基于光学生物传感器检测外泌体的研究进展
Research Progress in Detection of Exosomes Based on Optical Biosensor
DOI: 10.12677/HJBM.2021.112007, PDF, 下载: 661  浏览: 1,765  科研立项经费支持
作者: 吴润强, 卢春丽, 莫秋菊, 陈洁晶, 朱俊芳*:中国人民解放军联勤保障部队第九二四医院检验科,广西 桂林;广西代谢性疾病研究重点实验室,广西 桂林
关键词: 外泌体光学生物传感器肿瘤生物标志物Exosome Optical Biosensors Tumor Biomarkers
摘要: 外泌体是一种由大多数类型的细胞分泌到细胞外空间的膜性囊泡。它们存在于包括血液、尿液、血清和唾液在内的体液中,在细胞间的通讯中起着至关重要的作用。外泌体包含各种生物标记物,如核酸和蛋白质,可以反映其母细胞的状态。因此,肿瘤衍生的外泌体是肿瘤早期诊断和预后评估的新型生物标志物。在这里,我们回顾了用于检测肿瘤来源外泌体生物传感(主要是基于光学生物传感器)的最新研究进展。此外,还分析了基于光学生物传感技术检测肿瘤来源外泌体所面临的挑战和机遇。
Abstract: Exosomes are membranous vesicles secreted into the extracellular space by most types of cells. They exist in body fluids including blood, urine, serum and saliva, and play a vital role in the com-munication between cells. Exosomes contain various biomarkers, such as nucleic acids and proteins, which can reflect the state of their parent cells. Therefore, tumor-derived exosomes are new bi-omarkers for early tumor diagnosis and prognosis evaluation. Here, we review the latest research progress in biosensing (mainly based on optical biosensors) for detecting tumor-derived exosomes. In addition, the challenges and opportunities of detecting tumor-derived exosomes based on optical biosensing technology are also analyzed.
文章引用:吴润强, 卢春丽, 莫秋菊, 陈洁晶, 朱俊芳. 基于光学生物传感器检测外泌体的研究进展[J]. 生物医学, 2021, 11(2): 49-54. https://doi.org/10.12677/HJBM.2021.112007

参考文献

[1] Tkach, M. and Théry, C. (2016) Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 164, 1226-1232.
https://doi.org/10.1016/j.cell.2016.01.043
[2] Mass, S.L., Breakefield, X.O. and Weaver, A.M. (2017) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends in Cell Biology, 27, 172-188.
https://doi.org/10.1016/j.tcb.2016.11.003
[3] 郑磊, 李博. 细胞外囊泡生物标志物研究现状与筛选策略[J]. 中华检验杂志, 2018, 41(11): 812-816.
[4] Gordon, J. and Michel, G. (2008) Analytical Sensitivity Limits for Lateral Flow Immunoassays. Clinical Chemistry, 54, 1250-1251.
https://doi.org/10.1373/clinchem.2007.102491
[5] Oliveira-Rodríguez, M., López-Cobo, S., Reyburn, H.T., et al. (2016) Development of a Rapid Lateral Flow Immunoassay Test for Detection of Exosomes Previously Enriched from Cell Culture Medium and Body Fluids. Journal of Extracellular Vesicles, 5, 31803.
https://doi.org/10.3402/jev.v5.31803
[6] Oliveira-Rodríguez, M., Serrano-Pertierra, E., García, A.C., et al. (2017) Point-of-Care Detection of Extracellular Vesicles: Sensitivity Optimization and Multiple-Target Detection. Biosensors and Bioelectronics, 87, 38-45.
https://doi.org/10.1016/j.bios.2016.08.001
[7] López-Cobo, S., Campos-Silva, C., Moyano, A., et al. (2018) Immunoassays for Scarce Tumor-Antigens in Exosomes: Detection of the Human NKG2D-Ligand, MICA, in Tetraspanin-Containing Nanovesicles from Melanoma. Journal of Nanobiotechnology, 16, Article No. 47.
https://doi.org/10.1186/s12951-018-0372-z
[8] Jiang, Y., Shi, M.L., Liu, Y., et al. (2017) Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angewandte Chemie International Edition, 56, 11916-11920.
