形貌可控且高度分散氟化镁的制备及方法研究
Research on Preparation and Method of Highly Dispersed Magnesium Fluoride with Controllable Shape
DOI: 10.12677/AAC.2021.112004, PDF, HTML, XML, 下载: 653  浏览: 2,222 
作者: 龚愉锋*, 王 钰:浙江师范大学化学与生命科学学院,浙江 金华
关键词: 氟化镁螯合剂酸碱度分散性Magnesium Fluoride Chelating Reagent PH Dispersion
摘要: 本文总结了不同形貌氟化镁的合成方法,包括溶胶凝胶法、微波合成法、二氧化硅模板法等。以酒石酸钠盐、乙二胺四乙酸二钠盐、柠檬酸钠盐为螯合剂,采用水热法成功制备了高度均匀的三维花状,且具有较高分散性的氟化镁微米颗粒。利用x射线衍射、扫描电子显微镜对材料进行了表征。同时调控溶液的PH值,以达到纯化氟化镁颗粒的效果。结果表明溶液的酸碱性对氟化镁的纯化起一定的作用。
Abstract: This article summarizes the synthesis methods of magnesium fluoride with different morphologies, including sol-gel method, microwave synthesis method, and silica template method. Using sodium tartrate, ethylenediaminetetraacetic acid disodium salt, and sodium citrate as chelating agents, the hydrothermal method successfully prepared highly uniform three-dimensional flower-like and highly dispersible magnesium fluoride micron particles. The material was characterized by x-ray diffraction and scanning electron microscope. At the same time, the PH value of the solution is adjusted to achieve the effect of purifying magnesium fluoride particles. The results show that the acidity and basicity of the solution play a certain role in the purification of magnesium fluoride.
文章引用:龚愉锋, 王钰. 形貌可控且高度分散氟化镁的制备及方法研究[J]. 分析化学进展, 2021, 11(2): 39-46. https://doi.org/10.12677/AAC.2021.112004

1. 引言

由于MgF2具有耐腐蚀性、高稳定性、表面性质可调等优点 [1],目前被广泛应用在氟氯交换反应、氯氟烃的歧化反应、氯氟烃的加氢脱氯反应、加氢反应、加氢脱硫反应、氮氧化物的脱除等催化体系中 [2],在具有腐蚀性气体及反应介质的催化反应体系中具有独特的优势。但是由于氟化镁比表面积较小以及表面酸性较弱,这极大地限制了其在催化研究中的应用,所以制备高比表面积、高分散性的氟化镁具有重要的研究意义。MgF2是折射率最低(n = 1.38)的材料之一,在光学减反射涂层领域有着广泛的应用。此外,MgF2因其硬度高、热稳定性好、表面化学活性低、耐腐蚀性能好等优点,还应用于热压晶体、功能陶瓷 [3]、磁性材料 [4]、催化剂 [5]。花状、中空球、棒等 [6] 形貌的氟化镁具有较大的比表面积、较好的分散性,也能提高固定化催化剂的吸附量和活性位点。

同时,选择不同的反应物、合成方法和反应条件可以得到不同结构、不同形貌的MgF2颗粒。Pietrowski等人通过微波辐射合成了亚微米球形MgF2。Igor [7] 发现溶液的pH值和离子强度会影响立方、棱柱、片状和球形MgF2纳米晶体的形成。MgF2的形成和几何结构也可以通过改变Mg2+和F-离子 [8] [9]。然而,大多数纳米颗粒由于其高表面能而容易聚集,这限制了它们的实际应用。 [10] 因此,已经合成了由纳米结构构件组装的三维(3D)层次结构,以避免形成的纳米颗粒的聚集。而目前还没有多孔、花状等相关形貌的高分散性氟化镁的报道。众所周知,细分散物质的许多特性取决于具有相同化学成分的单个颗粒的大小和形状。为了评估这些影响,有必要处理细颗粒的明确分散。虽然不同的技术被用于制备均匀颗粒,但由于实验简单和通用性,在均匀溶液中沉淀是有利的。本文描述了许多这样的简单和复合精细分散物质的形状、模态大小和不同的结构。同时本文通过一种简单的水热法合成了高度均匀、分散性良好的多孔花状氟化镁。

