多发性骨髓瘤影像学研究进展
Advances in Imaging Studies of Multiple Myeloma
DOI: 10.12677/ACM.2021.118506, PDF, HTML, XML, 下载: 535  浏览: 777 
作者: 杜嘉宁, 孟 莉:青海大学附属医院影像中心,青海 西宁
关键词: 多发性骨髓瘤影像骨病Multiple Myeloma Imaging Bone Disease
摘要: 近年来,多发性骨髓瘤患病率逐渐增高,广大学者对于改变临床诊治工作研究逐步深入。多发性骨髓瘤由于破骨细胞的活性增加,成骨细胞的抑制,导致骨质破坏成为该病常见并发症之一,并给患者治疗及预后造成不良影响。对于多发性骨髓瘤骨质变化的监测有利于临床诊断及治疗效果评估,影像学在其中发挥重大作用。该文章就影像学对多发性骨髓瘤诊疗价值研究进展进行综述。
Abstract: In recent years, the prevalence of multiple myeloma has gradually increased, and the majority of scholars have conducted in-depth studies on changing the clinical diagnosis and treatment. Due to the increased activity of osteoclasts and the inhibition of osteoblasts, bone destruction in multiple myeloma has become one of the common complications of this disease, which has adverse effects on the treatment and prognosis of patients. The monitoring of bone changes in multiple myeloma is beneficial to the clinical diagnosis and the evaluation of treatment effect, and imaging plays an important role in it. In this paper, the value of imaging in the diagnosis and treatment of multiple myeloma is reviewed.
文章引用:杜嘉宁, 孟莉. 多发性骨髓瘤影像学研究进展[J]. 临床医学进展, 2021, 11(8): 3474-3480. https://doi.org/10.12677/ACM.2021.118506

1. 前言

多发性骨髓瘤(multiple myeloma, MM)是一种浆细胞恶性增殖性疾病,其特点为骨髓中浆细胞克隆性增殖并伴有大量单克隆免疫球蛋白分泌,导致免疫球蛋白及其片段水平升高,引起相关组织及器官损伤,是世界第二大常见血液恶性肿瘤 [1]。MM疾病发展过程目前分为三个阶段,不明意义单克隆免疫球蛋白血症(monoclonal gammopathy of undermined significance, MGUS)、无症状冒烟型骨髓瘤(smoldering MM, SMM)和活动性多发性骨髓瘤。多发性骨髓瘤不同于其他恶性肿瘤,确诊需要终末器官损伤症状才可做出诊断,例如破骨细胞过度活化导致的高钙学症(calcenia, C)和骨质破坏(bone disease, B)以及由于单克隆轻链引起的肾损伤(renal insufficiency, R)和贫血(anemia, A),简称为CRAB症状 [2]。其中骨质破坏导致一系列临床并发症,如严重骨痛、骨质疏松、病理性骨折,60%的患者在其病程中发生了病理性骨折,与其他患者相比,病理性骨折的MM患者的死亡风险增加了20% [2]。

上述决定了影像学在骨质疾病诊断中发挥重大作用。根据多发性骨髓瘤国内外诊治指南,影像学检查主要作用于以下阶段:诊治过程中对于疑似多发性骨髓瘤患者基础检查;鉴别SMM及MM;监测疾病发展进程;评估治疗疗效;除此之外,发现髓外软组织病灶及监测骨质改变均可为疾病不同病程阶段提供影像学依据。现临床对于多发性骨髓瘤骨质疾病的发病机制有基本认识;近年来影像学新技术不断发展,传统骨骼检查(conventional skeletal survey, CSS)局限性显现,一些分子功能影像学研究逐渐深入并发现功能影像学能够更仔细地评估治疗反应的深度,尤其是对非分泌性多发性骨髓瘤患者及游离血清轻链(serum free light chain, sFLC)比值为正常的患者;有助于微小残留病灶(minimal residual disease, MRD)的诊断。因此明确不同影像学主要特点及优势对多发性骨髓瘤不同诊疗阶段有重要临床意义。

2. 多发性骨髓瘤影像学检查

2.1. X线成像

X线成像作为传统影像学检查,以其辐射量小、费用低优势一直以来作为基本检查项目应用于多发性骨髓瘤诊断及Durie-Salmon分期。全身X线平片作为评估MM骨病累及范围的金标准。X线成像存在一些局限性,当病灶丢失大于30%~50%骨小梁时可呈阳性 [3]。对于早期溶骨性病灶无法检出;无法区分良性骨质疏松及继发多发性骨髓瘤骨质疏松;部分特殊部位成像效果较差,例如椎体及骨盆;对病灶治疗后反应评价困难;总结为特异度、敏感度均低。

