具有间接信号吸收和Logistic源的生物趋化模型解的有界性
Boundedness of Solution for the Chemotaxis Model with Indirect Signal Absorption and Logistic Source
DOI: 10.12677/PM.2021.113048, PDF, HTML, XML, 下载: 405  浏览: 628  科研立项经费支持
作者: 刘璐璐, 辛 巧*:伊犁师范大学数学与统计分院,新疆 伊宁
关键词: 间接信号吸收拟线性趋化Logistic源有界性Indirect Signal Absorption Quasilinear Chemotaxis Logistic Source Boundednes
摘要: 本文考虑具有二维间接信号吸收的拟线性趋化模型:其中Ω∈Rn(n=2)是一个有界区域且具有光滑边界,μ,l>0,非线性扩散系数D(u)和趋化敏感系数S(u)分别满足D(u)≥(u+1)m-1,S(u)≤(u+1)q-1且D(⋅),S(⋅)∈C1+l([0,∞))。本文利用能量方法和半群理论证明在和0 < q ≤ 2的条件下,该生物趋化模型的解全局有界,其中C,λ0为正常数。
Abstract: In this paper, we consider the following two-dimensional quasilinear chemotaxis model with in-direct signal absorption: on a bounded domain Ω∈Rn(n=2), with smooth boundary , μ and l are positive constants, the nonlinear diffusivity D(u) and chemosensitivity S(u) are supposed to satisfy D(u)≥(u+1)m-1, S(u)≤(u+1)q-1 and D(⋅),S(⋅)∈C1+l([0,∞)). Finally, we use the energy method and the semigroup theory to prove that the solution of the biologicalchemotaxis model is globally bounded under the conditions and 0 < q ≤ 2, where C0 are the positive constants.
文章引用:刘璐璐, 辛巧. 具有间接信号吸收和Logistic源的生物趋化模型解的有界性[J]. 理论数学, 2021, 11(3): 362-370. https://doi.org/10.12677/PM.2021.113048

1. 引言

趋化现象是自然界中常见的现象,它描述的是细胞或细菌沿化学信号浓度梯度方向的定向运动 [1] [2] [3]。在过去几年里,一些学者致力于研究趋化消耗模型

{ u t = ( D ( u ) u ) ( S ( u ) v ) + f ( u ) , x Ω × ( 0 , T ) , v t = Δ v u v , x Ω × ( 0 , T ) , u υ = v υ = 0 , x Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , x Ω ,

其中, Ω R n 中表示具有光滑边界 Ω 的有界区域, u = u ( x , t ) 代表细胞密度, v = ( v , t ) 代表化学信号物质的浓度, D ( u ) 是扩散系数, S ( u ) 是趋化敏感系数, f ( u ) 是Logistic源,表示细胞的增殖和死亡, u v 是化学诱导剂的消耗。在 D ( u ) = 1 S ( u ) = u f ( u ) = 0 的情况下,当 n 2 时, v 0 L ( Ω ) 无小性限制,Tao在文献 [4] 证明了上述模型存在全局经典解。当 n = 3 时,初值足够光滑,Tao和Winkler在文献 [5] 中

讨论了上述趋化模型全局弱解的存在性。当 n 3 v 0 L ( Ω ) 1 6 ( n + 1 ) χ t 时,模型的全局经典解

( u , v ) 收敛于 ( u ¯ 0 , 0 ) ,其中 u ¯ 0 = 1 Ω ¯ Ω u ( x , 0 ) d x 。在 D ( u ) = 1 S ( u ) = u f ( u ) = κ u μ u 2 的情况下,Lankeit

和Wang在文献 [6] 中证明了当在 μ 足够大时该模型存在全局经典解,在 μ > 0 时该模型存在经典弱解。

Zheng在文献 [7] 中证明了 D ( u ) C D ( u + 1 ) m 1 S ( u ) = u C D > 0 m > { 1 μ χ [ 1 + λ 0 v 0 L ( Ω ) 2 3 ] , N 2 1 , N 3