2. 实验方法综述

2.1. 中空纳米棒MgF2的制备

中空纳米棒结构MgF2颗粒是通过无模板合成方法获得的 [11]。分别以四水合醋酸镁(Mg (CH3COO)2∙4H2O)和甲醇(CH3OH, 99.9%)作为镁源和溶剂,逐滴引入稀释后的氢氟酸(HF, 40 wt.%),调控溶液Mg(CH3COO)2:HF:CH3OH = 1:1.6:250的摩尔比。在240℃下于聚四氟乙烯内衬的高压釜晶化生长,得到5~20 nm的中空纳米棒。

2.2. 中空球形MgF2的制备

中空氟化镁的制备通常采用PS胶体球作为模板 [12]。将PS胶体球稀释加热分散,引入MgCl2和NH4F稀溶液,搅拌均匀,离心分离。最后,500℃高温处理以除去PS核。在0.27 g·L-1的恒定PS浓度下,MgCl2/NH4F摩尔比在1.0~5.50范围内变化,反应温度在30~75℃之间变化。

2.3. 纳米立方MgF2的制备

本研究中使用的颗粒是通过在NaF和MgCl2的水溶液中共沉淀制备的 [7]。具体而言,将盐溶液预热至80℃,以等体积的各种预定浓度快速合并,然后在相同温度的恒温水浴中老化。通过优化各种阴离子浓度和添加碱(NaOH或LiOH)或酸(HCl)来调控PH值,可合成大小均一的方形氟化镁颗粒。

2.4. 球形单分散MgF2的制备

以Mg(NO3)2和NH4F为原料,采用微波辅助沉淀法制备了球形单分散氟化镁 [13]。从制备可能具有高单分散性的球形MgF2颗粒的角度出发,对其微波功率、时间、温度、压力进行优化。得到直径为0.25~0.36 nm的球形MgF2颗粒,其相对标准偏差为平均值7%~15%。研究表明,Mg(NO3)2和NH4F存在一定的最佳浓度范围,可以制备出高度单分散的MgF2

2.5. 油墨状纳米MgF2的制备

10 g氢氟化镁(MgF2·x·H2O粉末,平均粒径约35 nm)与60 mL正丙醇和5 mL浓度为37% HCl混合。在室温下搅拌混合物,直至得到澄清的溶液。再加入2 ml去离子水,机械搅拌1 h。然后,将混合物转移到聚四氟乙烯内衬中,加热至200℃,持续时间分别为1、2和4 h,得到不同粒径的MgF2纳米颗粒 [14]。

3. 实验部分

合成:本文采用不同络合强度的螯合剂以制备不同形貌的氟化镁,同氟化钙的形成机理相似 [15]。首先在室温下向30 mL蒸馏水中加入1 mmol Mg(Ac)2,再加入5 mmol酒石酸钠(Na2EDTA,乙二胺四乙酸二钠盐)形成镁络合物。磁搅拌10 min后,加入2 mmol NaBF4。最后,将溶液转移到一个50 ml的特氟龙内衬的高压釜中。高压釜密封并保持在160℃晶化1 h,然后自然冷却到室温。白色产物依次用蒸馏水和无水乙醇洗涤,60℃真空下干燥4 h。通过采用不同的络合剂和调控溶液的pH以获得不同形貌的的氟化镁颗粒。

