稻米香味检测的研究进展
Studies on Detecting Aroma in Rice
DOI: 10.12677/HJFNS.2021.101003, PDF, HTML, XML, 下载: 558  浏览: 1,654  国家自然科学基金支持
作者: 陈 庭*, 徐云升, 田永航#:海南热带海洋学院食品科学与工程学院,海南 三亚;张上都:贵州省农业科学院水稻研究所,贵州 贵阳
关键词: 稻米香味2-乙酰基-1-吡咯啉质谱分子标记恒温扩增ice Aroma 2-Acetyl-1-Pyrroline Mass Spectrometry Molecular Marker Isothermal Amplification
摘要: 香味是稻米品质最重要的性状之一,快捷检测稻米香味对水稻育种、大米加工和消费有重要的意义。本文对检测稻米香味的原理和方法进行了梳理。首先归纳了稻米香味的成分构成、控制稻米香味性状的遗传和分子基础。然后总结了基于质谱技术的化学方法、嗅闻法、咀嚼法和利用分子标记的生物检测方法对稻米香味的检测。最后展望了未来快捷检测和高通量检测方法。
Abstract: Because the aroma is one of the most important traits in rice quality, prompt detection of rice aroma is of great significance for rice breeding, processing, and consumption. This article reviews the fundamentals and methods of detecting rice aroma. First, it summarizes the composition of rice aroma, the genetic and molecular basis of controlling rice aroma. Then it summarizes the chemical methods of mass spectrometry, sniffing methods, chewing methods, and biological methods using molecular markers to detect the rice aroma. Finally, it provides our perspectives on the methods of rapid detection and high-throughout detection of the rice aroma in the future.
文章引用:陈庭, 张上都, 徐云升, 田永航. 稻米香味检测的研究进展[J]. 食品与营养科学, 2021, 10(1): 15-23. https://doi.org/10.12677/HJFNS.2021.101003

1. 引言

生产优质稻米,可提高稻谷的商品率,保障生产者(农户和育种单位),销售者(大米加工企业和终端零售)和消费者各方利益,从而有利于水稻产业的可持续发展 [1] [2]。香味是稻米品质最重要的性状之一,香味程度会影响消费者的购买意愿及决定是否再次购买,所以香味的市场隐含价格较高 [3] [4]。香米的价格比普通稻米常高出多倍,一些高价的优质名牌米可能掺有香米或香料 [5] [6] [7] [8] [9]。2017年的中央一号文件指示“确保口粮绝对安全,重点发展优质稻米”,以满足稻米消费市场需求。鉴于稻米香味性状的重要性,科研人员对稻米香味的化学组成,遗传基础和分子机制进行了广泛研究,并开发了检测稻米香味的诸多方法。

2. 稻米的香味成分

水稻中已鉴别出近500种挥发性化合物,这些化合物的浓度及其可感受的阈值构成了不同稻米的香味 [10]。2-AP (2-乙酰基-1-吡咯啉,2-acetyl-1-pyrroline)、1-辛烯-3-醇、正己醇、己醛和辛醛等挥发性成分是稻米的关键风味化合物 [11]。不同香米品种的香味浓烈程度和类型可能不同,可分为爆米花、茉莉花、紫罗兰和山核桃等香型 [12] [13]。研究认为2-AP是稻米香味的主要成分,可使米饭呈现甜香气味,而乙酸乙酯和辛酸乙酯等酯类物质对米饭风味起烘托作用,使米饭香气温润和饱满 [14] [15]。2-AP是一种低沸点小分子杂环化合物,具有烤面包、坚果和爆米花的香气,每千克天然香米的2-AP含量常低至微克 [12] [16]。2-AP在空气中具有极低的气味阈值(0.02 ng/L),香米中极低含量的2-AP也能被人类嗅觉系统所感知 [17]。因此,2-AP含量已作为衡量香稻品质的重要指标 [16]。

3. 稻米香味控制的遗传及分子基础

水稻的香味主要受第8号染色体上的一个隐性基因(badh2, fgr, LOC_Os08g32870)控制 [18]。OsBADH2编码一个甜菜碱醛脱氢酶,显性基因抑制2-AP的生物合成,所以含全长BADH2的水稻没有香味 [19]。突变的badh2导致BADH2 蛋白功能缺失,促进2-AP的积累,使水稻具有香味 [19] [20]。badh2的功能等位变异主要包括第7外显子有8bp缺失和第2外显子有7bp缺失 [20] [21]。badh2受到强烈的人工选择,超过80%的香米资源有第7外显子的8bp缺失 [22]。