2.2. CT成像

CT成像和X线相比,当骨小梁小于5%可呈阳性,对骨质破坏成像效果优于X线成像。而全身低剂量CT成像(WBCT)较普通CT辐射计量低2~3倍,相比于其他横断面及功能成像技术如MRI及PET-CT,检查时间短,对病人要求低,无需造影剂,使其广泛应用于多发性骨髓瘤诊治中,用于筛查MM溶解性骨病 [4] [5]。

国际多发性骨髓瘤工作组2014年MM诊断指南更新后已将CT或功能性影像检查替代普通X线作为评估 [1]。

学者们发现WBCT对溶骨性病灶诊断敏感度高于X线成像,尤其在脊柱、骨盆等位置;首次提出是Horger等人,该研究同时发现WBCT有助于发现骨折风险,以及指导放射治疗和手术 [6];Kröpil等人、Wolf等人研究均显示对CSS未见显示病灶,WBCT可发现更多溶骨性病灶 [7] [8];其中国际多发性骨髓瘤工作组(International Myeloma Working Group, IMWG)一项研究结果显示,无溶骨性病变患者的疾病进展时间(Time to progression, TTP)为83个月,而溶骨性病变患者的TTP为38个月,2年无进展生存概率分别为58%和33%,表示单纯的WBCT成像对多发性骨破坏检测同样具有预后意义 [9]。

能谱CT作为新型CT成像技术,能够获得准确的单能量CT值、能谱曲线、有效原子序数和基物质浓度,较传统的CT在高空间分辨率、时间分辨率的基础上增加了能量分辨率及理化性质的分辨率。近年来已经有学者研究该技术对于MM价值,Kosmala等在一项前瞻性研究中发现,双能CT虚拟去钙技术与传统CT相比具有更高的敏感性和同等的特异性,可以作为MRI或PET/CT禁忌症患者的另一种成像方式 [10]。

2.3. PET/CT检查

正电子发射断层显像/计算机体层成像(positron emission tomography/computed tomography, PET/CT)通常使用18f-氟脱氧葡萄糖(FDG)作为放射药物,通过判断葡萄糖代谢表现形式,识别骨破坏和溶解性病变,同时可用于评估肿瘤负荷和疾病活动。代谢活性的判断基于葡萄糖高摄取细胞摄取值,并与标准化摄取值(standard uptake value, SUV)进行比较。该技术通过将细胞代谢与CT结合,判断病灶性质同时可提供解剖定位,并可在没有溶骨性病变时发现高代谢骨性病变。

根据两项研究 [11] [12] 的发现,治疗前PET/CT检测骨病的敏感性和特异性范围为分别是59%到100%和75%到82%。PET/CT对弥漫性骨髓浸润的评估不如MRI敏感,但活动MM在骨髓腔内呈PET/CT阳性 [13] [14],故PET/CT可用于提示病灶是否具有活动性。MGUS和SMM在PET/CT显示阴性患者具有较低患病风险 [15]。

PET/CT在识别髓外病灶(extramedullary disease, EMD)的潜在部位时其成为检查技术中最有效的 [14]。除了EMD的存在,在一些符合自体干细胞移植(autologous stem cell transplantation, ASCT)或异体干细胞移植条件的患者的前瞻性或回顾性研究中发现,治疗前局灶性病灶(focal lesions, FLs)的数量和代谢已被确定为临床结果的预测因子 [16]。经研究证明PET/CT显示3个或更多FDG-摄取局灶性骨性病变是与多发性骨髓瘤患者较差的整体和无事件生存相关的独立变量;经研究证明PET/CT显示3个或更多FDG-摄取局灶性骨性病变是与低总生存期(overall survival, OS)和无进展生存期(progression-free survival, PFS)相关的独立变量 [17]。PET阴性患者的4年无进展生存率和总生存率分别为47%和79%,而PET阳性患者的4年无进展生存率和总生存率分别为32%和66% [16]。

在对疾病治疗后反应评估阶段,经证实MM在诱导治疗后3个FDG摄取病变持续存在与总生存率下降相关;经过治疗后PET/CT扫描病灶转阴性已被证明有助于预测非复发和较长的无进展生存期,而治疗后SUV的增加与短时期内复发相关 [18];对于在疾病进展时期表现出非分泌或寡分泌表型的患者,PET/CT更适合作为疾病活动客观提示 [19]。