https://doi.org/10.1002/anie.201703807
[9] Liu, W.L., Li, J.P., Wu, Y.X., et al. (2018) Target-Induced Proximity Ligation Triggers Recombinase Polymerase Amplification and Transcription-Mediated Amplification to Detect Tumor Derived Exosomes in Nasopharyngeal Carcinoma with High Sensitivity. Biosensors and Bioelectronics, 102, 204-210.
https://doi.org/10.1016/j.bios.2017.11.033
[10] He, F., Liu, H., Guo, X.G., et al. (2017) Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification. Analytical Chemistry, 89, 12968-12975.
https://doi.org/10.1021/acs.analchem.7b03919
[11] Xia, Y.K., Liu, M.M., Wang, L.L., et al. (2017) A Visible and Colorimetric Aptasensor Based on DNA-Capped Single-Walled Carbon Nanotubes for Detection of Exosomes. Biosensors and Bioelectronics, 92, 8-15.
https://doi.org/10.1016/j.bios.2017.01.063
[12] Wang, Y.M., Liu, J.W., Adkins, G.B., et al. (2017) Enhancement of the Intrinsic Peroxidase-Like Activity of Graphitic Carbon Nitride Nanosheets by ssDNAs and Its Application for Detection of Exosomes. Analytical Chemistry, 89, 12327-12333.
https://doi.org/10.1021/acs.analchem.7b03335
[13] Chen, X.S., Lan, J.M., Liu, Y.X., et al. (2018) A Paper-Supported Aptasensor Based on Upconversion Luminescence Resonance Energy Transfer for the Accessible Determination of Exosomes. Biosensors and Bioelectronics, 102, 582-588.
https://doi.org/10.1016/j.bios.2017.12.012
[14] He, F., Wang, J., Yin, B.C. and Ye, B.C. (2018) Quantification of Exosome Based on a Copper-Mediated Signal Amplification Strategy. Analytical Chemistry, 90, 8072-8079.
https://doi.org/10.1021/acs.analchem.8b01187
[15] Jin, D., Yang, F., Zhang, Y.L., et al. (2018) ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection. Analytical Chemistry, 90, 14402-14411.
https://doi.org/10.1021/acs.analchem.8b03959
[16] Tian, Q.C., He, C.J., Liu, G.W., et al. (2018) Nanoparticle Counting by Microscopic Digital Detection: Selective Quantitative Analysis of Exosomes via Surface-Anchored Nucleic Acid Amplification. Analytical Chemistry, 90, 6556-6562.
https://doi.org/10.1021/acs.analchem.8b00189
[17] Liu, C.C., Xu, X.N., Li, B., et al. (2018) Single-Exosome-Counting Immunoassays for Cancer Diagnostics. Nano Letters, 18, 4226-4232.
https://doi.org/10.1021/acs.nanolett.8b01184
[18] Rupert, D.L.M., Shelke, G.V., Emilsson, G., et al. (2016) Dual-Wavelength Surface Plasmon Resonance for Determining the Size and Concentration of Sub-Populations of Extracellular Vesicles. Analytical Chemistry, 88, 9980-9988.
https://doi.org/10.1021/acs.analchem.6b01860
[19] Im H., Shao, H.L., Park, Y., et al. (2014) Label-Free Detection and Molecular Profiling of Exosomes with a Nano-Plasmonic Sensor. Nature Biotechnology, 32, 490-495.
https://doi.org/10.1038/nbt.2886
[20] Zong, S.F., Wang, L., Chen, C., Lu, J., et al. (2016) Facile Detection of Tumor-Derived Exosomes Using Magnetic Nanobeads and SERS Nanoprobes. Analytical Methods, 8, 5001.
https://doi.org/10.1039/C6AY00406G
[21] Kwizera, E.A., O’Connor, R., Vinduska, V., et al. (2018) Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device. Theranostics, 8, 2722-2738.
https://doi.org/10.7150/thno.21358
[22] Wang, J., Wuethrich, A., Sina, A.A.L., et al. (2020) Tracking Extracellular Vesicle Phenotypic Changes Enables Treatment Monitoring in Melanoma. Science Advances, 6, eaax3223.
https://doi.org/10.1126/sciadv.aax3223