稻米香味除受2-AP的影响外,其他香味物质对也有一定的作用,但其机制有待进一步研究 [4]。

4. 稻米香味的检测

4.1. 基于质谱技术的化学分析

目前,研究人员用水、盐酸、乙醇、二氯甲烷、CO2等溶剂分离纯化稻米中的香味化合物,然后对纯化的物质进行检测或结构分析。Nadaf等对Basmati及其他香米样品进行水蒸气减压蒸馏,再用二氯甲烷对收集的水蒸气冷凝物进行萃取,进一步浓缩、干燥后进行GC/MS (Gas chromatography/mass spectrometer)分析,测得几种香米中2-AP的含量范围是0.028~0.061 mg/kg [23]。Limpawattana等对100 g大米加入150 mL蒸馏水蒸煮,采用气相色谱闻嗅法(Gas chromatography-olfactometry),米饭有13种香味属性,不同香米类型之间的风味差异远比单一的2-AP的浓度变化要复杂得多 [4]。Wijit等先用盐酸溶液对泰国茉莉香米种子中的挥发性成分进行提取,再用二氯甲烷反萃取,对纯化后的化合物进行GC/MS检测,测出35了种挥发性成分 [13]。应兴华等用无水乙醇和二氯甲烷提取结合GC/MS分析,发现清香米、泰香R207、Texmati、桂香丝糯和健2号等5个品种中含有2-AP [24]。Hien等用乙醇萃取,采用气相色谱-质谱/选择离子扫描法(Gas chromatography-mass spectrometry-selected ion monitoring, GC-MS-SIM )检测,测出36个香米中2-AP 含量为0~430.7 μg/kg,不同香米品种的2-AP含量差别较大 [25]。随着质谱技术的进一步发展,Lee等利用顶空固相微萃取(HS-SPME,Headspace solid phase microextraction)对无菌包装的即食香米饭进行检测,发现2-AP是米饭中最重要的香味化合物 [4]。孙谦等采用固相微萃取和气相色谱-质谱联用(SPME-GC-MS)检测稻米中的2-AP,用于快速鉴别香米真伪 [26]。Hopfer等结合顶空固相微萃取和气相色谱-串联质谱(Gas chromatography tandem mass spectrometry, HS-SPME-GC-MS/MS)实现了单粒米中2-AP的定量测定 [27]。

总体来看,该类技术用溶剂提取,顶空(吸附)萃取和固相微萃取等分离香味化合物,然后用色谱质谱分析,研究揭示了稻米香味的本质。该类技术常涉及较长周期的样品准备、昂贵的设备和专业技术人员对设备维护及操作,在一般的育种单位和大米加工企业不容易应用此类技术。由于2-AP已经实现人工合成,市面可能存在“掺香”或“添香”情况,稻米加工企业、食品管理部门和消费者并不容易通过该类技术判断稻米香味的真实性。另外,育种单位及种子生产企业在选育过程中不能利用该类技术对杂合单株和显性单株进行判断。

4.2. 育种及加工过程中的简单检测

4.2.1 . 嗅闻法

对抽穗开花期间的植株或成熟的稻米,可通过嗅闻样品来判别香味的有无及香味的浓淡程度。自然条件下,稻米或植株释放出的香味可能较淡。为了增加香味,将稻米籽粒或稻株营养器官放在密闭玻璃瓶内,加热后嗅其香味 [28]。碱可促进香稻中的2-AP挥发,研究人员将水稻样品放入小玻璃培养皿中,加氢氧化钾溶液处理后闻嗅,用以判别香味的有无及评定香味的等级 [29]。嗅闻法简单易行,常在品种选育和大米选购过程中采用,但由于缺乏客观标准,其分析结果不一定准确可靠,可能错失优良单株及材料。

4.2.2 . 咀嚼法

咀嚼品尝糙米籽粒、市场销售的大米或米饭,以评判有无香味及香味的浓淡程度。遗传育种试验中,常将糙米横切为两半,咀嚼不含胚的那一半,若有香味,则将另一半含胚的糙米培育成香稻植株 [12]。稻米香味受遗传基因的控制,也与一定的环境条件和存储加工因素有关。个人对大米香味的感受能力不尽相同,咀嚼法不一定能判断稻米香味的真实性。由于badh2是隐性基因,咀嚼法和嗅闻法都不能对优良的杂合或显性纯合单株进行判断和选择。

4.3. 分子标记鉴定香味控制基因

水稻的香味主要由badh2控制,利用该位点的优良等位变异进行分子标记辅助香稻资源鉴定、恢复系和不育系选育等已有大量研究(表1) [21] [22] [30] - [48]。约超过80%香米资源的badh2第7外显子有8bp缺失 [22],较多的标记根据该差异进行设计 [21] [30] [32] [34] [35] [39] [40] [42] [44] [45] [48]。badh2第2外显子的7bp的缺失与8bp缺失紧密连锁,也有标记据此设计 [21] [31] [38] [44] [48]。另外一部分标记根据启动子区、内含子区和其他外显子等位置的变异进行设计。这些标记较多的采用普通PCR扩增,结合琼脂糖凝胶电泳或聚丙烯酰胺凝胶电泳进行检测,部分采用荧光标记进行检测。为了增加检测的通量,研究人员也开发了PCR/LDR标记、KASP标记和HRM荧光标记,结合DNA快捷提取技术,该类标记可用于批量快速检测 [31] [35] [36]。

目前,对badh2的检测需要DNA提取,PCR扩增和扩增产物检测,扩增产物检测大多以来依赖琼脂糖凝胶电泳、聚丙烯酰胺凝胶电泳和基于设备的荧光检测,检测效率和通量有待提高。