PET-CT图像可在一些情况下存在假性结果,如在创伤(包括近期骨折)、近期化疗、放疗和生长因子时可能呈假阳性,而在给予大剂量类固醇后呈假阴性 [20]。

上述研究表示PET/CT诊断病灶活性具有显著优势;是髓外病灶发现的首要检查方式;对于疾病进展评估及治疗后反应评估具有临床意义,18 F-FDG-PET/CT被认为是对治疗反应评估及代谢检测的首选成像技术;目前对于骨髓瘤病灶SUV值还未有标准,尚有待进一步研究;对于疾病诊断及评估未纳入诊断标准。对于大剂量类固醇激素治疗后评估不是最佳选择,目前对于放射标记抗体成像尚在研究中。

2.4. MRI检查

磁共振成像基于细胞中水分子成像,更有利于软组织成像,在检测骨髓成分中具有优势,可以评估骨髓侵犯,MRI被认为是对早期骨髓浆细胞浸润的无创检测最敏感和最特异性的成像方式。目前MRI用于多发性骨髓瘤病灶序列主要为,T1序列、T2压脂序列及STIR序列、T1压脂增强序列;以椎间盘信号为参考,病灶通常表现为T1高信号,T2高信号,增强扫描高信号。在MM中已经发现5种骨髓受累的MRI征象:正常、局灶型、弥漫型、局灶性和弥漫性混合型以及杂色或“胡椒盐征” [21] [22]。MRI上的浸润模式与骨髓活检的组织学结果相关联 [22] [23]。

功能磁共振目前主要包括弥散加权成像(diffusion weighted imaging, DWI)及动态增强扫磁共振(dynamic contrast-enhanced, DCE-MRI),以上两种技术在骨髓细胞和骨髓内血管方面可提供重要信息,提高MRI病灶的检出率和整体表现。其中DWI成像通过测定组织中水分子的运动,判定是否存在弥散受限反应组织成分,通过半定量参数扩散系数(apparent diffusion coefficient, ADC)表示。根据DWI显像原理及骨髓瘤骨质破坏发生机制,当正常骨髓及骨小梁受到破坏,包括局灶性或弥漫性骨髓瘤浸润,与正常骨髓相比弥散明显受限,即ADC值增加;一般来说,ADC值在局灶性病变中最高,其次是弥漫性骨髓累及型,红骨髓和黄骨髓 [24]。ADC与骨髓浆细胞(bone marrow plasma cell, BM pc)组织浸润的相关性已被明确证实 [25] [26]。动态增强磁共振成像(Dynamic contrast-enhanced MRI)目前还没有广泛应用于临床,它可以通过评估血管内外的造影剂分布,提供与骨髓血管生成相关的血管通透性数据,包括血管生成对治疗的反应 [27]。骨髓瘤的动态增强MRI参数与组织学表现的相关性已被证实 [28]。

以往研究表明,WBMRI发现溶骨性病灶优于X线,尤其是中轴骨部位,而肋骨及长骨病灶并没有明显优势;并有研究证明,WBMRI对病灶检出率高于WBCT,对于WBCT可疑病灶可应用WBMRI进行进一步检查确诊 [29]。对18项PET/CT与全身X线片、MRI或两者相比较的研究的数据进行了系统回顾研究被证实是评估脊柱弥漫性骨髓受累性的参考标准技术 [29];磁共振成像还能准确地说明脊髓及神经根受压时手术干预或放射治疗的情况 [30]。

最早由Vande Berg等人发现MGUS患者使用MRI可发现骨髓异常表现 [31];骨髓弥漫性浸润的存在是MGUS或SMM进展为MM的重要预后因素,特别是病灶的存在和病灶数量 [32] [33] [34];Hillengass等人研究发现,对于无症状骨髓瘤患者 [32] 和MGUS患者 [33] 来说,在常规MRI上存在多个病灶是作为预后参数的病灶数量的最佳临界值;该研究发现形成了最新IMWG共识声明的基础,建议SMM患者有一个以上明确的局灶性病变(>5 mm)应考虑有症状的骨髓瘤需要治疗。

治疗后反应评估中,在最近涉及少数患者 [35] [36] 的研究中,发现当治疗反应良好时,ADC的增加在定性和定量上是显著的。在有效的治疗后动态增强MRI,骨髓的血管密度显著下降;并可评估病灶活动性 [37]。上述研究仍有待更多临床实验验证,并未推荐为反应评估首选检查。