表征:X射线粉末衍射(XRD)表征是在型号为 D8 Advanced的X射线粉末衍射仪(Bruker, Germany)上进行的。将实际测量的XRD衍射峰与标准PDF卡片上的XRD衍射峰的对比来确定测试样品的物相。SEM 测试使用的仪器型号为S-4800的扫描电子显微镜(Hitachi公司,日本),并配有E-1030喷金装置。为了增加样品的表面导电性,在测试前对催化剂样品需要进行表面喷金处理。从SEM的测试能够获得样品晶体形貌、金属元素及其分布等相关信息。

4. 结果与讨论

利用扫描电镜(SEM)分析氟化镁颗粒的形貌特征。图1显示在引入酒石酸钠盐络合剂下,在不同的溶液PH值优化氟化镁颗粒。当PH = 4.25、5.16时,颗粒呈现球形且分散性较好,表面存在大量的纳米小孔,并且其小孔数量随溶液的酸性减弱而逐渐增加。这些小孔的出现可能是,在晶化过程中络合剂从内部脱落形成。但当酸性大于5.16时,氟化镁颗粒表面出现大量立方体形貌的杂质;同时在碱性大于10.69时,杂晶颗粒明显消失,只有当PH = 4.25、5.16、1.69时,合成的氟化镁颗粒是纯相的。因此我们推测该杂质可能是未洗涤完全的螯合剂。于是,采用x射线粉末衍射(XRD)分析了样品的相组成和相结构。图2反映了不同PH值处理的MgF2材料,表明所有的MgF2材料都存在金红石结构,且强而尖锐的衍射峰表明产物具有良好的结晶性。而有趣的是,当5.16 < PH < 10.69时,具有杂晶相的出现,同前面的SEM图谱分析是完全相一致的。

Figure 1. SEM spectra of magnesium fluoride synthesized by tartaric acid complexation in different acid and alkaline solutions

图1. 以酒石酸络合法在不同酸碱性溶液下合成的氟化镁SEM图谱

Figure 2. XRD patterns of magnesium fluoride synthesized by tartaric acid complexation in different acid and alkaline solutions

图2. 以酒石酸络合法在不同酸碱性溶液下合成的氟化镁XRD图谱

图3图4分析了以Na2EDTA作为螯合剂合成氟化镁的形貌和晶相组成。从图3的SEM图谱中发现,合成出来的氟化镁形貌不均一,存在很多的杂质。有趣的是,在PH = 4.97、8.19时,形貌较为均一,分别为花棒状、片状;但从他们的XRD的发现,这两种氟化镁仍然存在杂晶相,可能是氟化镁和络合剂的固溶体。基于该猜测,我们采取了延长晶化时间、提高晶化温度以及焙烧等方式纯化氟化镁,但依然无法完全除掉Na2EDTA以及其他杂质,推测是Na2EDTA对镁离子的络合能力过强,导致氟化镁很难纯化。

Figure 3. SEM spectrum of magnesium fluoride synthesized by Na2EDTA complex method in different acid and alkaline solutions

图3. 以Na2EDTA络合法在不同酸碱性溶液下合成的氟化镁SEM图谱

Figure 4. XRD patterns of magnesium fluoride synthesized by Na2EDTA complexation in different acid and alkaline solutions

图4. Na2EDTA络合法在不同酸碱性溶液下合成的氟化镁XRD图谱

图5图6分析以柠檬酸钠作为螯合剂合成氟化镁的形貌和晶相组成。不难发现,合成出来的氟化镁具有菜心花状形貌,颗粒较为均一,但分散性较差,有黏附在一起的现象(如图5),与其他螯合剂的形貌不同。这些结果表明,螯合试剂对最终产物的形貌有明显不同的影响,这可能与螯合常数和最终产物不同晶面对镁离子吸附能力的不同以及成核生长机理有关 [10]。只有当PH > 4.88时,氟化镁颗粒分散的良好,尤其是在PH = 12.44时,颗粒分散的最佳。但遗憾的是,在该碱性范围下,颗粒表面出现了大量的小颗粒杂质。从图6的XRD图谱也发现,当PH > 4.88时,合成出来的氟化镁都有少量杂晶相的出现。该现象归因于在碱性条件下,柠檬酸钠对镁离子的络合能力过强,不利于分离纯化氟化镁。