Table 1. Markers and Application of Fragrance Gene badh2

表1. 香味基因badh2的标记及应用

注:荧光–结合荧光标记或荧光探针进行荧光检测;PAGE-应用聚丙烯酰胺凝胶电泳(Polyacrylamide gel electrophoresis, PAGE)检测;AGAR-应用琼脂凝胶电泳(Agar gel electrophoresis)检测。

5. 未来可能的研究方向

5.1. 低通量即时检测

随着功能基因及优良等位变异的发掘,分子设计育种将成为未来水稻育种发展的必然趋势,其中功能标记在辅助性状选择和纯度鉴定上有决定性的作用 [49] [50]。目前,水稻分子育种与常规育种存在脱节现象,品种选育的持续创新能力不强 [51]。大多数的一线育种科技工作人员主要依靠田间表型和经验实现性状的选择和回交,大量优良基因及等位变异在选育过程中丢失,致使选育效率低。另外,由于远缘杂交材料进行新材料创新常需要较长的时间,若缺乏可靠便捷的辅助鉴别技术,大部分育种工作人员直接选用自己手上的优良骨干亲本与他人的优良材料进行杂交后选育,尤其是不育系的选育,这使得育种材料的整体遗传基础较狭窄,难有突破性的亲本出现。因此,亟待发掘适合一线工作人员操作的低成本功能标记,降低对设备的依赖和增加检测的便捷性,实现即时检测,提高优良单株选择效率。

目前,大量即时检测方法不断涌现,如LAMP (Loop-mediated isothermal amplification)和RPA (Recombinase polymerase amplification)等。LAMP的检测限低,灵敏度高,特异性好,反应时间短,操作便捷,63℃左右恒温扩增30~60分钟后,肉眼即可看到结果,该技术在SARS、禽流感、HIV和2019-nCoV等疾病检测中已广泛使用 [52]。LAMP已被用于鉴定小麦的等位变异Wx-B1 [53]。RPA扩增的速度快,灵敏度高,不需要复杂的样本处理,37℃恒温条件下5~20分钟即可实现扩增和检测,该方法已被应用于病源微生物检测 [54]。

在香米加工和消费过程中,企业和监管部门可用即时检测技术,监管香米的质量,确保企业和消费者利益。

5.2. 高通量检测

随着大量水稻亲本种质资源基因组信息被解析 [55] [56] [57] [58] [59],这为在基因组水平综合选择育种材料提供了参考。参考基因组信息,已开发出700K [60],50K [61],RiceSNP50 [62],44K [63],7K [64] 和6K [65] 等育种芯片,用于指导水稻育种生产。随着测序技术的发展,用芯片捕获目标序列,和用PCR扩增目标序列的扩增子测序分析已被用于指导水稻育种生产 [66] [67]。高通量技术实现了育种家,数据分析,基因型检测,田间性状调查和田间管理等各环节有序分工合作,实现亲本和单株高通量选育及组合测试的规模化开展,极大提高了育种效率。