磁共振主要局限性是为获取时间长、成本高、排除体内有金属装置的患者、幽闭恐怖症患者的困难以及视野有限。综上磁共振成像对于疾病早期骨髓浸润是最佳检查方式;对于脊柱弥漫性受累及脊髓、神经根受压磁共振成像具有独特优势;对于疾病进展及反应评估仍需要临床实验进行验证。

3. 总结及展望

上述可发现影像学技术对多发性骨髓瘤方面研究已经取得显著进展。影像学无论在多发性骨髓瘤诊断、病情监测、治疗反应评估等方面均提供重要价值。目前对于多发性骨髓瘤了解及治疗不断深入,影像学同样面临挑战,首先影像学特征与多发性骨髓瘤患者分泌M蛋白类型是否具有相关性;其次,一些新型影像学技术例如能谱CT、放射标记抗体成像有待研究;尤其在对于疾病反应评估方面仍需要做更多努力。

参考文献

[1] Rajkumar, S.V., Dimopoulos, M.A., Palumbo, A., et al. (2014) International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. The Lancet Oncology, 15, e538-e548.
https://doi.org/10.1016/S1470-2045(14)70442-5
[2] 张之尧, 陈文明. 多发性骨髓瘤骨病的诊断进展[J]. 实用肿瘤杂志, 2018, 33(5): 402-406.
[3] Edelstyn, G.A., Gillespie, P.J. and Grebbell, F.S. (1967) The Radiological Demonstration of Osseous Metastases. Experimental Observations. Clinical Radiology, 18, 158-162.
https://doi.org/10.1016/S0009-9260(67)80010-2
[4] Pianko, M.J., Terpos, E., Roodman, G.D., et al. (2014) Whole-Body Low-Dose Computed Tomography and Advanced Imaging Techniques for Multiple Myeloma Bone Disease. Clinical Cancer Research, 20, 5888-5897.
https://doi.org/10.1158/1078-0432.CCR-14-1692
[5] Ippolito, D., Besostri, V., Bonaffini, P.A., et al. (2013) Diagnostic Value of Whole-Body Low-Dose Computed Tomography (WBLDCT) in Bone Lesions Detection in Patients with Multiple Myeloma (MM). European Journal of Radiology, 82, 2322-2327.
https://doi.org/10.1016/j.ejrad.2013.08.036
[6] Horger, M., Claussen, C.D., Bross-Bach, U., et al. (2005) Whole-Body Low-Dose Multidetector Row-CT in the Diagnosis of Multiple Myeloma: An Alternative to Conventional Radiography. European Journal of Radiology, 54, 289-297.
https://doi.org/10.1016/j.ejrad.2004.04.015
[7] Kröpil, P., Fenk, R., Fritz, L.B., et al. (2008) Comparison of Whole-Body 64-Slice Multidetector Computed Tomography and Conventional Radiography in Staging of Multiple Myeloma. European Radiology, 18, 51-58.
https://doi.org/10.1007/s00330-007-0738-3
[8] Wolf, M.B., Murray, F., Kilk, K., et al. (2014) Sensitivity of Whole-Body CT and MRI versus Projection Radiography in the Detection of Osteolyses in Patients with Monoclonal Plasma Cell Disease. European Journal of Radiology, 83, 1222-1230.
https://doi.org/10.1016/j.ejrad.2014.02.008
[9] Hillengass, J., Moulopoulos, L.A., Delorme, S., et al. (2017) Whole-Body Computed Tomography versus Conventional Skeletal Survey in Patients with Multiple Myeloma: A Study of the International Myeloma Working Group. Blood Cancer Journal, 7, e599.
https://doi.org/10.1038/bcj.2017.78
[10] Kosmala, A., Weng, A.M., Heidemeier, A., et al. (2018) Multiple Myeloma and Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology, 286, 205-213.
https://doi.org/10.1148/radiol.2017170281
[11] Cascini, G.L., Falcone, C., Console, D., et al. (2013) Whole-Body MRI and PET/CT in Multiple Myeloma Patients during Staging and after Treatment: Personal Experience in a Longitudinal Study. La Radiologia Medica, 118, 930-948.
https://doi.org/10.1007/s11547-013-0946-7
[12] Shortt, C.P., Gleeson, T.G., Breen, K.A., et al. (2009) Whole-Body MRI versus PET in Assessment of Multiple Myeloma Disease Activity. AJR. American Journal of Roentgenology, 192, 980-986.
https://doi.org/10.2214/AJR.08.1633
[13] Dutoit, J.C. and Verstraete, K.L. (2017) Whole-Body MRI, Dynamic Contrast-Enhanced MRI, and Diffusion-Weighted Imaging for the Staging of Multiple Myeloma. Skeletal Radiology, 46, 733-750.