时,对于任意足够光滑的初值都存在一个经典有界解。

不同于一般的直接信号吸收的趋化模型,近几年关于间接信号吸收的生物趋化模型

{ u t = ( D ( u ) u ) ( S ( u ) v ) + μ ( u u 2 ) , x Ω × ( 0 , T ) , v t = Δ v v w , x Ω × ( 0 , T ) , w t = δ w + u , x Ω × ( 0 , T ) , u υ = v υ = 0 , x Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , w ( x , 0 ) = w 0 ( x ) , x Ω , (1.1)

其中 Ω R n 具有光滑边界的有界区域, n Ν δ > 0 是给定的参数。2019年,Fuest在文献 [8] 中讨论当

D ( u ) = 1 S ( u ) = u μ = 0 n 2 n 3 v 0 L ( Ω ) 1 3 n 时该模型存在唯一的全局经典解。2020年,

Liu,Li和Huang在文献 [9] 中证明了具有Logistics源的间接信号吸收模型,当 D ( u ) = 1 S ( u ) = u n 4

μ 足够大时,模型的解有全局存在性和有界性,当 μ = 0 n 3 0 v 0 L ( Ω ) π n 时上述模型存在唯

一的全局经典解。Zheng等人在文献 [10] 中证明了当 n = 2 ,非线性扩散系数 D ( u ) 和趋化敏感系数 S ( u ) 满足 D ( u ) u m S ( u ) u q ,当 m > max { 1 , 2 q 3 } 时,上述模型的解全局有界。受文献 [7], [9], [10] 和 [11] 的启发,本文主要利用能量方法证明趋化模型(1.1)在 δ = 1 n = 2 μ > 0 的条件下,非线性扩散系数 D ( u ) 和趋化敏感系数 S ( u ) 满足

D ( u ) ( u + 1 ) m 1 S ( u ) ( u + 1 ) q 1 D ( ) , S ( ) C 1 + l ( [ 0 , ) ) l > 0 (1.2)

m > q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) 1 < q 2 (1.3)

成立,其中 C ¯ , λ 0 为正常数,则该拟线性趋化模型的解全局有界。主要结论如下:

定理1:设 n = 2 ,初值满足 u 0 C 0 ( Ω ¯ ) v 0 W 1 , ( Ω ) w 0 C 1 ( Ω ¯ ) u 0 0 v 0 0 w 0 0 ,则存在一个非负函数 ( u , v , w )

u C 0 ( Ω ¯ ) × [ 0 , T max ) C 2 , 1 ( Ω ¯ × ( 0 , T max ) )

v C 0 ( Ω ¯ ) × [ 0 , T max ) C 2 , 1 ( Ω ¯ × ( 0 , T max ) )

w C 0 , 1 ( Ω ¯ ) × [ 0 , T max )

是模型(1.1)的经典解。当 D ( u ) S ( u ) 满足(1.2), m > q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) 1 < q 2 时,则对

任意的 t ( 0 , ) ,存在一个常数 C > 0 ,使得

u ( , t ) L ( Ω ) C v ( , t ) L ( Ω ) C w ( , t ) L ( Ω ) C

其中 C ¯ , λ 0 为正常数。

注:文献 [10] 证明了当 n = 2 时, m > max { 1 , 2 q 3 } m = 0 , 0 < q < 3 2 ,模型存在全局经典解。与文献 [10] 的结果相对比,本文证明了当 m > q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) 1 < q 2 时,获得了模型解的全局有界性,推广了文献 [10] 的结果。

2. 解的全局有界性

为了证明定理1的结果,先给出一个必要的引理。

引理1:设 n = 2 m > q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) 1 < q 2 λ 0 , μ > 0 。令 ( u , v , w ) 是模型(1.1)

