萘环类PD-1/PD-L1抑制剂的设计、合成及生物活性评价
Design, Synthesis and Biological Evaluation of Naphthalene Ring PD-1/PD-L1 Inhibitors
DOI: 10.12677/HJMCe.2021.92012, PDF, HTML, XML, 下载: 679  浏览: 1,170  国家自然科学基金支持
作者: 赵 磊, 欧阳宜强, 赖宜生*:中国药科大学,新药研究中心,天然药物活性组分与药效国家重点实验室,江苏省代谢性疾病药物重点实验室,江苏 南京;余龙波, 郭文洁, 徐 强, 高 健*:南京大学,生命科学学院,医药生物技术国家重点实验室,江苏 南京
关键词: 肿瘤免疫治疗免疫检查点PD-1/PD-L1抑制剂生物活性Tumor Immunotherapy Immune Checkpoint PD-1/PD-L1 Inhibitor Biological Activity
摘要: 以BMS-1018为先导化合物,通过替换联苯片段为萘环以及生物电子等排原理,结合分子对接技术,设计并合成了两个系列共18个新型萘环类PD-1/PD-L1小分子抑制剂,结构经1H-NMR和ESI-MS谱确证。采用均相时间分辨荧光法评价目标化合物对PD-1/PD-L1结合的抑制活性。结果表明,所有目标化合物对PD-1/PD-L1均显示不同程度的抑制活性。其中6个化合物A-8、A-9和B-5、B-6、B-8、B-9的活性较为突出,值得进一步研究。
Abstract: Using BMS-1018 as the lead compound, two series of novel naphthalene-based PD-1/PD-L1 small molecule inhibitors were designed and synthesized by replacing the biphenyl moiety with a naph-thalene ring and applying the principle of bioisosterism combined with molecular docking technol-ogy. The structures of the target compounds were confirmed by 1H-NMR and ESI-MS. The inhibitory activity of the compounds against the PD-1/PD-L1 interaction was evaluated by homogeneous time-resolved fluorescence. The results showed that all the target compounds displayed different degrees of inhibitory activity. Among them, six compounds A-8, A-9 and B-5, B-6, B-8, B-9 have out-standing activities, which are worthy of further study.
文章引用:赵磊, 余龙波, 欧阳宜强, 郭文洁, 徐强, 高健, 赖宜生. 萘环类PD-1/PD-L1抑制剂的设计、合成及生物活性评价[J]. 药物化学, 2021, 9(2): 94-103. https://doi.org/10.12677/HJMCe.2021.92012

1. 引言

免疫检查点是指通过平衡共刺激和共抑制信号来控制T细胞免疫应答强度的信号通路 [1]。在正常生理状态下,免疫检查点在维持自身耐受和避免自身免疫中发挥重要作用,但在肿瘤患者中,免疫检查点相关蛋白的表达失调,会导致肿瘤免疫逃逸 [2]。自2014年以来,美国FDA已批准6种PD-1/PD-L1单克隆抗体用于癌症治疗 [3],这些单抗具有很好的临床疗效,显著改善了部分此前无法治疗的恶性肿瘤患者的预后。但是高成本、低应答率、免疫原性等问题仍然限制了该类单抗的临床应用 [4]。因此,PD-1/PD-L1小分子抑制剂的研发引起了越来越多学术机构和制药公司的关注 [5]。2015年,百时美施贵宝(BMS)公司首次披露了一系列具有间-(苯氧甲基)联苯骨架的PD-1/PD-L1小分子抑制剂(图1) [6] [7]。随后,Holak课题组发现,BMS-202及其类似物可诱导PD-L1蛋白同源二聚体的形成,从而阻止PD-L1与其受体PD-1的结合,并最终阻断下游信号传导 [8] [9] [10]。受到这一独特作用机制的启发,一系列新型PD-1/PD-L1小分子抑制剂先后被研发,并有望与单抗联用实现协同抗癌作用 [11]。

Figure 1. The representative small-molecule PD-1/PD-L1 inhibitors developed by BMS

图1. BMS研发的代表性PD-1/PD-L1小分子抑制剂的结构

2. 目标化合物的设计与合成

2.1. 目标化合物的设计

在BMS公司公开PD-1/PD-L1小分子抑制剂结构后,Holak等 [8] [9] 揭示了其中的BMS-202、BMS-1001、BMS-1166与靶蛋白结合的晶体结构,发现其联苯片段能够与PD-L1二聚体构成的疏水通道形成关键的作用。具体来讲,联苯中的a环能够与A亚基的Met115形成关键的π-烷基堆积作用,因此增强联苯结构的电子云密度可能有利于提高活性。据此,本文作者尝试将联苯结构替换成萘环,拟在保留联苯结构a环的同时,通过共轭作用提高电子云密度,从而增强其与疏水空腔AMet115的π-烷基作用。再者,萘环与联苯结构的体积相当,有望能够更好地占据疏水空腔。此外,我们还对伸向溶剂区的亲水片段R基团进行优化,以考察其对活性的影响,从而设计了A系列和B系列目标化合物(图2)。

