糖尿病周围神经病变诊断技术研究进展
Research Progress in the Diagnosis of Diabetic Peripheral Neuropathy
DOI: 10.12677/ACM.2021.113164, PDF, HTML, XML, 下载: 425  浏览: 787 
作者: 刘云财*, 杨 潇, 张亚军:昆明医科大学,云南 昆明;尹凤琼#:昆明医科大学第二附属医院特需病房,云南 昆明
关键词: 糖尿病糖尿病周围神经病变诊断Diabetes Mellitus Diabetic Peripheral Neuropathy Diagnosis
摘要: 糖尿病周围神经病变(Diabetic peripheral neuropathy, DPN)是糖尿病最常见的慢性并发症之一,也是引起糖尿病足的高危因素,严重影响患者生存质量,甚至致残。目前对糖尿病周围神经病变早期诊断、早期预防显得十分关键。近几年来随着对糖尿病周围神经病变的认识加深,出现了很多新的诊断技术和方法。本文将对主要的几项手段优势及局限性进行综述。
Abstract: Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes mellitus, and also a high risk factor for diabetic foot, which seriously affects the quality of life of patients, and even causes disability. At present, early diagnosis and prevention of diabetic peripheral neuropathy are very important. In recent years, with the deepening of the understanding of diabetic peripheral neuropathy, many new diagnostic techniques and methods have emerged. This review aims to summarize the main advantages and limitations of several methods.
文章引用:刘云财, 杨潇, 张亚军, 尹凤琼. 糖尿病周围神经病变诊断技术研究进展[J]. 临床医学进展, 2021, 11(3): 1141-1146. https://doi.org/10.12677/ACM.2021.113164

1. 引言

糖尿病(Diabetes mellitus, DM)是一种由胰岛素分泌不足或自身无法对胰岛素有效利用产生的严重慢性疾病,据国际糖尿病联合会(International Diabetes Federation, IFD)估计在2017年,全球范围内年龄18~99岁人群中,有4.51亿人患有糖尿病,到2045年这个数字将达到6.93亿人 [1]。其中超过50%患者 [2] 最终会并发糖尿病最常见的并发症——糖尿病周围神经病变(Diabetic peripheral neuropathy, DPN)。DPN最常见的类型为远端对称性多发性神经病变(Distal symmetric polyneuropathy, DSP),引起四肢对称性的疼痛、麻木、保护性感觉减退,增加患者跌倒风险,同时也是糖尿病足的高危因素,严重影响患者生存质量,甚至截肢。目前已有许多针对DPN进行筛查、诊断的方法和技术。本文将简单对目前比较常用的几种手段进行综述。

周围神经纤维按粗细程度分类可分为Aα、Aβ类纤维(粗髓鞘纤维)、Aδ类纤维(薄髓鞘纤维)、C类纤维(无髓鞘纤维) [3]。其中大的神经纤维有较粗的髓鞘保护,用以调节腱反射、触觉、压力觉、振动觉和本体感觉,如受累,往往表现为阴性症状,如乏力、保护性感觉减退和感觉性的共济失调。小的神经纤维(Aδ、C)占周围神经的80%~91%,介导痛温觉及自主神经功能如受到损伤,往往表现为阳性症状,如刺痛、烧灼感,同时还可以包括一些自主神经功能紊乱表现,如发汗异常、体位性低血压、胃肠动力障碍、膀胱功能障碍及阳痿等 [4]。理想情况下,对DPN的评估应包含所有神经功能。