的解,则对任意 p > 1 t ( 0 , T max ) ,存在一个正常数C使得

Ω ( u ( , t ) + 1 ) p C

证明:第一步:当 1 < p < 2 时,对趋化模型(1.1)的第一个方程乘 ( u + 1 ) p 1 并在 Ω 上积分,

1 p d d t Ω ( u + 1 ) p d x + ( p 1 ) Ω ( u + 1 ) m + p 3 | u | 2 d x p + 1 p Ω ( u + 1 ) p d x Ω ( S ( u ) v ) ( u + 1 ) p 1 d x + p + 1 p Ω ( u + 1 ) p d x + μ Ω ( u u 2 ) ( u + 1 ) p 1 d x (2.1)

对(2.1)右端第二项运用Young’s不等式可得

Ω ( u + 1 ) p 1 ( S ( u ) v ) d x = ( p 1 ) Ω S ( u ) ( u + 1 ) p 2 u v d x = ( p 1 ) Ω Ψ ( u ) v d x = ( p 1 ) Ω Ψ ( u ) Δ v ( p 1 ) Ω Ψ ( u ) | Δ v | ( p 1 ) p + q 2 Ω ( u + 1 ) p + q 2 | Δ v | d x ( p 1 ) Ω ( u + 1 ) p + q 1 d x + ( p 1 ) Ω | Δ v | p + q 1 d x + C 1 (2.2)

其中 Ψ ( u ) = 0 u S ( σ ) ( 1 + σ ) p 2 σ

再对(2.1)右端第三项和第四项运用 ( u + 1 ) β 2 β ( u β + 1 ) 可得

p + 1 p Ω ( u + 1 ) p d x + μ Ω ( u u 2 ) ( u + 1 ) p 1 d x p + 1 p Ω ( u + 1 ) p d x + μ Ω ( u + 1 ) p d x + μ Ω ( u + 1 ) p 1 d x μ 4 Ω ( u + 1 ) p + 1 d x ( ε 1 μ 4 ) Ω ( u + 1 ) p + 1 d x + C 2

其中, C 2 = 1 p + 1 ( ε 1 p + 1 p ) p ( p + 1 p + 2 μ ) p + 1 | Ω | + 2 p + 1 ( p + 1 p 1 ) ( p 1 ) 2 μ | Ω |

对(2.2)右端第一项运用Young’s不等式可得

( p 1 ) Ω ( u + 1 ) p + q 1 d x ( p 1 ) Ω ( u + 1 ) p + 1 + ( p 1 ) | Ω | p + 1 2 q

最后整理可得

1 p d d t Ω ( u + 1 ) p d x + ( p 1 ) Ω ( u + 1 ) m + p 3 | u | 2 d x p + 1 p Ω ( u + 1 ) p d x + ( p 1 ) Ω ( u + 1 ) p + 1 d x + ( p 1 ) Ω | Δ v | p + q 1 + ( ε 1 μ 4 ) Ω ( u + 1 ) p + 1 d x + C 3 (2.3)

对任意 t ( s 0 , T max ) ,对(2.3)运用常数变易法可得

1 p Ω ( u + 1 ) p d x 1 p e ( p + 1 ) ( t s 0 ) u ( s 0 ) L p ( Ω ) p + ( ε 1 + ( p 1 ) μ 4 ) s 0 t e ( p + 1 ) ( t s ) Ω ( u + 1 ) p + 1 d x d s + ( p 1 ) s 0 t e ( p + 1 ) ( t s ) Ω | Δ v | p + q 1 d x d s + C 3 s 0 t e ( p + 1 ) ( t s ) d s ( ε 1 + ( p 1 ) μ 4 ) s 0 t e ( p + 1 ) ( t s ) Ω ( u + 1 ) p + 1 d x d s + ( p 1 ) s 0 t e ( p + 1 ) ( t s ) Ω | Δ v | p + q 1 d x d s + C 4 (2.4)

