具有潜伏期和分布时滞的传染病模型及动力学分析
Dynamic Analysis on Latent Period and Distributed Delay Epidemiological Model
DOI: 10.12677/AAM.2021.106218, PDF, HTML, 下载: 391  浏览: 598 
作者: 忽丹丹, 杨 雨:中国地质大学数学与物理学院,湖北 武汉
关键词: SEIR 模型分布时滞基本再生数Lyapunov 泛函全局稳定性SEIR Model Distributed Delay Basic Reproduction Number Lyapunov Functional Global Stability
摘要: 本文研究了一类潜伏期具有感染性的疾病传播模型, 其中引入分布时滞刻画了潜伏期患者转症为感 染者的概率. 通过分析相应的特征方程, 讨论了无病平衡点和地方病平衡点的局部稳定性. 再通过 构造合适的 Lyapunov 泛函, 应用 LaSalle 不变性原理, 得到当疾病传播阈值即基本再生数小于 1 时, 无病平衡点是全局渐近稳定的, 疾病将会消失; 当基本再生数大于 1 时, 地方病平衡点是全 局渐近稳定的, 疾病将持续存在. 最后用数值模拟验证了理论结果。
Abstract: In this paper, a model of disease transmission with infectious incubation period is studied, in which a distributed time delay is introduced to characterize the probability of patients in latency becoming infected. By analyzing the corresponding character- istic equations, the local stability of disease-free equilibrium and endemic equilibrium is discussed. Then, by constructing an appropriate Lyapunov functional and applying LaSalle invariance principle, we obtained that the disease-free equilibrium point is globally asymptotically stable and the disease will disappear when the disease trans- mission threshold, namely the basic regeneration number, is less than 1. When the basic reproduction number is greater than 1, the endemic equilibrium point is globally asymptotically stable and the disease will persist. Finally, the theoretical results are verified by numerical simulation.
文章引用:忽丹丹, 杨雨. 具有潜伏期和分布时滞的传染病模型及动力学分析[J]. 应用数学进展, 2021, 10(6): 2083-2094. https://doi.org/10.12677/AAM.2021.106218

参考文献

[1] 陆征一, 周义仓. 数学生物学进展 [J]. 北京: 科学出版社, 2006.
[2] Hamer, W.H. (1906) Epidemic Disease in England. The Lancet, 1, 733-739.
[3] Kermack, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, 115, 700-721.
https://doi.org/10.1098/rspa.1927.0118
[4] Wang, C., Horby, P.W., Hayden, F.G., et al. (2020) A Novel Coronavirus Outbreak of Global Health Concern. The Lancet, 395, 470-473.
https://doi.org/10.1016/S0140-6736(20)30185-9
[5] Worldometer (2021) COVID-19 Coronavirus Pandemic.
https://www.worldometers.info/coronavirus/
[6] 张龙浩, 李柏宏, 贾鹏, 蒲剑, 白蓓, 李音, 朱培嘉, 李雷, 曾国军, 赵欣, 董珊珊, 刘梦菡, 张楠. 新 型冠状病毒 (SARS-CoV-2) 全球研究现状分析 [J]. 生物医学工程学杂志, 2020, 37(2): 236-249.
[7] Yang, C.Y. and Wang, J. (2020) A Mathematical Model for the Novel Coronavirus Epidemic in Wuhan, China. Mathematical Biosciences and Engineering, 17, 2708-2724.
https://doi.org/10.3934/mbe.2020148
[8] 王冰杰. 基于潜伏期有传染力的 SEIR 传染病模型的控制策略 [J]. 东北师大学报 (自然科学版), 2014, 46(1): 28-32.
[9] Li, G.H. and Jin, Z. (2005) Global Stability of a SEIR Epidemic Model with Infectious Force in Latent, Infected and Immune Period. Chaos, Solitons and Fractals, 25, 1177-1184.
https://doi.org/10.1016/j.chaos.2004.11.062
[10] Çakan, S. (2020) Dynamic Analysis of a Mathematical Model with Health Care Capacity for COVID-19 Pandemic. Chaos, Solitons and Fractals, 139, Article ID: 110033.
https://doi.org/10.1016/j.chaos.2020.110033
[11] Liu, M., Liu, X. and Liang, W.N. (2020) Handbook of Basic Epidemiological Knowledge on Coronavirus Disease 2019 (COVD-19)-110 Questions Answers. Peking University Medical Press, Beijing.
[12] Huang, G. and Liu, A.P. (2013) A Note on Global Stability for a Heroin Epidemic Model with Distributed Delay. Applied Mathematics Letters, 26, 687-691.
https://doi.org/10.1016/j.aml.2013.01.010
[13] Van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Bio- sciences, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[14] 刘小惠, 何阳, 麻先思, 罗良清. 有关新冠肺炎潜伏期和疑似期的统计数据分析: 基于湖北省外2172 条确诊数据 [J]. 应用数学学报, 2020, 43(2): 278-294.