2. 临床评分量表的评估

根据中国2型糖尿病防治指南(2017版) [5] DPN的诊断主要取决于临床症状、体征和神经电生理检查。在实际临床工作中,医生可以通过评估患者的腱反射、振动觉、压触觉、痛温觉和其他提示神经病的临床表现(如胼胝、足部溃疡)等。通过标准化的临床检查,将异常发现量化,形成各种临床评分量表。较为常用的有MNSI [6]、NSS/NDS [7]、TCSS [8]。临床评分量表具有量化神经病变严重程度、操作简便省时、无需昂贵设备支持的优点,可被社区、门诊及住院部对大量糖尿病患者进行筛查、诊断以及评估损伤严重程度。其缺陷在于对检查者有一定的专业要求,不同检查者对同一患者的评分可能会有一定差异,导致该手段在可重复性上受到一定限制。DPN可累及包括大神经纤维及小神经纤维,目前暂无诊断DPN的唯一金标准,常以临床联合多项检测方法诊断DPN [9]。因此尽管有一定缺陷,上述临床评分量表也常常被用做对照其他检查方法敏感度及特异度的参考标准。

3. 大神经纤维的评估

3.1. 10 g尼龙丝

10 g尼龙丝是目前常用的检查DPN患者足底压触觉的手段,其原理是通过弯曲一根尼龙单丝以产生一个固定的10 g反作用力。将单丝的另一端置于患者足底从而测量足底对其感知程度以判断足底压触觉的保留程度。该检查廉价、操作简便、具有良好的可重复性、较高敏感度与一般特异度 [10],常被用作筛查DPN与预测糖尿病足溃疡风险 [11]。

3.2. 振动觉阈值测定

振动觉损害的严重程度反映了Aα和Aβ感觉纤维损害的严重程度 [12]。临床上有许多进行振动觉测定的方法,常见的包括有常规非分级音叉、Rydel-Seiffer分级音叉、Neurothesiometer和Biothesiometer等振动觉阈值检测设备。振动觉阈值测定与10 g尼龙丝类似,适用于床旁检查且具有较高的敏感度,常被用来筛查DPN [13] 以及预测DPN患者发生足溃疡的风险。

3.3. 神经传导检测(Nerve Conduction Studies, NCS)

NCS是目前临床上较为常用的诊断DPN的检查手段,其通过对所检周围神经施加一定量电刺激后测量其电位波幅、潜伏期及神经传导速度等参数,以评估周围神经传导电信号的能力。该项检查为客观性的检查,具有较好的敏感性和可重复性,以及可以定量评估神经损伤程度,曾经被评价为诊断DPN的金标准,随着对小纤维神经病变认识的加深,目前被专家推荐作为DPN的补充诊断方法 [5]。其局限性在于耗时长、费用较高,不利于广泛筛查;且只能够用于评估大神经纤维功能,而早期DPN或糖尿病前期周围神经病变患者通常会以小神经纤维受累为主 [14] [15]。小神经纤维因髓鞘的缺失不易被测定,因此使用神经传导测定诊断DPN有可能会漏诊上述患者。

3.4. 其他大神经纤维评估手段

另外还有一些新的大神经纤维评估设备及手段逐渐出现在临床工作中,如针对保护性感觉检查的:圆周直径辨别检测仪(TCD) [16]、钢珠试验 [17];针对振动觉检查的Vibratip [18];针对轻触觉检查的The Ipswich Touch Test (IpTT) [19];以及小型的神经传导检查仪器DPNCheck [20] 等。以上这些新的检查手段及设备的开发大多为了变得更加准确定量或更加方便、便携,以便适应大量的临床筛查工作。

4. 小神经纤维的评估

4.1. 定量感觉测定(Quantitative Sensory Testing, QST)

在1978年,Dyck引入的一种自动量化压力、温度、触摸、振动觉的检查方法,由此衍生出各类仪器。QST是一种可以选择性定量测量冷热敏感度、冷热刺激痛觉、机械刺痛觉、压痛觉和振动觉阈值的仪器设备 [21]。它不仅可以反映大纤维神经功能,更能很好反映小纤维神经功能的保留程度,是早期检测DPN患者小纤维神经功能障碍的有效工具。目前也已有研究将其用于对患者的不同测试表型进行分类,包括感觉丧失型、机械痛觉过敏型和热痛觉过敏型,以用于针对不同的疼痛类型制定合适的治疗方案 [22]。总的来说,这项技术因其无创性仍是目前评估小神经纤维病变的主要工具。但其检测结果容易受到患者注意力、情绪等主观因素影响,可重复性受到一定的制约 [23]。