Figure 2. The design strategy of the target compounds A and B

图2. A和B系列目标化合物的设计策略

A系列目标化合物的合成:以1-溴甲基萘为原料,与2,4-二羟基苯甲醛经Williamson醚化反应生成中间体1,1与间氰基苄溴反应生成中间体2,2分别与各种氨基醇或氨基酸经还原胺化反应制得目标化合物A-1~A-9 (图3)。

试剂和条件:(a) CH3CN, NaHCO3, 90℃, 6 h; (b) 3-(bromomethyl)benzonitrile, DMF, K2CO3, rt, 12 h; (c) DMF, AcOH, NaBH3CN, rt, 24 h.

Figure 3. Synthetic route for the target compounds A-1~A-9

图3. 目标化合物A-1~A-9的合成路线

B系列目标化合物的合成:以2-溴甲基萘为原料,与2,4-二羟基苯甲醛经Williamson醚化反应生成中间体3,3与间氰基苄溴反应生成中间体4,4分别与各种氨基醇或氨基酸经还原胺化反应制得目标化合物B-1~B-9 (图4)。

试剂和条件:(a) CH3CN, NaHCO3, 90℃, 6 h; (b) 3-(bromomethyl)benzonitrile, DMF, K2CO3, rt, 12 h; (c) DMF, AcOH, NaBH3CN, rt, 24 h.

Figure 4. Synthetic route for the target compounds B-1~B-9

图4. 目标化合物B-1~B-9的合成路线

2.2. 目标化合物的合成

化合物熔点采用RY-1型熔点仪测定,温度计未经校正;1H-NMR使用ACF-300 MHz核磁共振仪测定,TMS为内标;ESI-MS使用Agilent 1100 Series LC/MSD Trap (SL)质谱仪测定。所有试剂未经特别说明均为市售化学纯或分析纯产品。

2.2.1. 目标化合物A-1~A-9的合成

分别将1-溴甲基萘(2.0 g,9.1 mmol)、2,4-二羟基苯甲醛(1.5 g,10.8 mmol)和碳酸氢钠(1.2 g,14.3 mmol)加入乙腈(30 mL)中,90℃回流反应12 h。加入水(100 mL),乙酸乙酯萃取(50 mL × 3),有机相用无水硫酸镁干燥,抽滤,滤液浓缩,柱层析分离(石油醚/乙酸乙酯,体积比15:1)得白色固体1 (1.5 g,收率59.6%)。1H NMR (300 MHz, DMSO-d6) δ 11.07 (s, 1H), 10.02 (s, 1H), 8.00-7.96 (m, 2H), 7.95 (s, 1H), 7.93 (d, J = 3.2 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.58 (dd, J = 8.4, 1.8 Hz, 1H), 7.55-7.52 (m, 2H), 6.70 (dd, J = 8.7, 2.4 Hz, 1H), 6.62 (d, J = 2.3 Hz, 1H), 5.35 (s, 2H)。

分别将1 (1.5 g,5.4 mmol)、碳酸钾(1.1 g,8.1 mmol)和3-氰基苄基溴(1.4 g,7.1 mmol)加入DMF(30 mL)中,室温反应6 h。加入水(150 mL),乙酸乙酯萃取(50 mL × 3),有机相用无水硫酸镁干燥,抽滤,滤液浓缩,柱层析分离(石油醚/乙酸乙酯,体积比8:1)得白色固体2 (1.8 g,收率84.9%)。1H NMR (300 MHz, Chloroform-d) δ 10.38 (d, J = 5.1 Hz, 1H), 7.92 (d, J = 9.5 Hz, 2H), 7.90-7.82 (m, 3H), 7.68 (dd, J = 16.1, 5.9 Hz, 2H), 7.64-7.59 (m, 1H), 7.58-7.51 (m, 2H), 7.48 (dd, J = 14.3, 7.1 Hz, 2H), 6.83-6.68 (m, 1H), 6.59 (d, J = 4.7 Hz, 1H), 5.29 (s, 2H), 5.16 (s, 2H)。