在香米加工和消费过程中,监管部门也可用该类技术高效监管香米生产和消费,确保大米质量和粮食安全。

基金项目

国家自然科学基金(31960399)、海南热带海洋学院青年专项基金(RHDQN201832)和2016年校级学科带头人及博士科研启动项目(RHDXB201623)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Zhu, Y. (2016) Fifty Years of Hybrid Rice Research in China. Chinese Science Bulletin, 61, 3740-3747.
https://doi.org/10.1360/N972016-01043
[2] 任光俊, 颜龙安, 谢华安. 三系杂交水稻育种研究的回顾与展望[J]. 科学通报, 2016, 61(35): 3748-3760.
[3] 吴佳灏. 基于Hedonic模型的安全认证型大米价格形成机制的研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2014.
[4] Lee, Y.-S., Oh, Y., Kim, T.-H., et al. (2019) Quantitation of 2-acetyl-1-pyrroline in Aseptic-Packaged Cooked Fragrant Rice by HS-SPME/GC-MS. Food Science & Nutrition, 7, 266-272.
https://doi.org/10.1002/fsn3.879
[5] 刘昆. 如此掺假泰国香米岂能香[J]. 广西质量监督导报, 2002(2): 21.
[6] 刘荒. 五常大米掺假乱象[J]. 党建文汇: 上半月, 2015(7): 48.
[7] 蒲晓娟. 大米添“香”引发食品安全隐忧[J]. 农业工程技术(农产品加工业), 2010(8): 54-56.
[8] 小旋. 香米香精公开网卖[J]. 农产品市场周刊, 2010(36): 27.
[9] 分装泰国香米99%是假的[J]. 质量探索, 2009(8): 39.
[10] Deepak, K.V. and Srivastav, P.P. (2016) Extraction Technology for Rice Volatile Aroma Compounds. In: Food Engineering, Apple Academic Press, Bur-lington, 281-328.
[11] 于洋, 成南龙, 普世皇, 等. 香稻品种滇屯502复壮品系稻米挥发性成分分析[J]. 云南农业大学学报(自然科学), 2019, 34(5): 738-744.
[12] 李平, 徐庆国, 毛友纯. 香稻的理论与技术[M]. 长沙: 湖南科学技术出版社, 2011.
[13] Mahattanatawee, K. and Rouseff, R.L. (2014) Comparison of Aroma Active and Sulfur Vol-atiles in Three Fragrant Rice Cultivars Using GC-Olfactometry and GC-PFPD. Food Chemistry, 154, 1-6.
https://doi.org/10.1016/j.foodchem.2013.12.105
[14] 张敏, 苗菁, 苏慧敏, 等. 不同品种稻米的米饭风味分析[J]. 食品科学, 2017, 38(16): 110-114.
[15] 胡培松, 唐绍清, 顾海华, 等. 水稻香味的遗传研究与育种利用[J]. 中国稻米, 2006(6): 1-5.
[16] Deepak, K.V. and Prem, P.S. (2019) Science and Technology of Aroma, Flavor, and Fra-grance in Rice. Apple Academic Press, Inc., Palm Bay.
[17] Wakte, K., Zanan, R., Hinge, V., et al. (2017) Thirty-Three Years of 2-acetyl-1-pyrroline, a Principal Basmati Aroma Compound in Scented Rice (Oryza sativa L.): A Status Review. Journal of the Science of Food and Agriculture, 97, 384-395.
https://doi.org/10.1002/jsfa.7875
[18] Ahn, S.N., Bollich, C.N. and Tanksley, S.D. (1992) RFLP Tagging of a Gene for Aroma in Rice. Theoretical and Applied Genetics, 84, 825-828.
https://doi.org/10.1007/BF00227391
[19] Chen, S., Yang, Y., Shi, W., et al. (2008) Badh2, Encoding Betaine Aldehyde Dehydrogenase, Inhibits the Biosynthesis of 2-acetyl-1-pyrroline, a Major Component in Rice Fra-grance. The Plant Cell, 20, 1850-1861.
https://doi.org/10.1105/tpc.108.058917
[20] Bradbury, L.M.T., Fitzgerald, T.L., Henry, R.J., et al. (2005) The Gene for Fragrance in Rice. Plant Biotechnology Journal, 3, 363-370.
https://doi.org/10.1111/j.1467-7652.2005.00131.x
[21] Shi, W., Yang, Y., Chen, S., et al. (2008) Discovery of a New Fragrance Allele and the Development of Functional Markers for the Breeding of Fragrant Rice Varieties. Molecu-lar Breeding, 22, 185-192.
https://doi.org/10.1007/s11032-008-9165-7
[22] Shao, G., Tang, S., Chen, M., et al. (2013) Haplotype Variation at Badh2, the Gene Determining Fragrance in Rice. Genomics, 101, 157-162.
https://doi.org/10.1016/j.ygeno.2012.11.010
[23] Nadaf, A.B., Krishnan, S. and Wakte, K.V. (2006) Histochemical and Biochemical Analysis of Major Aroma Compound (2-acetyl-1-pyrroline) in Basmati and Other Scented Rice (Oryza sativa L.). Current Science, 91, 1533-1536.
[24] 应兴华, 徐霞, 陈铭学, 等. 气相色谱-质谱技术分析香稻特征化合物2-乙酰基吡咯啉[J]. 色谱, 2010, 28(8): 782-785.
[25] Hien, N.L., Yoshihashi, T., Sarhadi, W.A., et al. (2006) Sensory Test for Aroma and Quantitative Analysis of 2-acetyl-1-pyrroline in Asian Aromatic Rice Varieties. Plant Pro-duction Science, 9, 294-297.
https://doi.org/10.1626/pps.9.294
[26] 孙谦, 刘伟, 范军, 等. 固相微萃取-气相色谱-质谱联用快速鉴别香米真伪[J]. 食品安全质量检测学报, 2016, 7(3): 1051-1055.
[27] Hopfer, H., Jodari, F., Negre-Zakharov, F., et al. (2016) HS-SPME-GC-MS/MS Method for the Rapid and Sensitive Quantitation of 2-Acetyl-1-pyrroline in Single Rice Kernels. Journal of Agricultural and Food Chemistry, 64, 4114-4120.
