基于分子动力学的纳米压痕虚拟仿真教学设计
The Design of the Nano-Indentation Virtual Simulation Based on Molecular Dynamics Algorithm
DOI: 10.12677/AE.2021.115272, PDF, 下载: 541  浏览: 1,531  科研立项经费支持
作者: 杨 亮, 邓乔元, 战光辉, 林仕伟*:海南大学材料与工程学院,海南 海口
关键词: 纳米压痕实验虚拟仿真物理算法分子动力学实验教学Nano-Indentation Experiment Virtual Simulation Physical Algorithms Molecular Dynamics Experimental Teaching
摘要: 纳米压痕实验作为一种材料表面测试手段已经应用十分广泛,但由于经费问题该实验项目很少能引入本科实验教学,不利于新工科学生的能力的培养和素质的提高。为使学生了解纳米压痕实验,采用Unity3D构造纳米压痕虚拟仿真仪器,实现高交互仪器仿真和采用分子动力学算法引入铜的EAM嵌入原子势函数进行FCC结构铜单晶的微观纳米压痕仿真实验,通过采集载荷–位移曲线和三维可视化原子位置的演化、原子受力等数据直观向学生展示了金属铜在压头作用下微观结构的变化。通过外推实验微观表面模型、实验测试条件和压头形状和尺寸,可丰富实验教学内容、提高教学质量,有利于培养学生的创新意识和探索精神。
Abstract: Nano-indentation experiment has been widely used as a material surface testing method, but because of the financial problems, the experimental project can rarely introduce undergraduate experimental teaching, which is not conducive to the training of the ability and quality of new engineering students. In order to enable students to master nano-indentation technology, the virtual simulation instrument of nano-indentation is constructed by Unity3D software, the simulation of high interactive instrument and the micro-nano-indentation simulation experiment of FCC structure copper by introducing copper EAM potential function using molecular dynamics algorithm are realized, and the microstructure changes of metal copper under probe are shown visually by collecting data such as load-displacement curve and three-dimensional visual atomic position evolution and atomic force. By extrapolating the surface microscopic model, experimental test conditions and probe shape and size, it can enrich the experimental teaching content, improve the teaching quality, and plays an important role to cultivate students' innovative consciousness and exploration spirit.
文章引用:杨亮, 邓乔元, 战光辉, 林仕伟. 基于分子动力学的纳米压痕虚拟仿真教学设计[J]. 教育进展, 2021, 11(5): 1752-1761. https://doi.org/10.12677/AE.2021.115272

参考文献

[1] 周海, 徐亚萌, 韦嘉辉, 沈军州, 冯晓雯. 基于纳米压痕的氧化镓不同晶面的蠕变特性[J/OL]. 硅酸盐学报: 1-7.
https://doi.org/10.14062/j.issn.0454-5648.20200474, 2021-01-26.
[2] 陈吉, 汪伟, 卢磊, 卢柯. 纳米压痕法测量Cu的室温蠕变速率敏感指数[J]. 金属学报, 2001, 37(11): 1179-1183.
[3] 姬晓悦. 大型仪器设备开放共享平台纳米压痕仪的开放使用与维护[J]. 化工管理, 2018(34): 154-155.
https://doi.org/10.3969/j.issn.1008-4800.2018.34.099
[4] 支越, 方来旺, 王之哲, 罗宏伟, 王小强. 微型化器件中多晶Cu晶向排布对其受压力学特性的影响仿真研究[J]. 电子元件与材料, 2019, 38(8): 82-86.
[5] Zamri, W.F.H., Kosasih, P.B., Tieu, A.K., Zhu, H. and Zhu, Q. (2013) Finite Element Modeling of the Nanoindentation of Lay-ers of Porous Oxide on High Speed Steel. Steel Research International, 84, 1309-1319.
https://doi.org/10.1002/srin.201300058
[6] Huang, J., Liu, Y., Yu, X., et al. (2020) Nano Mechanical Property Analysis of Single Crystal Copper Using Berkovich Nano Indenter and Molecular Dynamic Simulation. Computational Materials Science, 188, Article ID: 110237.
https://doi.org/10.1016/j.commatsci.2020.110237
[7] 翁盛槟, 陈晶晶, 胡洪钧. 纳米压痕诱导单晶铜弹塑性形变分析与破坏机理研究[J/OL]. 表面技术: 1-12. http://kns.cnki.net/kcms/detail/50.1083.tg.20200826.1609.002.html, 2021-01-26.