3-(((((1,3-二羟基-2-甲基丙烷-2-基)氨基)甲基)-5-(萘-1-基甲氧基)苯氧基)甲基)苯甲腈(A-1)的制备:将2 (0.2 g,0.5 mmol)溶于DMF(25 mL)中,随后依次加入2-氨基-2-甲基-1,3-丙二醇(0.1 g,1.0 mmol)、冰醋酸(0.06 g,1.0 mmol)和氰基硼氢化钠(0.1 g,1.6 mmol),室温反应24 h。加入水(50 mL),乙酸乙酯萃取(20 mL × 3),有机相用无水硫酸镁干燥,抽滤,滤液浓缩,柱层析分离(二氯甲烷/甲醇,体积比20:1),得0.15 g白色固体A-1,收率61.1%,mp 183℃~185℃。ESI-MS m/z: 481.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.10-8.06 (m, 1H), 8.03 (d, J = 2.0 Hz, 1H), 8.00 (dd, J = 7.7, 1.9 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.91-7.87 (m, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.68 (dd, J = 7.0, 1.2 Hz, 1H), 7.62-7.57 (m, 3H), 7.52 (dd, J = 8.2, 7.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 6.88 (d, J = 2.3 Hz, 1H), 6.81 (dd, J = 8.4, 2.3 Hz, 1H), 5.60 (s, 2H), 5.40 (s, 2H), 5.22 (s, 2H), 4.12 (s, 2H), 3.55 (s, 2H), 3.54 (s, 2H), 1.12 (s, 3H)。采用类似的方法制备目标化合物A-2~A-9。

3-((2-((呋喃-2-基甲基)氨基)甲基)-5-(萘-1-基甲氧基)苯氧基)甲基)苯甲腈(A-2),白色固体,收率62.2%,mp 172℃~174℃。ESI-MS m/z: 473.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 7.92 (td, J = 6.2, 3.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 1H), 7.72 (dd, J = 8.9, 1.7 Hz, 2H), 7.62 (dt, J = 7.7, 1.4 Hz, 1H), 7.54 (dd, J = 6.4, 3.3 Hz, 2H), 7.51 (d, J = 1.1 Hz, 1H), 7.50-7.48 (m, 2H), 7.47 (s, 1H), 7.33 (d, J = 1.8 Hz, 1H), 6.68 (dd, J = 8.4, 2.3 Hz, 1H), 6.59 (d, J = 3.4 Hz, 1H), 6.55 (d, J = 2.3 Hz, 1H), 6.30 (dd, J = 3.3, 1.9 Hz, 1H), 5.34 (s, 2H), 5.10 (s, 2H), 3.97 (s, 2H), 3.94 (s, 2H)。

3-((2-((1,3-二羟基丙烷-2-基)氨基)甲基)-5-(萘-1-基甲氧基)苯氧基)甲基)苯甲腈(A-3),白色固体,收率42.0%,mp 175℃~177℃。ESI-MS m/z: 467.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 7.99 (t, J = 8.0 Hz, 1H), 7.86 (dt, J = 15.1, 7.4 Hz, 2H), 7.73 (d, J = 5.6 Hz, 1H), 7.60 (d, J = 6.5 Hz, 1H), 7.53 (dq, J = 7.7, 4.1 Hz, 4H), 7.43 (d, J = 7.3 Hz, 2H), 7.33 (s, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.57 (d, J = 5.7 Hz, 1H), 5.41 (s, 2H), 5.08 (s, 2H), 4.07 (s, 2H), 3.74 (d, J = 7.1 Hz, 4H), 3.00-2.94 (m, 1H), 2.90 (d, J = 7.4 Hz, 2H)。

N-(2-((2-((3-氰基苯)氧基)-4-(萘-1-甲氧基)苄基)氨基)乙基)乙酰胺(A-4),白色固体,收率41.0%,mp 165℃~167℃。ESI-MS m/z: 478.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 8.06-7.96 (m, 1H), 7.92-7.87 (m, 1H), 7.85 (s, 1H), 7.73 (d, J = 6.7 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.56 (t, J = 5.6 Hz, 2H), 7.53 (s, 1H), 7.51-7.44 (m, 2H), 7.34 (d, J = 8.5 Hz, 1H), 7.10 (s, 1H), 6.71 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 14.7 Hz, 1H), 5.44 (s, 2H), 5.15 (s, 2H), 4.11 (s, 2H), 3.44 (t, J = 10.4 Hz, 2H), 3.12 (t, J = 6.4 Hz, 2H), 1.93 (s, 3H)。

N-(2-((3-氰基苯)氧基)-4-(萘-1-基甲氧基)苄基)-N-甲基甘氨酸(A-5),白色固体,收率56.2%,mp 171℃~173℃。ESI-MS m/z: 465.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.09-8.05 (m, 1H), 7.98-7.93 (m, 2H), 7.91 (d, J = 5.1 Hz, 2H), 7.79 (t, J = 8.4 Hz, 2H), 7.65 (d, J = 7.1 Hz, 1H), 7.57 (dd, J = 8.1, 4.3 Hz, 3H), 7.51 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 2.3 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 5.51 (s, 2H), 5.19 (s, 2H), 3.56 (s, 2H), 3.55 (s, 2H), 2.14 (s, 3H)。