其中 C 4 = 1 p e ( p + 1 ) ( t s 0 ) u ( s 0 ) L p ( Ω ) p + C 3 s 0 t e ( p + 1 ) ( t s ) d s

对任意的 s 0 ( 0 , T max ) s 0 1 ,令 t ( s 0 , T max ) ,并对模型(1.1)第二个方程变形可得

v t Δ v + v = v w + v

对(2.4)右端第二项运用文献 [6] 的引理3.3和文献 [7] 的引理2.3可得

( p 1 ) s 0 t e ( p + 1 ) ( t s ) Ω | Δ v | p + q 1 d x d s ( p 1 ) e ( p + 1 ) t λ 0 [ v 0 L ( Ω ) p + q 1 2 p + q 1 s 0 t e ( p + 1 ) s Ω ( w p + q 1 + 1 ) d x d s + e ( p + 1 ) s 0 v ( s 0 , t ) L 2 , p + q 1 ( Ω ) p + q 1 ] (2.5)

对(2.5)右端运用Young’s不等式可得

Ω w p + q 1 d x < Ω w p + 1 d x + C 5 (2.6)

对模型(1.1)第三个方程两边同乘以 w p 并在 Ω 上积分,

d d t Ω w p + 1 + ( p + 1 ) 2 Ω w p + 1 d x ( p + 1 ) C 6 Ω u p + 1 d x (2.7)

再对(2.7)运用常数变易法可得

Ω w p + 1 e ( p + 1 ) 2 ( t s 0 ) w ( s 0 ) L p + 1 p + 1 + ( p + 1 ) C 6 s 0 t e p + 1 2 ( t s ) Ω u p + 1 d x d s (2.8)

将(2.8)代入到(2.6)中可得

Ω w p + q 1 d x C 7 Ω u p + 1 d x d s + C 8 < C 7 Ω ( u + 1 ) p + 1 d x d s + C 8 (2.9)

其中 C ¯ = C 7 = ( p + 1 ) C 6 s 0 t e p + 1 2 ( t s ) d s C 8 = e ( p + 1 ) 2 ( t s 0 ) w ( s 0 ) L p + 1 p + 1 + C 5

整理(2.4),(2.5)和(2.9)可得

1 p Ω ( u + 1 ) p ( ε 1 + ( p 1 ) + C ¯ ( p 1 ) λ 0 v 0 L ( Ω ) p + q 1 2 p + q 1 μ 4 ) s 0 t e ( p + 1 ) ( t s ) Ω ( u + 1 ) p + 1 d x d s + C 9 ( p 1 ) λ 0 v 0 L ( Ω ) p + q 1 2 p + q 1 e ( p + 1 ) t s 0 t Ω e ( p + 1 ) s d x d s + ( p 1 ) λ 0 e ( p + 1 ) ( t s 0 ) v ( s 0 , t ) L 2 , p + q 1 ( Ω ) p + q 1

p = p 0 : = 1 + μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) > 1 ,当 p < 2 , 1 < q 2 时,有

μ = 4 ( ( p 0 1 ) + C ¯ ( p 0 1 ) λ 0 v 0 L ( Ω ) 3 2 3 ) > 4 ( ( p 0 1 ) + C ¯ ( p 0 1 ) λ 0 v 0 L ( Ω ) p 0 + q 1 2 p 0 + q 1 )

0 < ε 1 < μ 4 ( p 0 1 ) + C ¯ ( p 0 1 ) λ 0 v 0 L ( Ω ) p 0 + q 1 2 p 0 + q 1 时,存在一个正常数 C 10 ,使得

Ω ( u + 1 ) p 0 d x C 10

再令 p < 2 p 0 ( 2 p 0 ) + , α > 1 2 ,则

p < 1 1 p 0 1 2 + 2 2 ( α 1 2 ) 2 p 0 ( 2 p 0 ) + (2.10)