4.2. 皮肤活检

皮肤活检在20多年前就已进入临床,通过取皮肤活检进行免疫组化、免疫荧光的方法计数表皮内神经纤维密度可以定量小神经纤维缺失的严重程度。它具有很好的客观性且能发现并定量最远端的小神经纤维病变,是目前诊断小神经纤维病变的最可靠的指标 [24]。但因其为有创性检查且技术要求较高,不能成为常规的检查手段。此外还有研究通过对真皮神经纤维长度 [25]、形态学 [26] 进行评估以期更早发现小神经纤维病变。

4.3. 角膜共聚焦显微镜(Corneal Confocal Microscopy, CCM)

角膜共聚焦显微镜通过对受试者眼角膜快速采集数张图像,进行人工或电脑自动的图像分析以测量角膜神经纤维密度、长度等参数。是最近研究较多的评估小神经纤维的手段。以NCS作为诊断DPN参考标准的条件下,CCM对1型糖尿病并发DPN患者诊断的敏感度和特异度分别为91%和93% [27]。且已有研究将这项技术与肢体末端皮肤活检的诊断效能进行比较,得出较高的一致性 [28],进一步加强了其可靠性。CCM作为一个快速、无创性检查手段同时具有良好的定量性能及可重复性。近期一项前瞻性研究 [29] 表明在对1型糖尿病患者进行肾脏、胰腺移植术后6个月时可以观察到角膜神经纤维再生,12个月时发现表皮内神经纤维再生,36个月后周围神经神经症状和神经电生理功能改善。在另一项随访超过6年的前瞻性研究 [30] 中,作者注意到随着糖尿病病程延长,角膜神经分支密度、神经纤维长度显著降低,而NCS没有明显改变。暗示了CCM检查相较其他大小纤维神经评估手段在小神经纤维病变方面更适于作为临床终点,也更能反映糖尿病患者神经功能损害严重程度。

4.4. 定量轴突反射催汗试验(Quantitative Sudomotor Axon Reflex Test, QSART)

定量轴突反射催汗试验这项技术通过离子导入将10%乙酰胆碱溶液渗入到真皮层上层,以刺激C纤维诱发轴突反射使皮肤分泌汗液,并通过汗液计来定量汗液分泌量。用以评估交感神经节后纤维功能 [31]。这项技术有相对较小的可变性,目前仍被许多人认为是诊断自主神经功能障碍的金标准 [32]。

4.5. 皮肤交感反应(Sympathetic Skin Response, SSR)

皮肤交感反应是一种与汗腺活动相关的表皮电活动,能够反映交感神经节后纤维功能状态的表皮电位。SSR可由吸气喘息、咳嗽、噪音、对皮肤的刺激等躯体或精神应激诱发,使得SSR虽然易于测量,但在诊断小纤维神经病变时,个体间和个体内差异性较大,灵敏度和特异性有限 [33]。