https://doi.org/10.1021/acs.jafc.6b00703
[28] Nagaraju, M., Chaudhary, D. and Mj, B.R. (1975) A Simple Tech-nique to Identify Scent in Rice and Inheritance Pattern of Scent. Current Science, 44, 599.
[29] Sood, B.C. and Siddiq, E.A. (1978) A Rapid Technique for Scent Determination in Rice. Indian Journal of Genetics and Plant Breeding, 38, 268-275.
[30] Vanavichit, A. (2007) Molecular Diversity and Evolution of Aromatic Rice in Thailand. The Conservation and Utilization of Tropical/Subtropical Plant Genetic Resources, 128, 131-134.
[31] 储黄伟, 程灿, 涂荣剑, 等. 基于PCR/LDR技术的水稻香味等位基因Badh2-E2功能性分子标记[J]. 分子植物育种, 2020, 18(e22): 1-6.
[32] Bradbury, L.M.T., Henry, R.J., Jin, Q., et al. (2005) A Perfect Marker for Fragrance Genotyping in Rice. Mo-lecular Breeding, 16, 279-283.
https://doi.org/10.1007/s11032-005-0776-y
[33] Dissanayaka, S., Kottearachchi, N.S., Weerasena, J., et al. (2014) Development of a CAPS Marker for the badh2.7 Allele in Sri Lankan Fragrant Rice (Oryza sativa). Plant Breeding, 133, 560-565.
https://doi.org/10.1111/pbr.12201
[34] Sakthivel, K., Shobha Rani, N., Pandey, M.K., et al. (2009) Development of a Simple Functional Marker for Fragrance in Rice and Its Validation in Indian Basmati and Non-Basmati Fragrant Rice Varieties. Molecular Breeding, 24, 185-190.
https://doi.org/10.1007/s11032-009-9283-x
[35] Ganopoulos, I., Argiriou, A. and Tsaftaris, A. (2011) Adultera-tions in Basmati Rice Detected Quantitatively by Combined Use of Microsatellite and Fragrance Typing with High Reso-lution Melting (HRM) Analysis. Food Chemistry, 129, 652-659.
https://doi.org/10.1016/j.foodchem.2011.04.109
[36] Yang, G., Chen, S., Chen, L., et al. (2019) Development and Utilization of Functional KASP Markers to Improve Rice Eating and Cooking Quality through MAS Breeding. Euphytica, 215, 1-12.
https://doi.org/10.1007/s10681-019-2392-7
[37] Shi, Y., Zhao, G., Xu, X., et al. (2014) Discovery of a New Fragrance Allele and Development of Functional Markers for Identifying Diverse Fragrant Genotypes in Rice. Mo-lecular Breeding, 33, 701-708.
https://doi.org/10.1007/s11032-013-9986-x
[38] 许言福, 黄菊, 王英存, 等. 两种筛选水稻badh2-E2类型香味基因分子标记的建立 [J]. 分子植物育种, 2015, 13(11): 2441-2445.
[39] 任三娟, 周屹峰, 孙出, 等. 利用香味基因(fgr)的功能分子标记1F/1R高效选育籼稻香型不育系[J]. 农业生物技术学报, 2011, 19(4): 589-596.
[40] 王天生, 陈惠清, 谢旺有, 等. 利用功能性分子标记辅助选育香型杂交水稻不育系[J]. 分子植物育种, 2020(16): 1-10.
[41] Shao, G.N., Tang, A., Tang, S.Q., et al. (2011) A New Deletion Mutation of Fragrant Gene and the Devel-opment of Three Molecular Markers for Fragrance in Rice. Plant Breeding, 130, 172-176.
https://doi.org/10.1111/j.1439-0523.2009.01764.x
[42] 曾跃辉, 韦新宇, 黄建鸿, 等. 泰国小香占香味基因的鉴定和功能分子标记的开发[J]. 分子植物育种, 2020: 1-13.
[43] He, Q. and Park, Y.-J. (2015) Discovery of a Nov-el Fragrant Allele and Development of Functional Markers for Fragrance in Rice. Molecular Breeding, 35, 217.
https://doi.org/10.1007/s11032-015-0412-4
[44] Xu, X., Zhao, G. and Li, J. (2011) Development of Molecular Markers Used to Identify Two Types of Fragrant Rice and Analysis of Mutation Sites of BADH2 Gene in 24 Varieties of Fragrant Rice. Plant Diversity and Resources, 33, 667-673.
[45] Amarawathi, Y., Singh, R., Singh, A.K., et al. (2008) Mapping of Quantitative Trait Loci for Basmati Quality Traits in Rice (Oryza sativa L.). Molecular Breeding, 21, 49-65.
https://doi.org/10.1007/s11032-007-9108-8
[46] 黄娟, 刘开强, 邓国富, 等. 水稻香味基因荧光分子标记开发及育种应用[J]. 植物生理学报, 2020, 56(5): 1015-22.
[47] Khandagale, K.S., Zanan, R.L., Mathure, S.V., et al. (2017) Haplotype Variation of Badh2 Gene, Unearthing of a New Fragrance Allele and Marker Development for Non-Basmati Fragrant Rice “Velchi” (Oryza sativa L.). Agri-Gene, 6, 40-46.
https://doi.org/10.1016/j.aggene.2017.09.003
[48] 姜达, 卢小勇, 王延春, 等. 27种香稻品种badh2突变位点序列的分析[J]. 分子植物育种, 2015, 13(2): 276-280.