https://doi.org/10.1007/s00256-017-2609-6
[14] Lu, Y.Y., Chen, J.H., Lin, W.Y., et al. (2012) FDG PET or PET/CT for Detecting Intramedullary and Extramedullary Lesions in Multiple Myeloma: A Systematic Review and Meta-Analysis. Clinical Nuclear Medicine, 37, 833-837.
https://doi.org/10.1097/RLU.0b013e31825b2071
[15] Adam, Z., Bolcak, K., Stanicek, J., et al. (2007) Fluorodeoxyglucose Positron Emission Tomography in Multiple Myeloma, Solitary Plasmocytoma and Monoclonal Gammapathy of Unknown Significance. Neoplasma, 54, 536-540.
[16] Zamagni, E., Patriarca, F., Nanni, C., et al. (2011) Prognostic Relevance of 18-F FDG PET/CT in Newly Diagnosed Multiple Myeloma Patients Treated with Up-Front Autologous Transplantation. Blood, 118, 5989-5995.
https://doi.org/10.1182/blood-2011-06-361386
[17] Bartel, T.B., Haessler, J., Brown, T.L., et al. (2009) F18-Fluorodeoxyglucose Positron Emission Tomography in the Context of Other Imaging Techniques and Prognostic Factors in Multiple Myeloma. Blood, 114, 2068-2076.
https://doi.org/10.1182/blood-2009-03-213280
[18] Nanni, C., Zamagni, E., Celli, M., et al. (2013) The Value of 18F-FDG PET/CT after Autologous Stem Cell Transplantation (ASCT) in Patients Affected by Multiple Myeloma (MM): Experience with 77 Patients. Clinical Nuclear Medicine, 38, e74-e79.
https://doi.org/10.1097/RLU.0b013e318266cee2
[19] Dupuis, M.M. and Tuchman, S.A. (2016) Non-Secretory Multiple Myeloma: From Biology to Clinical Management. OncoTargets and Therapy, 9, 7583-7590.
https://doi.org/10.2147/OTT.S122241
[20] Cavo, M., Terpos, E., Nanni, C., Moreau, P., Lentzsch, S., Zweegman, S., et al. (2017) Role of 18F-FDG PET/CT in the Diagnosis and Management of Multiple Myeloma and Other Plasma Cell Disorders: A Consensus Statement by the International Myeloma Working Group. The Lancet Oncology, 18, e206-e217.
https://doi.org/10.1016/S1470-2045(17)30189-4
[21] Baur, A., Stäbler, A., Bartl, R., Lamerz, R. and Reiser, M. (1996) Infiltrationsmuster des Plasmozytoms in der Magnetresonanztomographie [Infiltration Patterns of Plasmacytomas in Magnetic Resonance Tomography]. RöFo, 164, 457-463. (In German)
https://doi.org/10.1055/s-2007-1015689
[22] Baur-Melnyk, A., Buhmann, S., Dürr, H.R. and Reiser, M. (2005) Role of MRI for the Diagnosis and Prognosis of Multiple Myeloma. European Journal of Radiology, 55, 56-63.
https://doi.org/10.1016/j.ejrad.2005.01.017
[23] Stäbler, A., Baur, A., Bartl, R., Munker, R., Lamerz, R. and Reiser, M.F. (1996) Contrast Enhancement and Quantitative Signal Analysis in MR Imaging of Multiple Myeloma: Assessment of Focal and Diffuse Growth Patterns in Marrow Correlated with Biopsies and Survival Rates. AJR. American Journal of Roentgenology, 167, 1029-1036.
https://doi.org/10.2214/ajr.167.4.8819407
[24] Moulopoulos, L.A., Dimopoulos, M.A., Christoulas, D., et al. (2010) Diffuse MRI Marrow Pattern Correlates with Increased Angiogenesis, Advanced Disease Features and Poor Prognosis in Newly Diagnosed Myeloma Treated with Novel Agents. Leukemia, 24, 1206-1212.
https://doi.org/10.1038/leu.2010.70
[25] Hillengass, J., Bäuerle, T., Bartl, R., et al. (2011) Diffusion-Weighted Imaging for Non-Invasive and Quantitative Monitoring of Bone Marrow Infiltration in Patients with Monoclonal Plasma Cell Disease: A Comparative Study with Histology. British Journal of Haematology, 153, 721-728.