(S)-1-(2-((3-氰基苯甲酰基)氧基)-4-(萘-1-基甲氧基)苄基)哌啶-2-羧酸(A-6),白色固体,收率46.6%,mp 172℃~174℃。ESI-MS m/z: 505.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.08 (d, J = 7.8 Hz, 1H), 8.01-7.92 (m, 3H), 7.82 (dd, J = 12.0, 7.7 Hz, 2H), 7.67 (d, J = 7.0 Hz, 1H), 7.59 (q, J = 7.5, 6.5 Hz, 3H), 7.52 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 6.83 (s, 1H), 6.79 (d, J = 8.2 Hz, 1H), 5.54 (s, 2H), 5.22 (s, 2H), 4.04-3.97 (m, 2H), 3.86 (s, 1H), 3.19 (dd, J = 8.1, 4.1 Hz, 1H), 3.00 (dd, J = 11.5, 5.9 Hz, 1H), 1.86 (t, J = 9.3 Hz, 1H), 1.73 (q, J = 10.7, 9.3 Hz, 1H), 1.53 (m, 3H), 1.37 (q, J = 7.5, 7.1 Hz, 1H)。

(2-((3-氰基苯甲酰基)氧基)-4-(萘-1-基甲氧基)苄基)-L-丝氨酸(A-7),白色固体,收率44.8%,mp 167℃~169℃。ESI-MS m/z: 481.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.07 (d, J = 8.0 Hz, 1H), 8.00 (s, 2H), 7.94 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.63-7.53 (m, 4H), 7.52 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 6.86 (s, 1H), 6.79 (d, J = 8.3 Hz, 1H), 5.55 (s, 2H), 5.24 (s, 2H), 4.17 (d, J = 11.7 Hz, 2H), 3.84 (s, 2H), 3.43 (s, 1H)。

2-((2-((3-氰基苯甲酰基)氧基)-4-(萘-1-基甲氧基)苄基)氨基)-3-羟基丁酸(A-8),白色固体,收率41.5%,mp 161℃~163℃。ESI-MS m/z: 495.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.08-8.05 (m, 1H), 7.98 (d, J = 9.3 Hz, 2H), 7.94 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 6.8 Hz, 1H), 7.61-7.56 (m, 3H), 7.53-7.49 (m, 1H), 7.32 (d, J = 8.3 Hz, 1H), 6.81 (d, J = 2.2 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 5.53 (s, 2H), 5.22 (s, 2H), 3.91 (d, J = 6.3 Hz, 2H), 3.84 (d, J = 4.5 Hz, 1H), 3.81 (d, J = 6.1 Hz, 1H), 1.11 (d, J = 6.2 Hz, 3H)。

(2-((3-氰基苯甲酰基)氧基)-4-(萘-1-基甲氧基)苄基)-L-脯氨酸(A-9),白色固体,收率43.9%,mp 174℃~176℃。ESI-MS m/z: 491.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 8.02-7.98 (m, 1H), 7.94-7.88 (m, 2H), 7.72 (d, J = 7.8 Hz, 1H), 7.68 (s, 1H), 7.60 (s, 1H), 7.55 (dd, J = 4.0, 2.4 Hz, 2H), 7.51-7.45 (m, 2H), 7.39 (d, J = 8.3 Hz, 1H), 7.28 (s, 1H), 6.70 (dd, J = 8.3, 2.3 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 5.43 (s, 2H), 5.14 (s, 2H), 4.28 (s, 2H), 3.91 (d, J = 4.1 Hz, 1H), 3.58 (q, J = 3.8, 3.3 Hz, 1H), 2.94 (d, J = 9.5 Hz, 1H), 2.38-2.27 (m, 2H), 1.97 (dd, J = 10.1, 5.9 Hz, 2H)。

2.2.2. 目标化合物B-1~B-9的合成

分别将2-溴甲基萘(2.0 g,9.1 mmol)、2,4-二羟基苯甲醛(1.5 g,10.8 mmol)和碳酸氢钠(1.2 g,14.3 mmol)加入乙腈(30 mL)中,90℃回流反应12 h。加入水(100 mL),乙酸乙酯萃取(50 mL × 3),有机相用无水硫酸镁干燥,抽滤,滤液浓缩,柱层析分离(石油醚/乙酸乙酯,体积比15:1)得白色固体3 (1.4 g,收率55.6%)。1H NMR (300 MHz, DMSO-d6) δ 10.97 (s, 1H), 9.92 (s, 1H), 7.95-7.92 (m, 2H), 7.90 (s, 1H), 7.87 (s, 1H), 7.62 (d, J = 6.7 Hz, 1H), 7.55 (dd, J = 7.5, 1.7 Hz, 1H), 7.45 (d, J = 7.5 Hz, 2H), 6.65 (dd, J = 7.7, 2.1 Hz, 1H), 6.53 (d, J = 1.3 Hz, 1H), 5.35 (s, 2H)。