[49] 周正平, 占小登, 沈希宏, 等. 我国水稻育种发展现状、展望及对策[J]. 中国稻米, 2019, 25(5): 1-4.
[50] 郭韬, 余泓, 邱杰, 等. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学:生命科学, 2019, 49(10): 1185-1212.
[51] 雷东阳, 林勇, 陈立云. 水稻两用核不育系的研究现状与发展策略[J]. 湖南农业大学学报(自然科学版), 2019, 45(3): 225-230.
[52] Wong, Y.P., Othman, S., Lau, Y.L., et al. (2018) Loop-Mediated Isothermal Am-plification (LAMP): A Versatile Technique for Detection of Micro-Organisms. Journal of Applied Microbiology, 124, 626-643.
https://doi.org/10.1111/jam.13647
[53] Fukuta, S., Tsuji, T., Suzuki, R., et al. (2015) Development of a Loop-Mediated Isothermal Amplification Marker for Genotyping of the Wheat Wx-B1 Allele. Molecular Breeding, 35, 42.
https://doi.org/10.1007/s11032-015-0191-y
[54] Lobato, I.M. and O’sullivan, C.K. (2018) Recombinase Polymer-ase Amplification: Basics, Applications and Recent Advances. Trac Trends in Analytical Chemistry, 98, 19-35.
https://doi.org/10.1016/j.trac.2017.10.015
[55] Li, X., Chen, Z., Zhang, G., et al. (2020) Analysis of Genetic Ar-chitecture and Favorable Allele Usage of Agronomic Traits in a Large Collection of Chinese Rice Accessions. Science China Life Sciences, 63, 1688-1702.
[56] Huang, X., Kurata, N., Wei, X., et al. (2012) A Map of Rice Genome Varia-tion Reveals the Origin of Cultivated Rice. Nature, 490, 497-501.
https://doi.org/10.1038/nature11532
[57] Wang, W., Mauleon, R., Hu, Z., et al. (2018) Genomic Variation in 3,010 Diverse Accessions of Asian Cultivated Rice. Nature, 557, 43-49.
https://doi.org/10.1038/s41586-018-0063-9
[58] Lv, Q., Li, W., Sun, Z., et al. (2020) Resequencing of 1,143 Indica Rice Accessions Reveals Important Genetic Variations and Different Heterosis Patterns. Nature Communi-cations, 11, Article No. 4778.
https://doi.org/10.1038/s41467-020-18608-0
[59] Zhou, Y., Chebotarov, D., Kudrna, D., et al. (2020) A Platinum Standard Pan-Genome Resource That Represents the Population Structure of Asian Rice. Scientific Data, 7, 1-11.
https://doi.org/10.1038/s41597-020-0438-2
[60] Mccouch, S.R., Wright, M.H., Tung, C.W., et al. (2016) Open Access Resources for Genome-Wide Association Mapping in Rice. Nature Communications, 7, 1-13.
https://doi.org/10.1038/ncomms10532
[61] Singh, N., Jayaswal, P.K., Panda, K., et al. (2015) Single-Copy Gene Based 50 K SNP Chip for Genetic Studies and Molecular Breeding in Rice. Scientific Reports, 5, Article No. 11600.
https://doi.org/10.1038/srep11600
[62] Chen, H., Xie, W., He, H., et al. (2014) A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Molecular Plant, 7, 541-553.
https://doi.org/10.1093/mp/sst135
[63] Zhao, K., Tung, C.W., Eizenga, G.C., et al. (2011) Genome-Wide Associa-tion Mapping Reveals a Rich Genetic Architecture of Complex Traits in Oryza sativa. Nature Communications, 2, Article No. 467.
https://doi.org/10.1038/ncomms1467
[64] Morales, K.Y., Singh, N., Perez, F.A., et al. (2020) An Improved 7K SNP Array, the C7AIR, Provides a Wealth of Validated SNP Markers for Rice Breeding and Genetics Studies. PLoS ONE, 15, e0232479.
https://doi.org/10.1371/journal.pone.0232479
[65] Thomson, M.J., Singh, N., Dwiyanti, M.S., et al. (2017) Large-Scale Deployment of a Rice 6 K SNP Array for Genetics and Breeding Applications. Rice (New York, NY), 10, 40.
https://doi.org/10.1186/s12284-017-0181-2
[66] Li, T., Fang, Z., Peng, H., et al. (2019) Application of High-Throughput Amplicon Sequencing-Based SSR Genotyping in Genetic Background Screening. BMC Genomics, 20, Article No. 444.
https://doi.org/10.1186/s12864-019-5800-4
[67] Arbelaez, J.D., Dwiyanti, M.S., Tandayu, E., et al. (2019) 1k-RiCA (1K-Rice Custom Amplicon) a Novel Genotyping Amplicon-Based SNP Assay for Genetics and Breeding Applications in Rice. Rice (New York, NY), 12, 1-15.
https://doi.org/10.1186/s12284-019-0311-0
[68] Zhu, Y. (2016) Fifty Years of Hybrid Rice Research in China. Chinese Science Bulletin, 61, 3740-3747.