4.6. 其他

其他常见小神经纤维检查手段的还包括痛觉诱发电位、微神经造影,以及针对自主神经病变的心率、血压变异率、膀胱残余尿测定、激光多普勒技术等手段。

5. 结论

综上所述,目前对DPN的疾病自然史还不明确,很多研究 [15] [34] [35] 发现早期DPN患者以及部分糖尿病前期周围神经病变患者的神经病变主要表现为小神经纤维病变,随着病程进展逐步发展可能合并大神经纤维受累。目前仍没有任何一款经过批准的药物能够对DPN自然进展起到逆转的作用,因此早期发现、早期干预以避免发生如糖尿病足、心源性猝死等严重的并发症也就变得尤为重要了。最近几年,小神经纤维病变受到了越来越多的关注,也有越来越多有前景的检查技术涌现出来。国内学者魏易琼等人 [36] 也已尝试将NCS、F波与SSR联合对DPN患者进行诊断,发现能够明显提高亚临床DPN诊断的灵敏度和特异度。对DPN的诊断应该以临床表现结合多项检查技术为主。未来对DPN诊断技术的研究将更加倾向于小神经纤维,以加强对DPN患者小神经纤维病变认识,发现潜在的DPN患者。这将对改善DPN患者预后、减少致残率有着重大的意义。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W., et al. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281.
https://doi.org/10.1016/j.diabres.2018.02.023
[2] Maser, R.E., Steenkiste, A.R., Dorman, J.S., Kamp Nielsen, V., Bass, E.B., Manjoo, Q., et al. (1989) Epidemiological Correlates of Diabetic Neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes, 38, 1456-1461.
https://doi.org/10.2337/diab.38.11.1456
[3] Quattrini, C., Jeziorska, M. and Malik, R.A. (2004) Small Fiber Neuropathy in Diabetes: Clinical Consequence and assessment. The International Journal of Lower Extremity Wounds, 3, 16-21.
https://doi.org/10.1177/1534734603262483
[4] Malik, R.A., Veves, A., Tesfaye, S., Smith, G., Cameron, N., Zochodne, D., et al. (2011) Small Fibre Neuropathy: Role in the Diagnosis of Diabetic Sensorimotor Polyneuropathy. Diabetes/Metabolism Research and Reviews, 27, 678-684.
https://doi.org/10.1002/dmrr.1222
[5] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344.
[6] Feldman, E.L., Stevens, M.J., Thomas, P.K., Brown, M.B., Canal, N. and Greene, D.A. (1994) A Practical Two-Step Quantitative Clinical and Electrophysiological Assessment for the Diagnosis and Staging of Diabetic Neuropathy. Diabetes Care, 17, 1281-1289.
https://doi.org/10.2337/diacare.17.11.1281
[7] Young, M.J., Boulton, A.J., Macleod, A.F., Williams, D.R.R. and Sonksen, P.H. (1993) A Multicentre Study of the Prevalence of Diabetic Peripheral Neuropathy in the United Kingdom Hospital Clinic Population. Diabetologia, 36, 150-154.
https://doi.org/10.1007/BF00400697
[8] Perkins, B.A., Olaleye, D., Zinman, B. and Bril, V. (2001) Simple Screening Tests for Peripheral Neuropathy in the Diabetes Clinic. Diabetes Care, 24, 250-256.
https://doi.org/10.2337/diacare.24.2.250
[9] Pop-Busui, R., Boulton, A.J., Feldman, E.L., Bril, V., Freeman, R., Malik, R.A., et al. (2017) Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care, 40, 136-154.
https://doi.org/10.2337/dc16-2042
[10] Miranda-Palma, B., Sosenko, J.M., Bowker, J.H., Mizel, M.S. and Boulton, A.J.M. (2005) A Comparison of the Monofilament with Other Testing Modalities for Foot Ulcer Susceptibility. Diabetes Research and Clinical Practice, 70, 8-12.
https://doi.org/10.1016/j.diabres.2005.02.013
[11] Boulton, A.J., Armstrong, D.G., Albert, S.F., Frykberg, R.G., Hellman, R., Sue Kirkman, M., et al. (2008) Comprehensive Foot Examination and Risk Assessment. Endocrine Practice, 14, 576-583.
https://doi.org/10.4158/EP.14.5.576