分别将3 (1.5 g,5.4 mmol)、碳酸钾(1.1 g,8.1 mmol)和3-氰基苄基溴(1.4 g,7.1 mmol)加入DMF (30 mL)中,室温反应6 h。加入水(150 mL),乙酸乙酯萃取(50 mL × 3),有机相用无水硫酸镁干燥,抽滤,滤液浓缩,柱层析分离(石油醚/乙酸乙酯,体积比 8:1)得白色固体4 (1.7 g,收率80.2%)。1H NMR (300 MHz, Chloroform-d) δ 10.39 (s, 1H), 7.93 (s, 1H), 7.90 (d, J = 2.2 Hz, 2H), 7.88 (s, 2H), 7.71 (s, 1H), 7.65 (d, J = 5.7 Hz, 1H), 7.62 (s, 1H), 7.56 (d, J = 3.7 Hz, 1H), 7.53 (dd, J = 3.8, 2.1 Hz, 2H), 7.51 (d, J = 2.6 Hz, 1H), 6.76 (dd, J = 8.8, 2.2 Hz, 1H), 6.59 (d, J = 2.2 Hz, 1H), 5.31 (s, 2H), 5.17 (s, 2H)。

3-((2-((1,3-二羟基-2-甲基丙烷-2-基)氨基)甲基)-5-(萘-2-基甲氧基)苯氧基)甲基)苯甲腈(B-1)的制备:将4 (0.2 g,0.5 mmol)溶于DMF(25 mL)中,随后依次加入2-氨基-2-甲基-1,3-丙二醇(0.1 g,1.0 mmol)、冰醋酸(0.06 g,1.0 mmol)和氰基硼氢化钠(0.1 g,1.6 mmol),室温反应24 h,加入水(50 mL),乙酸乙酯萃取(30 mL × 3),有机相用无水硫酸镁干燥,抽滤,滤液浓缩,柱层析分离(二氯甲烷/甲醇,体积比20:1),得0.15 g白色固体B-1,收率40.7%,mp 182℃~184℃。ESI-MS m/z: 481.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.24 (s, 1H), 8.02 (s, 1H), 7.98 (s, 1H), 7.97-7.93 (m, 2H), 7.92 (d, J = 4.9 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.63-7.57 (m, 2H), 7.56 (q, J = 1.8 Hz, 1H), 7.54-7.53 (m, 1H), 7.38 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 2.3 Hz, 1H), 6.74 (dd, J = 8.4, 2.4 Hz, 1H), 5.37 (s, 2H), 5.34 (s, 2H), 5.22 (s, 2H), 4.10 (s, 2H), 3.52 (s, 4H), 1.10 (s, 3H)。用类似的方法制备目标化合物B-2~B-9。

3-((2-((1,3-二羟基丙烷-2-基)氨基)甲基)-5-(萘-2-基甲氧基)苯氧基)甲基)苯甲腈(B-2),白色固体,收率56.0%,mp 163℃~165℃。ESI-MS m/z: 467.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 7.86 (d, J = 2.5 Hz, 1H), 7.84 (s, 1H), 7.82 (t, J = 2.8 Hz, 2H), 7.75 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.56-7.53 (m, 1H), 7.49 (dd, J = 6.4, 2.9 Hz, 3H), 7.47-7.40 (m, 2H), 7.28 (s, 1H), 6.62 (dd, J = 8.3, 2.2 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 5.14 (s, 2H), 5.11 (s, 2H), 4.08 (s, 2H), 3.74 (d, J = 7.0 Hz, 2H), 3.69-3.58 (m, 2H), 2.96-2.90 (m, 1H)。

N-(2-((2-((3-氰基苯甲酰基)氧基)-4-(萘-2-基甲氧基)苄基)氨基)乙基)乙酰胺(B-3),白色固体,收率61.5%,mp 170℃~172℃。ESI-MS m/z: 478.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 7.87 (d, J = 3.5 Hz, 1H), 7.85 (d, J = 4.3 Hz, 2H), 7.83 (d, J = 2.8 Hz, 1H), 7.75 (d, J = 1.7 Hz, 1H), 7.68-7.64 (m, 1H), 7.60-7.56 (m, 1H), 7.53-7.50 (m, 2H), 7.50 (d, J = 2.2 Hz, 1H), 7.48-7.46 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.28 (s, 1H), 6.63 (dd, J = 8.4, 2.3 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 5.16 (s, 4H), 4.07 (s, 2H), 3.49 (s, 1H), 3.45 (d, J = 4.9 Hz, 2H), 3.06 (t, J = 5.0 Hz, 2H), 1.93 (s, 3H)。