https://doi.org/10.1360/N972016-01043
[69] 任光俊, 颜龙安, 谢华安. 三系杂交水稻育种研究的回顾与展望[J]. 科学通报, 2016, 61(35): 3748-3760.
[70] 吴佳灏. 基于Hedonic模型的安全认证型大米价格形成机制的研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2014.
[71] Lee, Y.-S., Oh, Y., Kim, T.-H., et al. (2019) Quantitation of 2-acetyl-1-pyrroline in Aseptic-Packaged Cooked Fragrant Rice by HS-SPME/GC-MS. Food Science & Nutrition, 7, 266-272.
https://doi.org/10.1002/fsn3.879
[72] 刘昆. 如此掺假泰国香米岂能香[J]. 广西质量监督导报, 2002(2): 21.
[73] 刘荒. 五常大米掺假乱象[J]. 党建文汇: 上半月, 2015(7): 48.
[74] 蒲晓娟. 大米添“香”引发食品安全隐忧[J]. 农业工程技术(农产品加工业), 2010(8): 54-56.
[75] 小旋. 香米香精公开网卖[J]. 农产品市场周刊, 2010(36): 27.
[76] 分装泰国香米99%是假的[J]. 质量探索, 2009(8): 39.
[77] Deepak, K.V. and Srivastav, P.P. (2016) Extraction Technology for Rice Volatile Aroma Compounds. In: Food Engineering, Apple Academic Press, Bur-lington, 281-328.
[78] 于洋, 成南龙, 普世皇, 等. 香稻品种滇屯502复壮品系稻米挥发性成分分析[J]. 云南农业大学学报(自然科学), 2019, 34(5): 738-744.
[79] 李平, 徐庆国, 毛友纯. 香稻的理论与技术[M]. 长沙: 湖南科学技术出版社, 2011.
[80] Mahattanatawee, K. and Rouseff, R.L. (2014) Comparison of Aroma Active and Sulfur Vol-atiles in Three Fragrant Rice Cultivars Using GC-Olfactometry and GC-PFPD. Food Chemistry, 154, 1-6.
https://doi.org/10.1016/j.foodchem.2013.12.105
[81] 张敏, 苗菁, 苏慧敏, 等. 不同品种稻米的米饭风味分析[J]. 食品科学, 2017, 38(16): 110-114.
[82] 胡培松, 唐绍清, 顾海华, 等. 水稻香味的遗传研究与育种利用[J]. 中国稻米, 2006(6): 1-5.
[83] Deepak, K.V. and Prem, P.S. (2019) Science and Technology of Aroma, Flavor, and Fra-grance in Rice. Apple Academic Press, Inc., Palm Bay.
[84] Wakte, K., Zanan, R., Hinge, V., et al. (2017) Thirty-Three Years of 2-acetyl-1-pyrroline, a Principal Basmati Aroma Compound in Scented Rice (Oryza sativa L.): A Status Review. Journal of the Science of Food and Agriculture, 97, 384-395.
https://doi.org/10.1002/jsfa.7875
[85] Ahn, S.N., Bollich, C.N. and Tanksley, S.D. (1992) RFLP Tagging of a Gene for Aroma in Rice. Theoretical and Applied Genetics, 84, 825-828.
https://doi.org/10.1007/BF00227391
[86] Chen, S., Yang, Y., Shi, W., et al. (2008) Badh2, Encoding Betaine Aldehyde Dehydrogenase, Inhibits the Biosynthesis of 2-acetyl-1-pyrroline, a Major Component in Rice Fra-grance. The Plant Cell, 20, 1850-1861.
https://doi.org/10.1105/tpc.108.058917
[87] Bradbury, L.M.T., Fitzgerald, T.L., Henry, R.J., et al. (2005) The Gene for Fragrance in Rice. Plant Biotechnology Journal, 3, 363-370.
https://doi.org/10.1111/j.1467-7652.2005.00131.x
[88] Shi, W., Yang, Y., Chen, S., et al. (2008) Discovery of a New Fragrance Allele and the Development of Functional Markers for the Breeding of Fragrant Rice Varieties. Molecu-lar Breeding, 22, 185-192.
https://doi.org/10.1007/s11032-008-9165-7
[89] Shao, G., Tang, S., Chen, M., et al. (2013) Haplotype Variation at Badh2, the Gene Determining Fragrance in Rice. Genomics, 101, 157-162.
https://doi.org/10.1016/j.ygeno.2012.11.010
[90] Nadaf, A.B., Krishnan, S. and Wakte, K.V. (2006) Histochemical and Biochemical Analysis of Major Aroma Compound (2-acetyl-1-pyrroline) in Basmati and Other Scented Rice (Oryza sativa L.). Current Science, 91, 1533-1536.
[91] 应兴华, 徐霞, 陈铭学, 等. 气相色谱-质谱技术分析香稻特征化合物2-乙酰基吡咯啉[J]. 色谱, 2010, 28(8): 782-785.
[92] Hien, N.L., Yoshihashi, T., Sarhadi, W.A., et al. (2006) Sensory Test for Aroma and Quantitative Analysis of 2-acetyl-1-pyrroline in Asian Aromatic Rice Varieties. Plant Pro-duction Science, 9, 294-297.
https://doi.org/10.1626/pps.9.294
[93] 孙谦, 刘伟, 范军, 等. 固相微萃取-气相色谱-质谱联用快速鉴别香米真伪[J]. 食品安全质量检测学报, 2016, 7(3): 1051-1055.
[94] Hopfer, H., Jodari, F., Negre-Zakharov, F., et al. (2016) HS-SPME-GC-MS/MS Method for the Rapid and Sensitive Quantitation of 2-Acetyl-1-pyrroline in Single Rice Kernels. Journal of Agricultural and Food Chemistry, 64, 4114-4120.
https://doi.org/10.1021/acs.jafc.6b00703
[95] Nagaraju, M., Chaudhary, D. and Mj, B.R. (1975) A Simple Tech-nique to Identify Scent in Rice and Inheritance Pattern of Scent. Current Science, 44, 599.