https://doi.org/10.1111/j.1365-2141.2011.08658.x
[26] Hillengass, J., Ellert, E., Spira, E., et al. (2016) Comparison of Plasma Cell Infiltration in Random Samples of the Bone Marrow and Osteolyses Acquired by CT-Guided Biopsy in Patients with Symptomatic Multiple Myeloma. Journal of Clinical Oncology, 34, 8040.
https://doi.org/10.1200/JCO.2016.34.15_suppl.8040
[27] Huang, S.Y., Chen, B.B., Lu, H.Y., Lin, H.H., Wei, S.Y., Hsu, S.C. and Shih, T.T. (2012) Correlation among DCE-MRI Measurements of Bone Marrow Angiogenesis, Microvessel Density, and Extramedullary Disease in Patients with Multiple Myeloma. American Journal of Hematology, 87, 837-839.
https://doi.org/10.1002/ajh.23256
[28] Hillengass, J. and Landgren, O. (2013) Challenges and Opportunities of Novel Imaging Techniques in Monoclonal Plasma Cell Disorders: Imaging “Early Myeloma”. Leukemia & Lymphoma, 54, 1355-1363.
https://doi.org/10.3109/10428194.2012.740559
[29] van Lammeren-Venema, D., Regelink, J.C., Riphagen, I.I., et al. (2012) 18F-Fluoro-Deoxyglucose Positron Emission Tomography in Assessment of Myeloma-Related Bone Disease: A Systematic Review. Cancer, 118, 1971-1981.
https://doi.org/10.1002/cncr.26467
[30] Dimopoulos, M., Terpos, E., Comenzo, R.L., et al. (2009) International Myeloma Working Group Consensus Statement and Guidelines Regarding the Current Role of Imaging Techniques in the Diagnosis and Monitoring of Multiple Myeloma. Leukemia, 23, 1545-1556.
https://doi.org/10.1038/leu.2009.89
[31] Vande Berg, B.C., Michaux, L., Lecouvet, F.E., et al. (1997) Nonmyelomatous Monoclonal Gammopathy: Correlation of Bone Marrow MR Images with Laboratory Findings and Spontaneous Clinical Outcome. Radiology, 202, 247-251.
https://doi.org/10.1148/radiology.202.1.8988218
[32] Hillengass, J., Fechtner, K., Weber, M.A., et al. (2010) Prognostic Significance of Focal Lesions in Whole-Body Magnetic Resonance Imaging in Patients with Asymptomatic Multiple Myeloma. Journal of Clinical Oncology, 28, 1606-1610.
https://doi.org/10.1200/JCO.2009.25.5356
[33] Hillengass, J., Weber, M.A., Kilk, K., Listl, K., et al. (2014) Prognostic Significance of Whole-Body MRI in Patients with Monoclonal Gammopathy of Undetermined Significance. Leukemia, 28, 174-178.
https://doi.org/10.1038/leu.2013.244
[34] Merz, M., Hielscher, T., Wagner, B., et al. (2014) Predictive Value of Longitudinal Whole-Body Magnetic Resonance Imaging in Patients with Smoldering Multiple Myeloma. Leukemia, 28, 1902-1908.
https://doi.org/10.1038/leu.2014.75
[35] Wu, C., Huang, J., Xu, W.B., et al. (2018) Discriminating Depth of Response to Therapy in Multiple Myeloma Using Whole-Body Diffusion-Weighted MRI with Apparent Diffusion Coefficient: Preliminary Results from a Single-Center Study. Academic Radiology, 25, 904-914.
https://doi.org/10.1016/j.acra.2017.12.008
[36] Latifoltojar, A., Hall-Craggs, M., Bainbridge, A., et al. (2017) Whole-Body MRI Quantitative Biomarkers Are Associated Significantly with Treatment Response in Patients with Newly Diagnosed Symptomatic Multiple Myeloma Following Bortezomib Induction. European Radiology, 27, 5325-5336.
https://doi.org/10.1007/s00330-017-4907-8
[37] Daldrup-Link, H.E., Henning, T. and Link, T.M. (2007) MR Imaging of Therapy-Induced Changes of Bone Marrow. European Radiology, 17, 743-761.
https://doi.org/10.1007/s00330-006-0404-1