (2018) Urinary semaphorin 3A as an early biomarker to predict contrast-induced acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention. Brazilian Journal of Medical and Biological Research, 51, Article No. e6487.
https://doi.org/10.1590/1414-431X20176487
[35] Jayakumar, C., Ranganathan, P., Devarajan, P., Krawczeski, C.D., Looney, S. and Ramesh, G. (2013) Semaphorin 3A Is a New Early Diagnostic Biomarker of Experimental and Pediatric Acute Kidney Injury. PLoS ONE, 8, e58446- e58446.
https://doi.org/10.1371/journal.pone.0058446
[36] Iyngkaran, P., Schneider, H., Devarajan, P., Anavekar, N., Krum, H. and Ronco, C. (2012) Cardio-Renal Syndrome: New Perspective in Diagnostics. Seminars in Nephrology, 32, 3-17.
https://doi.org/10.1016/j.semnephrol.2011.11.002
[37] Zubair, I., Chaiban, J.T. and Krikorian, A. (2017) Novel Insights into the Pathophysiology and Clinical Aspects of Diabetic Nephropathy. Reviews in Endocrine & Metabolic Disorders, 18, 21-28.
https://doi.org/10.1007/s11154-017-9422-3
[38] Dai, H., Liu, Q. and Liu, B. (2017) Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy. Journal of Diabetes Research, 2017, Article ID: 2615286.
https://doi.org/10.1155/2017/2615286
[39] Donath, M.Y. (2013) Targeting Inflammation in the Treatment of Type 2 Diabetes. Diabetes, Obesity and Metabolism, 15, 193-196.
https://doi.org/10.1111/dom.12172
[40] Babizhayev, M.A., Strokov, I.A., Nosikov, V.V., Savel’yeva, E.L., Sitnikov, V.F., Yegorov, Y.E., et al. (2015) The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Cell Biochemistry and Biophysics, 71, 1425-1443.
https://doi.org/10.1007/s12013-014-0365-y
[41] Hung, R.-J. and Terman, J.R. (2011) Extracellular Inhibitors, Repellents, and Semaphorin/Plexin/MICAL-Mediated Actin Filament Disassembly. Cytoskeleton, 68, 415-433.
https://doi.org/10.1002/cm.20527
[42] Hung, R.-J., Yazdani, U., Yoon, J., Wu, H., Yang, T., Gupta, N., et al. (2010) Mical Links Semaphorins to F-Actin Disassembly. Nature, 463, 823-827.
https://doi.org/10.1038/nature08724
[43] Aggarwal, P.K., Veron, D., Thomas, D.B., Moeckel, G., Kashgarian, M., et al. (2015) Semaphorin3a Promotes Advanced Diabetic Nephropathy. Diabetes, 64, 1743-1759.
https://doi.org/10.2337/db14-0719
[44] Tapia, R., Guan, F., Gershin, I., Teichman, J., Villegas, G. and Tufro, A. (2008) Semaphorin3a Disrupts Podocyte Foot Processes Causing Acute Proteinuria. Kidney International, 73, 733-740.
https://doi.org/10.1038/sj.ki.5002726
[45] Mayra, Y., Montgomery, A.M.P., Diaferia, G.R., Kaido, T., Silletti, S., Perez, B., et al. (2003) Recognition of the Neural Chemoattractant Netrin-1 by Integrins α6β4 and α3β1 Regulates Epithelial Cell Adhesion and Migration. Developmental Cell, 5, 695-707.
https://doi.org/10.1016/S1534-5807(03)00330-7
[46] Riyaz, M., Punithavathi, R., Calpurnia, J., Nauta, F.L., Gansevoort, R.T., Weintraub, N.L., et al. (2014) Urinary Semaphorin 3A Correlates with Diabetic Proteinuria and Mediates Diabetic Nephropathy and Associated Inflammation in Mice. Journal of Molecular Medicine, 92, 1245-1256.
https://doi.org/10.1007/s00109-014-1209-3
[47] Chen, J., Xu, Q., Zhang, W., Zhen, Y., Cheng, F., Hua, G., et al. (2020) MiR-203-3p Inhibits the Oxidative Stress, Inflammatory Responses and Apoptosis of Mice Podocytes Induced by hIgh Glucose through Regulating Sema3A Expression. Open Life Sciences, 15, 939-950.
https://doi.org/10.1515/biol-2020-0088
[48] Zahi, T., Amyn, S., Christian, A., Fortin, I., Matsos, M., Ecker, G.A., et al. (2017) Belimumab Use, Clinical Outcomes and Glucocorticoid Reduction in Patients with Systemic Lupus Erythematosus Receiving Belimumab in Clinical Practice Settings: Results from the Observe Canada Study. Rheumatology International, 37, 865-873.
https://doi.org/10.1007/s00296-017-3682-9
[49] Anderton, S.M. and Fillatreau, S. (2008) Activated B Cells in Autoimmune Diseases: The Case for a Regulatory Role. Nature Clinical Practice Rheumatology, 4, 657-666.
https://doi.org/10.1038/ncprheum0950
[50] Curreli, S., Wong, B.S., Latinovic, O., Konstantopoulos, K. and Stamatos, N.M. (2016) Class 3 Semaphorins Induce F-Actin Reorganization in Human Dendritic Cells: Role in cell migration. Journal of Leukocyte Biology, 100, 1323- 1334.
https://doi.org/10.1189/jlb.2A1114-534R
[51] Catalano, A., Caprari, P., Moretti, S., Faronato, M., Tamagnone, L., Procopio, A., et al. (2006) Semaphorin-3A Is Expressed by Tumor Cells and Alters T-Cell Signal Transduction and Function. Blood, 107, 3321-3329.
https://doi.org/10.1182/blood-2005-06-2445
[52] Vadasz, Z., Haj, T. and Toubi, E. (2014) The Role of B Regulatory Cells and Semaphorin3A in Atopic Diseases. International Archives of Allergy and Immunology, 163, 245-251.
https://doi.org/10.1159/000360477
[53] Vadasz, Z., Haj, T., Halasz, K., Rosner, I., Slobodin, G., Attias, D., et al. (2012) Semaphorin 3A Is a Marker for Disease Activity and a Potential Immunoregulator in Systemic Lupus Erythematosus. Arthritis Research & Therapy, 14, Article No. R146.
https://doi.org/10.1186/ar3881
[54] Nakano, S., Morimoto, S., Suzuki, J., Mitsuo, A., Nakiri, Y., Katagiri, A., et al. (2007) Down-Regulation of CD72 and Increased Surface IgG on B Cells in Patients with Lupus Nephritis. Autoimmunity, 40, 9-15.
https://doi.org/10.1080/08916930601118890
[55] Vadasz, Z., Ben-Izhak, O., Bejar, J., Sabo, E., Kessel, A., Storch, S., et al. (2011) The Involvement of Immune Semaphorins and Neuropilin-1 in Lupus Nephritis. Lupus, 20, 1466-1473.
https://doi.org/10.1177%2F0961203311417034
[56] Bejar, J., Kessler, O., Sabag, A.D., Sabo, E., Itzhak, O.B., Neufeld, G., et al. (2018) Semaphorin3A: A Potential Therapeutic Tool for Lupus Nephritis. Frontiers in Immunology, 9, Article No. 634.
https://doi.org/10.3389/fimmu.2018.00634
[57] Ji, J.-D., Park-Min, K.-H. and Lionel, B. (2009) Expression and Function of Semaphorin 3A and Its Receptors in Human Monocyte-Derived Macrophages. Human Immunology, 70, 211-217.
https://doi.org/10.1016/j.humimm.2009.01.026