[12] Siao, P. and Cros, D.P. (2003) Quantitative Sensory Testing. Physical Medicine and Rehabilitation Clinics of North America, 14, 261-286.
https://doi.org/10.1016/S1047-9651(02)00122-5
[13] Kästenbauer, T., Sauseng, S., Brath, H., Abrahamian, H. and Irsigler, K. (2004) The Value of the Rydel-Seiffer Tuning Fork as a Predictor of Diabetic Polyneuropathy Compared with a Neurothesiometer. Diabetic Medicine, 21, 563-567.
https://doi.org/10.1111/j.1464-5491.2004.01205.x
[14] Smith, A.G. and Singleton, J.R. (2008) Impaired Glucose Tolerance and Neuropathy. Neurologist, 14, 23-29.
https://doi.org/10.1097/NRL.0b013e31815a3956
[15] Lee, C.C., Perkins, B.A., Kayaniyil, S., Harris, S.B., Retnakaran, R., Gerstein, H.C., et al. (2015) Peripheral Neuropathy and Nerve Dysfunction in Individuals at High Risk for Type 2 Diabetes: The Prom ISE Cohort. Diabetes Care, 38, 793-800.
https://doi.org/10.2337/dc14-2585
[16] Vileikyte, L., Hutchings, G., Hollis, S. and Boulton, A.J.M. (1997) The Tactile Circumferential Discriminator. A New, Simple Screening Device to Identify Diabetic Patients at Risk of Foot Ulceration. Diabetes Care, 20, 623-626.
https://doi.org/10.2337/diacare.20.4.623
[17] Papanas, N., Gries, A., Maltezos, E. and Zick, R. (2006) The Steel Ball-Bearing Test: A New Test for Evaluating Protective Sensation in the Diabetic Foot. Diabetologia, 49, 739-743.
https://doi.org/10.1007/s00125-005-0111-5
[18] Bowling, F.L., Abbott, C.A., Harris, W.E., Atanasov, S., Malik, R.A. and Boulton, A.J.M. (2012) A Pocket-Sized Disposable Device for Testing the Integrity of Sensation in the Outpatient Setting. Diabetic Medicine, 29, 1550-1552.
https://doi.org/10.1111/j.1464-5491.2012.03730.x
[19] Rayman, G., Vas, P.R., Baker, N., Taylor Jr., C.G., Gooday, C., Alder, A.I., et al. (2011) The Ipswich Touch Test: A Simple and Novel Method to Identify Inpatients with Diabetes at Risk of Foot Ulceration. Diabetes Care, 34, 1517-1518.
https://doi.org/10.2337/dc11-0156
[20] Vinik, A.I., Kong, X., Megerian, J.T. and Gozani, S.N. (2006) Diabetic Nerve Conduction Abnormalities in the Primary Care Setting. Diabetes Technology & Therapeutics, 8, 654-662.
https://doi.org/10.1089/dia.2006.8.654
[21] Rolke, R., Baron, R., Maier, C., Tölle, T.R., Treede, D.R., Beyer, A., et al. (2006) Quantitative Sensory Testing in the German Research Network on Neuropathic Pain (DFNS): Standardized Protocol and Reference Values. Pain, 123, 231-243.
https://doi.org/10.1016/j.pain.2006.01.041
[22] Forstenpointner, J., Otto, J. and Baron, R. (2018) Individualized Neuropathic Pain Therapy Based on Phenotyping: Are We There Yet? Pain, 159, 569-575.
https://doi.org/10.1097/j.pain.0000000000001088
[23] Yarnitsky, D. and Sprecher, E. (1994) Thermal Testing: Normative Data and Repeatability for Various Test Algorithms. Journal of the Neurological Sciences, 125, 39-45.
https://doi.org/10.1016/0022-510X(94)90239-9
[24] Devigili, G., Tugnoli, V., Penza, P., Camozzi, F., Lombardi, R., Melli, G., et al. (2008) The Diagnostic Criteria for Small Fibre Neuropathy: From Symptoms to Neuropathology. Brain, 131, 1912-1925.