由常数变易法和Hölder’s不等式可得

v ( t ) = e τ ( A + 1 ) v ( s 0 ) + s 0 t e ( t s ) ( A + 1 ) ( v ( s ) w ( s ) + v ( s ) ) d s (2.11)

w ( , t ) L p 0 ( Ω ) w 0 L p 0 ( Ω ) + 0 t e ( t s ) u ( , s ) L p 0 ( Ω ) d s w 0 L p 0 ( Ω ) + u ( , s ) L p 0 ( Ω ) ( p 0 p 0 1 ) p 0 1 p 0 C 11 (2.12)

其中 τ [ 0 , s 0 ] ,再运用文献 [6] 的引理3.3和(2.11)可得

( A + 1 ) α v ( t ) L p ( Ω ) C 12 s 0 α 2 2 ( 1 1 p ) v ( s 0 , t ) L 1 ( Ω ) + C 12 s 0 t ( t s ) α 2 2 ( 1 p 0 1 p ) e μ ( t s ) v ( s ) w ( s ) + v ( s ) L p 0 ( Ω ) d s C 13 0 + σ α 2 2 ( 1 p 0 1 p ) e μ σ d σ + C 14 s 0 α 2 2 ( 1 1 p ) (2.13)

由(2.10),(2.13)和文献 [10] 的引理3.1可知对所有的 t ( 0 , T max ) , p [ 1 , 2 p 0 ( 2 p 0 ) + )

Ω | v | p C 15

第二步:对任意的 p > 1 ,在模型(1.1)的第一个方程两边同乘 ( u + 1 ) p 1 并在 Ω 上积分并运用Young’s不等式可得

1 p d d t Ω ( u + 1 ) p d x + ( p 1 ) Ω ( u + 1 ) m + p 3 | u | 2 d x p 1 2 Ω ( u + 1 ) m + p 3 | u | 2 d x + p 1 2 Ω ( u + 1 ) p + 2 q m 3 | v | 2 d x μ 2 Ω ( u + 1 ) p + 1 d x + C (2.14)

1 < l 0 < 2 p 0 2 ( 2 p 0 ) + ,对(2.14)右端第二项运用Hölder’s不等式可得

p 1 2 Ω ( u + 1 ) p + 2 q m 3 | v | 2 d x p 1 2 ( Ω ( u + 1 ) l 0 l 0 1 ( p + 2 q m 3 ) ) l 0 1 l 0 ( Ω | v | 2 l 0 ) 1 l 0 d x C ( u + 1 ) m + p 1 2 L 2 l 0 l 0 1 p + 2 q m 3 m + p 1 2 p + 2 q m 3 m + p 1 (2.15)

由于 l 0 > 1 , p > max { 2 q m 3 , p 0 p 0 l 0 2 q + m + 3 } ,所以

p 0 m + p 1 l 0 l 0 1 p + 2 q m 3 m + p 1 <

对(2.15)右端运用文献 [7] 的引理2.1可得

C ( u + 1 ) m + p 1 2 L 2 l 0 l 0 1 p + 2 q m 3 m + p 1 2 p + 2 q m 3 m + p 1 C ( ( u + 1 ) m + p 1 2 L 2 ( Ω ) μ 1 ( u + 1 ) m + p 1 2 L 2 p 0 m + p 1 ( Ω ) 1 μ 1 + ( u + 1 ) m + p 1 2 L 2 p 0 m + p 1 ( Ω ) ) 2 p + 2 q m 3 m + p 1 C ( ( u + 1 ) m + p 1 2 L 2 ( Ω ) 2 μ 1 p + 2 q m 3 m + p 1 + 1 ) C ( ( u + 1 ) m + p 1 2 L 2 ( Ω ) 2 l 0 ( p + 2 q m 3 ) p 0 ( l 0 1 ) l 0 ( m + p 1 ) + 1 )