[8] Wang, Y.C., Wu, C.Y., Chu, J.P., et al. (2010) Indentation Behavior of Zr-Based Metallic-Glass Films via Molecular-Dynamics Simulations. Metallurgical and Materials Transactions A, 41, 3010-3017.
https://doi.org/10.1007/s11661-010-0358-4
[9] 操振华, 李平云, 陆海鸣, 孟祥康. 纳米压痕法测量纳米晶金属Cu薄膜力学性能的研究[J]. 南京大学学报(自然科学版), 2009, 45(2): 187-192.
[10] Leng, Y., Yang, G., Hu, Y., et al. (2000) Computer Experiments on Nano-Indentation: A Molecular Dynamics Approach to the Elasto-Plastic Contact of Metal Copper. Journal of Materials Science, 35, 2061-2067.
https://doi.org/10.1023/A:1004703527143
[11] 李春燕, 寇生中, 胡勇, 丁雨田, 许广济. Cu基块状非晶晶化过程的微区变形及力学性能[J]. 中国有色金属学报, 2007(10): 1586-1591.
[12] Lin, Y.H. and Chen, T.C. (2008) A Molecular Dynamics Study of Phase Transformations in Mono-Crystalline Si under Nanoindentation. Applied Physics A, 92, 571-578.
https://doi.org/10.1007/s00339-008-4633-9
[13] Frontini, P., Lotfian, S., Monclús, M.A., et al. (2015) High Temperature Nanoindentation Response of RTM6 Epoxy Resin at Different Strain Rates. Experimental Mechanics, 55, 851-862.
https://doi.org/10.1007/s11340-015-9985-4
[14] Chen, Z. and Diebels, S. (2012), Surface Roughness Effects in Nanoindentation of Soft Polymers. Proceedings in Applied Mathematics & Mechanics, 12, 297-298.
https://doi.org/10.1002/pamm.201210138
[15] Zhang, Y., An, Q., Li, J., et al. (2020) Strengthening Mechanisms of Graphene in Copper Matrix Nanocomposites: A Molecular Dynamics Study. Journal of Molecular Modeling, 26, 335.
https://doi.org/10.1007/s00894-020-04595-y
[16] Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19.
https://doi.org/10.1006/jcph.1995.1039
[17] Foiles, S.M., et al. (1988) Erratum: Embedded-Atom-Method Func-tions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Physical Review B, Condensed Matter, 33, 7983.
https://doi.org/10.1103/PhysRevB.37.10378
[18] 聂宁明, 胡长军, 张云泉, 贺新福, 张博尧, 李士刚. 材料微观结构演化大规模分子动力学软件比较[J]. 计算机科学与探索, 2017, 11(3): 355-364.
[19] 王子云. 梯度多晶铜纳米压痕的分子动力学仿真研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020.
[20] Stukowski, A. (2010) Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18, Article ID: 015012.
https://doi.org/10.1088/0965-0393/18/1/015012
[21] 程东, 严立, 严志军. 单晶Cu在纳米压痕过程中的微观破坏机制[J]. 大连海事大学学报, 2005, 31(2): 72-75+80.
[22] Interactive Molecular Dynamics (IMD).
https://www.ovito.org/docs/current/particles.modifiers.interactive_molecular_dynamics.php
[23] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟[J]. 物理学报, 2018, 67(19): 51-61.
[24] 高宇. 单晶Cu纳米压痕的分子动力学模拟[D]: [硕士学位论文]. 北京: 北京交通大学, 2011.
[25] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟[J]. 物理学报, 2002(10): 2308-2314.