页岩气井滑溜水连续加砂技术研究与应用
Research and Application on Continuous Carrying Sand with Slick-Water in Shale Gas Well
DOI: 10.12677/JOGT.2021.432008, PDF, 下载: 383  浏览: 535 
作者: 张群双, 卢家孝:捷贝通石油技术集团股份有限公司,四川 成都;刘晓宇:中国石油集团渤海钻探工程有限公司井下技术服务分公司,天津
关键词: 滑溜水连续加砂脆性指数砂堤平衡高度控液提砂Slick-Water Continuous Carrying Sand Brittle Index Balanced Height of Sand Bank More Sand with Less Liquid
摘要: 随着页岩气规模开发,滑溜水压裂液因其低黏、低摩阻、易滤失、低成本以及更适应特低渗、超低渗储层的压裂改造等特性,应用越来越广泛。滑溜水加砂可以分为段塞式和连续式两种模式。从各油气田统计数据来看,压后效果与加砂量呈一定的正相关关系,因此采用滑溜水连续加砂技术提高加砂量是必然也是最为有效的手段。通过对大型可视平板裂缝模拟系统的试验数据进行分析,掌握了滑溜水携砂规律,并进行了滑溜水连续加砂成功率影响因素分析,制作了连续加砂优化版图,确立了实施低粘滑溜水连续加砂工艺方案,同时结合现场施工经验,提出了实施连续加砂前确保成功率的预判方法。现场应用结果表明,该项加砂工艺可以实现控液提砂,提高加砂强度,在同等液量的情况下,加砂量提高100%~200%,压裂增产效果提高10%~30%。
Abstract: With the large-scale development of shale gas, fracturing fluid of slick-water has been more and more widely used due to its low viscosity, low friction, easy filtration, low cost and more suitable for stimulation of ultra-low permeability and ultra-low permeability reservoirs. The model of carrying sand with slick water is divided into plug type and continuous type. To improve the quantity of sand, continuous sand with slick-water technology is inevitable, and is also the most effective means. By analyzing the test data of large visual plate crack simulation system, the author masters the law of carrying sand with slick-water, and analyzes the influencing factors of the success rate of slick-water, and establishes continuous carrying sand optimized layout, and shows the plan for continuous sand with slick-water technology, combines with experience in fracturing field, and shows the forecasting methods before continuous sand. The results of field application show that continuous carrying sand is one method of carrying sand efficiently by more sand with less liquid, under the same liquid quantity, increasing the sand quantity by 100%~200% and increasing the fracturing stimulation effect by 10%~30%.
文章引用:张群双, 刘晓宇, 卢家孝. 页岩气井滑溜水连续加砂技术研究与应用[J]. 石油天然气学报, 2021, 43(2): 8-18. https://doi.org/10.12677/JOGT.2021.432008

参考文献

[1] Schols, R.S. and Visser, W. (1974) Proppant Bank Build up in a Vertical Fracture without Fluid Loss. SPE European Spring Meeting, Amsterdam, May 1974, SPE4834-MS.
https://doi.org/10.2118/4834-MS
[2] Palisch, T.T. and Vincent, M.C. (2008) Slickwater Fracturing: Food for Thought. SPE Annual Technical Conference and Exhibition, Denver, Colorado, September 2008, SPE 115766-MS.
https://doi.org/10.2118/115766-MS
[3] 温庆志, 高金剑, 刘华, 刘欣佳, 王淑婷, 王峰. 滑溜水携砂性能动态实验[J]. 石油钻采工艺, 2015, 37(2): 97-100.
[4] 张争. 压裂裂缝内滑溜水携砂输送规律研究[D]: [硕士学位论文]. 西安: 西安石油大学, 2018: 23-51.
[5] 刘玉章, 付海峰, 丁云宏, 卢拥军, 王欣, 梁天成. 层间应力差对水力裂缝扩展影响的大尺度实验模拟与分析[J]. 石油钻采工艺, 2014, 36(4): 88-92.
[6] 周德胜, 张争, 惠峰, 师煜涵, 赵超能, 周媛. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺, 2017, 39(4): 499-508.
[7] 温庆志, 胡蓝霄, 翟恒立, 罗明良, 陆斌. 滑溜水压裂裂缝内砂堤形成规律[J]. 特种油气藏, 2013, 20(3): 137-139.
[8] 张晓. 页岩油储层可压裂性评价[D]: [硕士学位论文]. 西安: 西安石油大学, 2018: 28-39.
[9] 陈建国, 邓金根, 袁俊亮, 闫伟, 蔚宝华, 谭强. 页岩储层I型和II型断裂韧性评价方法研究[J]. 岩石力学与工程学报, 2015, 34(6): 1101-1105.
[10] 张涛, 郭建春, 刘伟. 清水压裂中支撑剂输送沉降行为的CFD模拟[J]. 西南石油大学学报(自然科学版), 2014, 36(1): 75-82.