其中, μ 1 = 2 m + p 1 2 p 0 2 ( l 0 1 ) ( m + p 1 ) 2 l 0 ( p + 2 q m 3 ) 1 2 2 + 2 ( m + p 1 ) 2 p 0 = ( m + p 1 ) 2 2 p 0 2 ( l 0 1 ) 2 l 0 ( p + 2 q m 3 ) 1 2 2 + 2 ( m + p 1 ) 2 p 0 ( 0 , 1 )

p = p 0 : = 1 + μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) > 1 l 0 < 2 p 0 2 ( 2 p 0 ) + m > q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) 可知

l 0 ( p + 2 q m 3 ) p 0 ( l 0 1 ) l 0 ( m + p 1 ) < 1

最后,利用Young’s不等式整理可得

1 p d d t Ω ( u + 1 ) p d x + ( p 1 ) 4 Ω ( u + 1 ) m + p 3 | u | 2 d x + μ 2 Ω ( u + 1 ) p + 1 d x C (2.16)

对(2.16)在 ( 0 , t ) 上积分可得对任意的 p > 1 ,有

Ω ( u + 1 ) p d x C

定理1的证明:首先,假设 ( u , v , w ) 是模型(1.1)的解,对任意的 t ( 0 , T max ) ,存在常数 C > 0 ,由一阶常微分方程理论和Hölder’s不等式可得

w ( , t ) L p ( Ω ) w 0 L p ( Ω ) + 0 t e ( t s ) u ( , s ) L p ( Ω ) d s w 0 L p ( Ω ) + u ( , s ) L p ( Ω ) ( p p 1 ) p 1 p C 16 (2.17)

又因为 p > n 时, θ [ 1 , ] 可得

v ( , t ) L θ ( Ω ) C 17 v 0 L ( Ω ) + C 18 v 0 L ( Ω ) w ( , t ) L p ( Ω ) 0 ( 1 + s ϕ ) λ s d s C (2.18)

其中 ϕ > 1 ,即可证明 v ( , t ) L ( Ω ) C

其次,当 m > q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) 1 < q 2 。当 D ( u ) S ( u ) 满足(1.2),对任意的 p > 1

模型(1.1)两边同乘 ( u + 1 ) p 1 并在 Ω 上积分可得

1 p d d t Ω ( u + 1 ) p d x + ( p 1 ) Ω ( u + 1 ) m + p 3 | u | 2 d x p 1 4 Ω ( u + 1 ) m + p 3 | u | 2 d x + ( p 1 ) C 19 2 Ω ( u + 1 ) p + 2 q m 3 d x + μ Ω ( u u 2 ) ( u + 1 ) p 1 d x p 1 4 Ω ( u + 1 ) m + p 3 | u | 2 d x + C 20 p Ω ( u + 1 ) p + 2 q m 3 d x Ω ( u + 1 ) p d x μ 4 Ω ( u + 1 ) p + 1 d x (2.19)

其中 C 20 = C 19 2 + 2 μ + 1 q 1 μ 4 ( 1 + C ¯ λ 0 v 0 L ( Ω ) 3 2 3 ) < m < 2 q 3 ,对上式右端第二项运用文献 [7] 的引理2.1和Young’s不等式可得

C 20 p Ω ( u + 1 ) p + 2 q m 3 d x C 21 ( ( u + 1 ) m + p 1 2 L 2 ( Ω ) 2 ( p + 2 q m 3 ) m + p 1 ς 1 ( u + 1 ) m + p 1 2 L 1 ( Ω ) 2 ( p + 2 q m 3 ) m + p 1 1 ς 1 + ( u + 1 ) m + p 1 2 L 1 ( Ω ) 2 ( p + 2 q m 3 ) m + p 1 ) C 22 ( u + 1 ) m + p 1 2 L 2 ( Ω ) 2 + C 23 ( u + 1 ) m + p 1 2 L 1 ( Ω ) 2 ( p + 2 q m 3 ) m + p 1 (2.20)