3-((2-((2-羟乙基)氨基)甲基)-5-(萘-2-基甲氧基)苯氧基)甲基)苯甲腈(B-4),白色固体,收率49.3%,mp 167℃~169℃。ESI-MS m/z: 437.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 7.86 (d, J = 2.8 Hz, 1H), 7.84 (d, J = 3.3 Hz, 1H), 7.82 (d, J = 2.3 Hz, 1H), 7.73 (d, J = 1.7 Hz, 1H), 7.67-7.64 (m, 1H), 7.54 (s, 1H), 7.51 (s, 1H), 7.50 (d, J = 3.0 Hz, 1H), 7.48 (d, J = 2.5 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.28 (s, 1H), 6.62 (dd, J = 8.4, 2.3 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 5.16 (s, 2H), 5.15 (s, 2H), 4.10 (s, 2H), 3.71 (t, J = 4.8 Hz, 2H), 2.96 (t, J = 4.9 Hz, 2H)。

N-(2-((3-氰基苯)氧基)-4-(萘-2-基甲氧基)苄基)-N-甲基甘氨酸(B-5),白色固体,收率50.6%,mp 182℃~184℃。ESI-MS m/z: 465.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 7.96 (d, J = 4.4 Hz, 2H), 7.93-7.90 (m, 3H), 7.79 (dd, J = 12.1, 7.5 Hz, 2H), 7.58 (d, J = 2.9 Hz, 1H), 7.55 (s, 1H), 7.53-7.50 (m, 2H), 7.26 (d, J = 8.1 Hz, 1H), 6.77 (d, J = 6.4 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.25 (s, 2H), 5.21 (s, 2H), 3.57 (s, 2H), 3.40 (s, 2H), 2.17 (s, 3H)。

(S)-1-(2-((3-氰基苯)氧基)-4-(萘-2-甲氧基)苄基)哌啶-2-羧酸(B-6),白色固体,收率46.6%,mp 161℃~163℃。ESI-MS m/z: 505.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 7.98 (s, 1H), 7.94 (q, J = 6.8, 5.9 Hz, 4H), 7.81 (dd, J = 12.9, 7.8 Hz, 2H), 7.59 (s, 1H), 7.56 (s, 1H), 7.56-7.52 (m, 2H), 7.33 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 2.4 Hz, 1H), 6.70 (dd, J = 8.5, 2.3 Hz, 1H), 5.26 (s, 2H), 5.22 (s, 2H), 3.90 (s, 2H), 3.75 (s, 1H), 3.11 (dd, J = 8.3, 4.2 Hz, 1H), 2.99-2.93 (m, 1H), 2.39-2.31 (m, 1H), 1.80 (s, 1H), 1.73 (t, J = 8.1 Hz, 1H), 1.34 (s, 1H), 1.24 (d, J = 6.1 Hz, 1H), 1.16 (dt, J = 13.9, 6.9 Hz, 1H)。

(2-((3-氰基苯甲酰基)氧基)-4-(萘-1-基甲氧基)苄基)-L-丝氨酸(B-7),白色固体,收率53.0%,mp 163℃~165℃。ESI-MS m/z: 481.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.01-7.95 (m, 3H), 7.91 (d, J = 8.4 Hz, 3H), 7.79 (d, J = 7.5 Hz, 1H), 7.58 (s, 1H), 7.57-7.50 (m, 3H), 7.36 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 2.2 Hz, 1H), 6.75-6.68 (m, 1H), 5.29 (s, 2H), 5.24 (s, 2H), 4.09 (s, 2H), 3.77 (d, J = 3.9 Hz, 2H), 3.70 (t, J = 6.1 Hz, 1H)。

(2S)-2-((2-((3-氰基苯甲酰基)氧基)-4-(萘-2-基甲氧基)苄基)氨基)-3-羟基丁酸(B-8),白色固体,收率58.1%,mp 173℃~175℃。ESI-MS m/z: 495.2 [M-H]-1H NMR (300 MHz, DMSO-d6) δ 8.00 (s, 1H), 7.97 (s, 1H), 7.95 (d, J = 4.5 Hz, 1H), 7.93 (s, 2H), 7.88 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.61-7.57 (m, 2H), 7.54 (q, J = 3.5, 3.0 Hz, 3H), 7.35 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 2.3 Hz, 1H), 6.71 (dd, J = 8.3, 2.3 Hz, 1H), 5.28 (s, 2H), 5.24 (s, 2H), 5.20 (s, 1H), 4.03 (d, J = 14.7 Hz, 2H), 3.91 (d, J = 6.2 Hz, 1H), 3.01 (d, J = 5.7 Hz, 1H), 1.15 (d, J = 6.2 Hz, 3H)。