Figure 5. XRD patterns of magnesium fluoride synthesized by sodium citrate complexation in different acid and alkaline solutions

图5. 柠檬酸钠络合法在不同酸碱性溶液下合成的氟化镁XRD图谱

Figure 6. XRD patterns of magnesium fluoride synthesized by sodium citrate complexation in different acid and alkaline solutions

图6. 柠檬酸钠络合法在不同酸碱性溶液下合成的氟化镁XRD图谱

5. 氟化镁的性能与应用

研发的具有高热稳定性、高比表面积、高孔隙率和高吸水容量的MgF2,尤其是3D花状MgF2微球 [16],可高效吸附HF 气体中微量水分制HF 高纯电子特气的吸附剂,在吸附剂领域具有广阔的应用前景。而3D花状结构吸附剂是一种新型材料,它具有高的比表面积和轻松的质量传递和分离 [17]。最后,这些新型的纳米金属氟化物由于其极高的表面积和独特的酸性性质,可以用作许多新型金属催化反应的载体,从而显示出令人惊讶的协同作用 [18]。

6. 总结

通过选择不同的络合剂晶化氟化镁,以NaBF4为氟源,并调节溶液PH值以纯化氟化镁,获到分散性较好,形貌均一的花状颗粒。酒石酸钠、柠檬酸钠、Na2EDTA等螯合剂对镁离子的络合能力随溶液酸碱性的变化而变化,并且呈现特定的变化规律,给氟化镁的分离纯化带来一定的挑战。得出的结果是,对于酒石酸钠,在PH = 4.25、5.16时,氟化镁颗粒最佳,皆为颗粒大小均一的多孔球;对于柠檬酸钠,在PH = 4.38时,得到菜心花状的氟化镁颗粒。但对于Na2EDTA,络合剂对于镁离子的络合能力太强,难以纯化。