https://doi.org/10.1093/brain/awn093
[25] Karlsson, P., Porretta-Serapiglia, C., Lombardi, R., Jensen, T.S. and Lauria, G. (2013) Dermal Innervation in Healthy Subjects and Small Fiber Neuropathy Patients: A Stereological Reappraisal. Journal of the Peripheral Nervous System, 18, 48-53.
https://doi.org/10.1111/jns5.12007
[26] Andersson, C., Guttorp, P. and Särkkä, A. (2016) Discovering Early Diabetic Neuropathy from Epidermal Nerve Fiber Patterns. Statistics in Medicine, 35, 4427-4442.
https://doi.org/10.1002/sim.7009
[27] Ahmed, A., Bril, V., Orszag, A., Paulson, J., Yeung, E., Ngo, M., et al. (2012) Detection of Diabetic Sensorimotor Polyneuropathy by Corneal Confocal Microscopy in Type 1 Diabetes: A Concurrent Validity Study. Diabetes Care, 35, 821-828.
https://doi.org/10.2337/dc11-1396
[28] Chen, X., Graham, J., Dabbah, M.A., Petropoulos, I.N., Ponirakis, G., Asghar, O., et al. (2015) Small Nerve Fiber Quantification in the Diagnosis of Diabetic Sensorimotor Polyneuropathy: Comparing Corneal Confocal Microscopy with Intraepidermal Nerve Fiber Density. Diabetes Care, 38, 1138-1144.
https://doi.org/10.2337/dc14-2422
[29] Azmi, S., Jeziorska, M., Ferdousi, M., Petropoulos, I.N., Ponirakis, G., Marshall, A., et al. (2019) Early Nerve Fibre Regeneration in Individuals with Type 1 Diabetes after Simultaneous Pancreas and Kidney Transplantation. Diabetologia, 62, 1478-1487.
https://doi.org/10.1007/s00125-019-4897-y
[30] Dhage, S., Ferdousi, M., Adam, S., Ho, J.H., Kalteniece, A., Azmi, S., et al. (2021) Corneal Confocal Microscopy Identifies Small Fibre Damage and Progression of Diabetic Neuropathy. Scientific Reports, 11, Article No. 1859.
https://doi.org/10.1038/s41598-021-81302-8
[31] Hijazi, M.M., Buchmann, S.J., Sedghi, A., Illigens, B.M., Reichmann, H., Schackert, G., et al. (2020) Assessment of Cutaneous Axon-Reflex Responses to Evaluate Functional Integrity of Autonomic Small Nerve Fibers. Neurological Sciences, 41, 1685-1696.
https://doi.org/10.1007/s10072-020-04293-w
[32] Buchmann, S.J., Penzlin, A.I., Kubasch, M.L., Illigens, B.M.-W. and Siepmann, T. (2019) Assessment of Sudomotor Function. Clinical Autonomic Research, 29, 41-53.
https://doi.org/10.1007/s10286-018-0530-2
[33] Cheshire, W.P. (2020) Sudomotor Dysfunction. Seminars in Neurology, 40, 560-568.
https://doi.org/10.1055/s-0040-1713847
[34] Vlckova-Moravcova, E., Bednarik, J., Belobradkova, J. and Sommer, C. (2008) Small-Fibre Involvement in Diabetic Patients with Neuropathic Foot Pain. Diabetic Medicine, 25, 692-699.
https://doi.org/10.1111/j.1464-5491.2008.02446.x
[35] Vlčková-Moravcová, E., Bednařík, J., Dušek, L., Toyka, K.V. and Sommer, C. (2008) Diagnostic Validity of Epidermal Nerve Fiber Densities in Painful Sensory Neuropathies. Muscle & Nerve, 37, 50-60.
https://doi.org/10.1002/mus.20889
[36] 魏易琼, 苏常春, 周倩, 卢祖能. 神经传导、F波及皮肤交感反应联合检测对糖尿病周围神经病变早期诊断的价值[J]. 华中科技大学学报(医学版), 2020, 49(4): 477-480.