(2-((3-氰基苯甲酰基)氧基)-4-(萘-1-基甲氧基)苄基)-L-脯氨酸(B-9),白色固体,收率47.9%,mp 165℃~167℃。ESI-MS m/z: 491.2 [M-H]-1H NMR (300 MHz, Chloroform-d) δ 7.87 (d, J = 3.1 Hz, 1H), 7.84 (q, J = 3.5, 2.9 Hz, 2H), 7.82 (d, J = 2.4 Hz, 1H), 7.72-7.67 (m, 2H), 7.60-7.56 (m, 1H), 7.50 (dt, J = 6.1, 3.0 Hz, 3H), 7.48-7.46 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 6.62 (dd, J = 8.3, 2.3 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 5.16 (s, 4H), 4.26 (d, J = 5.9 Hz, 2H), 3.92 (dd, J = 8.7, 5.3 Hz, 1H), 3.57 (dt, J = 11.2, 5.5 Hz, 1H), 2.97-2.92 (m, 1H), 2.35-2.26 (m, 2H), 1.98-1.90 (m, 2H)。

3. 生物活性评价

采用均相时间分辨荧光法 [12] 评价目标化合物对PD-1/PD-L1的抑制活性。PD-1/PD-L1结合分析试剂盒(641CP01PEG)购自Cisbio。将化合物用DMSO配置成所设置的浓度,加入稀释缓冲液,混合均匀后取2 μL加到384孔白色酶标板中。将PD-1和PD-L1用缓冲液稀释,分别取4 μL加到上述384孔板中,孵育15 min。将10 μL Anti-tag1-Eu和Anti-tag2-XL665混合液加入检测缓冲溶液中,混合均匀后加入上述384孔板中,然后在室温条件下孵育2 h。用Infinite® M1000多功能酶标仪检测665 nm和620 nm处荧光信号,根据荧光比值计算化合物对蛋白结合的抑制率。实验结果如表1所示。

Table 1. Inhibitory activity of the target compounds A-1~A-9 and B-1~B-9 against the PD-1/PD-L1 interaction

表1. 目标化合物A-1~A-9和B-1~B-9对PD-1/PD-L1相互作用的抑制活性

BMS-1018: Positive control compound.

4. 结果与讨论

本文合成了18个未见文献报道的萘环类目标化合物,结构均经1H-NMR和ESI-MS谱确证。从表1的活性数据可以看出,所有的目标化合物在10 μmol/L浓度下对PD-1/PD-L1相互作用均显示出不同程度的抑制活性,其中6个化合物(A-8、A-9和B-5、B-6、B-8、B-9)的活性相对突出。

表1的数据可以获得以下构效关系规律:1) 从整体来看,B系列化合物的整体活性优于A系列(A-1 vs B-1、A-5 vs B-5和A-6 vs B-6);2) 在A系列化合物中,伸入溶剂区的末端取代基为氨基酸时(A-6、A-7、A-8和A-9)活性优于氨基醇类化合物(A-1和A-3);3) 末端取代基含有较多极性基团如羟基(A-3)时活性优于含有非极性基团如呋喃环(A-2);4) 相似地,B系列化合物末端取代基为氨基酸时(B-5、B-6、B-8和B-9)活性也普遍优于氨基醇类化合物(B-1、B-2和B-4);5) 在两个系列目标化合物中,乙酰基乙二胺衍生物的活性均较弱(A-4和B-3),但肌氨酸衍生物则显示A-5弱而B-5强,此外,苏氨酸和脯氨酸的衍生物均显示出最强的活性(A-8、A-9和B-8、B-9)。

为了进一步说明目标化合物的构效关系,本文作者通过Discovery Studio 4.0中的CDOCKER模块,选取了活性最强的A-8和B-8进行分子对接实验,分析了小分子与PD-L1蛋白的结合模式。从图5可以看出,化合物A-8和B-8均处于PD-L1蛋白二聚体构成的夹缝中。从图5(A)可知,A-8和B-8与靶蛋白的结合模式与BMS-1018相似。具体来说,两者的萘环与BMS-1018的联苯片段朝向一致,而且中心苯环的3位间氰基苄氧基的朝向也一致。此外,两者的a环都能与BMet115形成σ-π相互作用,而中心苯环则与BTyr56形成π-π堆积作用。进一步地,A-8的氰基氮原子可以与AArg125形成氢键作用,其末端苏氨酸可以与AAla18、AAsp122、ALys124形成三个氢键。而B-8末端苏氨酸残基则可以与AAla18、APhe19、AAsp122和BGln66形成四个氢键相互作用,这可能是B系列化合物的活性普遍优于A系列的原因。上述构效关系信息为后续开展结构优化提供了理论指导。