NOTES

*通讯作者。

参考文献

[1] Zhang, L., Han, P., Zhang, C., Dong, M., Yang, Y. and Gu, X. (2011) Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces. Acta Physico-Chimica Sinica, 27, 1609-1614.
[2] Xu, H. and Lv, J. (2002) Synthesis of Difluoromethane over Magnesium Fluoride (MgF2) Based Catalyst. Industrial Catalysis, 5, 10.
[3] Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K. and Yanagida, T. (2018) Scintillation, Dosimeter and Optical Properties of MgF2 Transparent Ceramics Doped with Gd3+. Materials Research Bulletin, 98, 83-88.
https://doi.org/10.1016/j.materresbull.2017.09.058
[4] Chen, F., Yuan, L. and Johnston, R.L. (2012) Low-Loss Optical Magnetic Metamaterials on Ag-Au Bimetallic Fishnets. Journal of Magnetism and Magnetic Materials, 324, 2625-2630.
https://doi.org/10.1016/j.jmmm.2012.03.025
[5] Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L. and Kemnitz, E. (2014) Dehydration of Xylose and Glucose to Furan Derivatives Using Bifunctional Partially Hydroxylated MgF2 Catalysts and N2-Stripping. Catalysis Science & Technology, 4, 1357-1368.
https://doi.org/10.1039/C4CY00129J
[6] Ji, Z., Hao, L., Wang, H. and Chen, R. (2019) Analysis and Research on the Formative Factors and Properties of Nano-MgF2 Crystals with Different Morphologies. Polyhedron, 157, 136-145.
https://doi.org/10.1016/j.poly.2018.09.061
[7] Sevonkaev, I. and Matijevic, E. (2009) Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir, 25, 10534-10539.
https://doi.org/10.1021/la901307t
[8] Nandiyanto, A.B., Iskandar, F., Ogi, T. and Okuyama, K. (2010) Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 26, 12260-12266.
https://doi.org/10.1021/la101194w
[9] Krishna Murthy, J., Groß, U., Rüdiger, S., Kemnitz, E. and Winfield, J.M. (20060 Sol-Gel-Fluorination Synthesis of Amorphous Magnesium Fluoride. Journal of Solid State Chemistry, 179, 739-746.
https://doi.org/10.1016/j.jssc.2005.11.033
[10] Xu, Z., Kang, X., Li, C., Hou, Z., Zhang, C., Yang, D., Li, G. and Lin, J. (2010) Ln(3+) (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) Nano/Microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Inorganic Chemistry, 49, 6706-6715.
https://doi.org/10.1021/ic100953m.
[11] Ji, Z., Bao, L., Wang, H. and Chen, R. (2017) Preparation of Super-Hydrophobic Antireflective Films by Rod-Like MgF2 and SiO2 Mixed Sol. Materials Letters, 207, 21-24.
https://doi.org/10.1016/j.matlet.2017.07.050
[12] Nandiyanto, A.B., Ogi, T. and Okuyama, K. (2014) Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Interfaces, 6, 4418-4427.
https://doi.org/10.1021/am500139m
[13] Pietrowski, M. and Wojciechowska, M. (2007) Microwave-Assisted Synthesis of Spherical Monodispersed Magnesium Fluoride. Journal of Fluorine Chemistry, 128, 219-223.
https://doi.org/10.1016/j.jfluchem.2006.12.009
[14] Karthik, D., Pendse, S., Sakthivel, S., Ramasamy, E. and Joshi, S.V. (2017) High Performance Broad Band Antireflective Coatings Using a Facile Synthesis of Ink-Bottle Mesoporous MgF2 Nanoparticles for Solar Applications. Solar Energy Materials & Solar Cells, 2017, 159, 204-211.
https://doi.org/10.1016/j.solmat.2016.08.007
[15] Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X. and Xing, Y. (2011) CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) Hierarchical Nanoflowers: Hydrothermal Synthesis and Luminescent Properties. CrystEngComm, 13, 835-840.
https://doi.org/10.1039/C0CE00396D
[16] Yang, N., Zhang, L., Yan, C., Wang, X., Wang, N., Chen, D.L., Wang, S. and Zhu, W. (2020) Preparation of CaF2 Microspheres with Nanopetals for Water Vapor Adsorption. Langmuir, 36, 5369-5376.
https://doi.org/10.1021/acs.langmuir.0c00763
[17] Wang, Y., Zeng, D., Dai, Y., Fang, C., Han, X., Zhang, Z., Cao, X. and Liu, Y. (2020) The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, & Soil Pollution, 231, Article No. 464.
https://doi.org/10.1007/s11270-020-04817-2
[18] Kemnitz, E. (2015) Nanoscale Metal Fluorides: A New Class of Heterogeneous Catalysts. Catalysis Science & Technology, 5, 786-806.
https://doi.org/10.1039/C4CY01397B