整理(2.19)和(2.20)可得

1 p d d t Ω ( u + 1 ) p d x + Ω ( u + 1 ) p d x + C 20 Ω | ( u + 1 ) m + p 1 2 | 2 d x C 24 (2.21)

再运用Gronwall不等式可得

u ( , t ) L p ( Ω ) C 24

再对上式运用标准的Alikakos-Moser迭代即可得到

u ( , t ) L ( Ω ) C

最后,对模型(1.1)的第三个方程求一阶线性常微分方程的解,显然可得

w ( , t ) L ( Ω ) C

从而定理1得证。

基金项目

新疆维吾尔自治区自然科学基金项目(NO. 2018D01C004)。

参考文献

NOTES

*通讯作者。

参考文献

[1] Hu, B.R. and Tao, Y. (2016) To the Exclusion of Blow-Up in a Three-Dimensional Chemotaxis-Growth Model with Indirect Attractant Production. Mathematical Models and Methods in Applied Sciences, 26, 2111-2128.
https://doi.org/10.1142/S0218202516400091
[2] Li, H. and Tao, Y.S. (2017) Boundedness in a Chemotaxis System with Indirect Signal Production and Generalized Logistic Source. Applied Mathematics Letters, 77, 108-113.
https://doi.org/10.1016/j.aml.2017.10.006
[3] Tang, Q., Xin, Q. and Mu, C. (2020) Boundedness of the High-er-Dimensional Quasilinear Chemotaxis System with Generalized Logistic Source. Acta Mathematica Scientia, 40, 713-722.
https://doi.org/10.1007/s10473-020-0309-0
[4] Tao, Y.S. (2011) Boundedness in a Chemotaxis Model with Oxygen Consumption by Bacteria. Journal of Mathematical Analysis and Applications, 381, 521-529.
https://doi.org/10.1016/j.jmaa.2011.02.041
[5] Tao, Y.S. and Winkler, M. (2012) Eventual Smoothness and Sta-bilization of Large-Data Solutions in a Three-Dimensional Chemotaxis System with Consumption of Chemoattractant. Journal of Differential Equations, 252, 2520-2543.
https://doi.org/10.1016/j.jde.2011.07.010
[6] Lankeit, J. and Wang, Y.L. (2016) Global Existence, Boundedness and Stabilization in a High-Dimensional Chemotaxis System with Consumption. Discrete & Continuous Dynamical Systems, 37, 6099-6121.
https://doi.org/10.3934/dcds.2017262
[7] Zheng, J. (2018) Global Solvability and Boundedness in the N-Dimensional Quasilinear Chemotaxis Model with Logistic Source and Consumption of Chemoattractant.
[8] Fuest, M. (2019) Analysis of a Chemotaxis Model with Indirect Signal Absorption. Journal of Differential Equations, 267, 4778-4806.
https://doi.org/10.1016/j.jde.2019.05.015
[9] Liu, Y., Li, Z. and Huang, J. (2020) Global Boundedness and Large Time Behavior of a Chemotaxis System with Indirect Signal Absorption. Journal of Differential Equations, 269, 6365-6399.
https://doi.org/10.1016/j.jde.2020.05.008
[10] Zheng, P. and Xing, J. (2020) Boundedness and Large-Time Behavior for a Two-Dimensional Quasilinear Chemotaxis-Growth System with Indirect Signal Consumption. Ztschrift für angewandte Mathematik und Physik ZAMP, 71, Article No. 98.
https://doi.org/10.1007/s00033-020-01320-w
[11] Song, X. and Zheng, J. (2019) A New Result for Global Solv-ability and Boundedness in the N-Dimensional Quasilinear Chemotaxis Model with Logistic Source and Consumption of Chemoattractant. Journal of Mathematical Analysis and Applications, 475, 895-917.
https://doi.org/10.1016/j.jmaa.2019.03.002