Figure 5. Proposed binding mode of BMS-1018, A-8 and B-8 (PDB ID: 5J89)

图5. BMS-1018、A-8、B-8与靶蛋白的结合模式

基金项目

国家自然科学基金项目(21977117)。

NOTES

*通讯作者。

参考文献

[1] Chen, L. and Flies, D.B. (2013) Molecular Mechanisms of T Cell Co-Stimulation and Co-Inhibition. Nature Reviews Immunology, 13, 227-242.
https://doi.org/10.1038/nri3405
[2] Mohme, M., Riethdorf, S. and Pantel, K. (2017) Circulating and Disseminated Tumour Cells-Mechanisms of Immune Surveillance and Escape. Nature Reviews Clinical Oncology, 14, 155-167.
https://doi.org/10.1038/nrclinonc.2016.144
[3] Lin, X., Lu, X., Luo, G. and Xiang, H. (2020) Progress in PD-1/PD-L1 Pathway Inhibitors: From Biomacromolecules to Small Molecules. European Journal of Medicinal Chemistry, 186, 111876-111905.
https://doi.org/10.1016/j.ejmech.2019.111876
[4] Li, X., Shao, C., Shi, Y. and Han, W. (2018) Lessons Learned from the Blockade of Immune Checkpoints in Cancer Immunotherapy. Journal of Hematology & Oncology, 11, 31-56.
https://doi.org/10.1186/s13045-018-0578-4
[5] van der Zanden, S.Y., Luimstra, J.J., Neefjes, J., Borst, J. and Ovaa, H. (2020) Opportunities for Small Molecules in Cancer Immunotherapy. Trends in Immunology, 41, 493-511.
https://doi.org/10.1016/j.it.2020.04.004
[6] Chupak, L.S. and Zheng, X. (2015) Compounds Useful as Immuno-modulators. WO2015034820 A1.
[7] Chupak, L.S., Ding, M., Martin, S.W., Zheng, X., Hewawasam, P., Connolly, T.P., Xu, N., Yeung, K., Zhu, J. and Langley, D.R. (2015) Compounds Useful as Immunomodulators. WO2015160641 A1.
[8] Skalniak, L., Zak, K.M., Guzik, K., Magiera, K., Musielak, B., Pachota, M., Szelazek, B., Kocik, J., Grudnik, P., Tomala, M., Krzanik, S., Pyrc, K., Dömling, A., Dubin, G. and Holak, T.A. (2017) Small-Molecule Inhibitors of PD-1/PD-L1 Immune Checkpoint Alleviate the PD-L1-Induced Exhaustion of T-Cells. Oncotarget, 8, 72167-72181.
https://doi.org/10.18632/oncotarget.20050
[9] Zak, K.M., Grudnik, P., Guzik, K., Zieba, B.J., Musielak, B., Döm-ling, A., Dubin, G. and Holak, T.A. (2016) Structural Basis for Small Molecule Targeting of the Programmed Death Ligand 1 (PD-L1). Oncotarget, 7, 30323-30335.
https://doi.org/10.18632/oncotarget.8730
[10] Guzik, K., Zak, K.M., Grudnik, P., Magiera, K., Musielak, B., Törner, R., Skalniak, L., Dömling, A., Dubin, G. and Holak, T.A. (2017) Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimeri-zation of PD-L1. Journal of Medicinal Chemistry, 60, 5857-5867.
https://doi.org/10.1021/acs.jmedchem.7b00293
[11] Qin, M., Cao, Q., Wu, X., Liu, C., Zheng, S., Xie, H., Tian, Y., Xie, J., Zhao, Y., Hou, Y., Zhang, X., Xu, B., Zhang, H. and Wang, X. (2020) Discovery of the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction Inhibitors Bearing an Indoline Scaffold. European Journal of Me-dicinal Chemistry, 186, 111856-111868.
https://doi.org/10.1016/j.ejmech.2019.111856
[12] Cheng, B., Ren, Y., Niu, X., Wang, W., Wang, S., Tu, Y., Liu, S., Wang, J., Yang, D., Liao, G. and Chen, J. (2020) Discovery of Novel Resorcinol Dibenzyl Ethers Targeting the Pro-grammed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction as Potential Anticancer Agents. Journal of Medici-nal Chemistry, 63, 8338-8358.
https://doi.org/10.1021/acs.jmedchem.0c00574