[19] Zhang, L., Han, P., Zhang, C., Dong, M., Yang, Y. and Gu, X. (2011) Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces. Acta Physico-Chimica Sinica, 27, 1609-1614.
[20] Xu, H. and Lv, J. (2002) Synthesis of Difluoromethane over Magnesium Fluoride (MgF2) Based Catalyst. Industrial Catalysis, 5, 10.
[21] Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K. and Yanagida, T. (2018) Scintillation, Dosimeter and Optical Properties of MgF2 Transparent Ceramics Doped with Gd3+. Materials Research Bulletin, 98, 83-88.
https://doi.org/10.1016/j.materresbull.2017.09.058
[22] Chen, F., Yuan, L. and Johnston, R.L. (2012) Low-Loss Optical Magnetic Metamaterials on Ag-Au Bimetallic Fishnets. Journal of Magnetism and Magnetic Materials, 324, 2625-2630.
https://doi.org/10.1016/j.jmmm.2012.03.025
[23] Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L. and Kemnitz, E. (2014) Dehydration of Xylose and Glucose to Furan Derivatives Using Bifunctional Partially Hydroxylated MgF2 Catalysts and N2-Stripping. Catalysis Science & Technology, 4, 1357-1368.
https://doi.org/10.1039/C4CY00129J
[24] Ji, Z., Hao, L., Wang, H. and Chen, R. (2019) Analysis and Research on the Formative Factors and Properties of Nano-MgF2 Crystals with Different Morphologies. Polyhedron, 157, 136-145.
https://doi.org/10.1016/j.poly.2018.09.061
[25] Sevonkaev, I. and Matijevic, E. (2009) Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir, 25, 10534-10539.
https://doi.org/10.1021/la901307t
[26] Nandiyanto, A.B., Iskandar, F., Ogi, T. and Okuyama, K. (2010) Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 26, 12260-12266.
https://doi.org/10.1021/la101194w
[27] Krishna Murthy, J., Groß, U., Rüdiger, S., Kemnitz, E. and Winfield, J.M. (20060 Sol-Gel-Fluorination Synthesis of Amorphous Magnesium Fluoride. Journal of Solid State Chemistry, 179, 739-746.
https://doi.org/10.1016/j.jssc.2005.11.033
[28] Xu, Z., Kang, X., Li, C., Hou, Z., Zhang, C., Yang, D., Li, G. and Lin, J. (2010) Ln(3+) (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) Nano/Microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Inorganic Chemistry, 49, 6706-6715.
https://doi.org/10.1021/ic100953m.
[29] Ji, Z., Bao, L., Wang, H. and Chen, R. (2017) Preparation of Super-Hydrophobic Antireflective Films by Rod-Like MgF2 and SiO2 Mixed Sol. Materials Letters, 207, 21-24.
https://doi.org/10.1016/j.matlet.2017.07.050
[30] Nandiyanto, A.B., Ogi, T. and Okuyama, K. (2014) Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Interfaces, 6, 4418-4427.
https://doi.org/10.1021/am500139m
[31] Pietrowski, M. and Wojciechowska, M. (2007) Microwave-Assisted Synthesis of Spherical Monodispersed Magnesium Fluoride. Journal of Fluorine Chemistry, 128, 219-223.
https://doi.org/10.1016/j.jfluchem.2006.12.009
[32] Karthik, D., Pendse, S., Sakthivel, S., Ramasamy, E. and Joshi, S.V. (2017) High Performance Broad Band Antireflective Coatings Using a Facile Synthesis of Ink-Bottle Mesoporous MgF2 Nanoparticles for Solar Applications. Solar Energy Materials & Solar Cells, 2017, 159, 204-211.
https://doi.org/10.1016/j.solmat.2016.08.007
[33] Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X. and Xing, Y. (2011) CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) Hierarchical Nanoflowers: Hydrothermal Synthesis and Luminescent Properties. CrystEngComm, 13, 835-840.
https://doi.org/10.1039/C0CE00396D
[34] Yang, N., Zhang, L., Yan, C., Wang, X., Wang, N., Chen, D.L., Wang, S. and Zhu, W. (2020) Preparation of CaF2 Microspheres with Nanopetals for Water Vapor Adsorption. Langmuir, 36, 5369-5376.
https://doi.org/10.1021/acs.langmuir.0c00763
[35] Wang, Y., Zeng, D., Dai, Y., Fang, C., Han, X., Zhang, Z., Cao, X. and Liu, Y. (2020) The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, & Soil Pollution, 231, Article No. 464.
https://doi.org/10.1007/s11270-020-04817-2
[36] Kemnitz, E. (2015) Nanoscale Metal Fluorides: A New Class of Heterogeneous Catalysts. Catalysis Science & Technology, 5, 786-806.
https://doi.org/10.1039/C4CY01397B