[96] Sood, B.C. and Siddiq, E.A. (1978) A Rapid Technique for Scent Determination in Rice. Indian Journal of Genetics and Plant Breeding, 38, 268-275.
[97] Vanavichit, A. (2007) Molecular Diversity and Evolution of Aromatic Rice in Thailand. The Conservation and Utilization of Tropical/Subtropical Plant Genetic Resources, 128, 131-134.
[98] 储黄伟, 程灿, 涂荣剑, 等. 基于PCR/LDR技术的水稻香味等位基因Badh2-E2功能性分子标记[J]. 分子植物育种, 2020, 18(e22): 1-6.
[99] Bradbury, L.M.T., Henry, R.J., Jin, Q., et al. (2005) A Perfect Marker for Fragrance Genotyping in Rice. Mo-lecular Breeding, 16, 279-283.
https://doi.org/10.1007/s11032-005-0776-y
[100] Dissanayaka, S., Kottearachchi, N.S., Weerasena, J., et al. (2014) Development of a CAPS Marker for the badh2.7 Allele in Sri Lankan Fragrant Rice (Oryza sativa). Plant Breeding, 133, 560-565.
https://doi.org/10.1111/pbr.12201
[101] Sakthivel, K., Shobha Rani, N., Pandey, M.K., et al. (2009) Development of a Simple Functional Marker for Fragrance in Rice and Its Validation in Indian Basmati and Non-Basmati Fragrant Rice Varieties. Molecular Breeding, 24, 185-190.
https://doi.org/10.1007/s11032-009-9283-x
[102] Ganopoulos, I., Argiriou, A. and Tsaftaris, A. (2011) Adultera-tions in Basmati Rice Detected Quantitatively by Combined Use of Microsatellite and Fragrance Typing with High Reso-lution Melting (HRM) Analysis. Food Chemistry, 129, 652-659.
https://doi.org/10.1016/j.foodchem.2011.04.109
[103] Yang, G., Chen, S., Chen, L., et al. (2019) Development and Utilization of Functional KASP Markers to Improve Rice Eating and Cooking Quality through MAS Breeding. Euphytica, 215, 1-12.
https://doi.org/10.1007/s10681-019-2392-7
[104] Shi, Y., Zhao, G., Xu, X., et al. (2014) Discovery of a New Fragrance Allele and Development of Functional Markers for Identifying Diverse Fragrant Genotypes in Rice. Mo-lecular Breeding, 33, 701-708.
https://doi.org/10.1007/s11032-013-9986-x
[105] 许言福, 黄菊, 王英存, 等. 两种筛选水稻badh2-E2类型香味基因分子标记的建立 [J]. 分子植物育种, 2015, 13(11): 2441-2445.
[106] 任三娟, 周屹峰, 孙出, 等. 利用香味基因(fgr)的功能分子标记1F/1R高效选育籼稻香型不育系[J]. 农业生物技术学报, 2011, 19(4): 589-596.
[107] 王天生, 陈惠清, 谢旺有, 等. 利用功能性分子标记辅助选育香型杂交水稻不育系[J]. 分子植物育种, 2020(16): 1-10.
[108] Shao, G.N., Tang, A., Tang, S.Q., et al. (2011) A New Deletion Mutation of Fragrant Gene and the Devel-opment of Three Molecular Markers for Fragrance in Rice. Plant Breeding, 130, 172-176.
https://doi.org/10.1111/j.1439-0523.2009.01764.x
[109] 曾跃辉, 韦新宇, 黄建鸿, 等. 泰国小香占香味基因的鉴定和功能分子标记的开发[J]. 分子植物育种, 2020: 1-13.
[110] He, Q. and Park, Y.-J. (2015) Discovery of a Nov-el Fragrant Allele and Development of Functional Markers for Fragrance in Rice. Molecular Breeding, 35, 217.
https://doi.org/10.1007/s11032-015-0412-4
[111] Xu, X., Zhao, G. and Li, J. (2011) Development of Molecular Markers Used to Identify Two Types of Fragrant Rice and Analysis of Mutation Sites of BADH2 Gene in 24 Varieties of Fragrant Rice. Plant Diversity and Resources, 33, 667-673.
[112] Amarawathi, Y., Singh, R., Singh, A.K., et al. (2008) Mapping of Quantitative Trait Loci for Basmati Quality Traits in Rice (Oryza sativa L.). Molecular Breeding, 21, 49-65.
https://doi.org/10.1007/s11032-007-9108-8
[113] 黄娟, 刘开强, 邓国富, 等. 水稻香味基因荧光分子标记开发及育种应用[J]. 植物生理学报, 2020, 56(5): 1015-22.
[114] Khandagale, K.S., Zanan, R.L., Mathure, S.V., et al. (2017) Haplotype Variation of Badh2 Gene, Unearthing of a New Fragrance Allele and Marker Development for Non-Basmati Fragrant Rice “Velchi” (Oryza sativa L.). Agri-Gene, 6, 40-46.
https://doi.org/10.1016/j.aggene.2017.09.003
[115] 姜达, 卢小勇, 王延春, 等. 27种香稻品种badh2突变位点序列的分析[J]. 分子植物育种, 2015, 13(2): 276-280.
[116] 周正平, 占小登, 沈希宏, 等. 我国水稻育种发展现状、展望及对策[J]. 中国稻米, 2019, 25(5): 1-4.
[117] 郭韬, 余泓, 邱杰, 等. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学:生命科学, 2019, 49(10): 1185-1212.
[118] 雷东阳, 林勇, 陈立云. 水稻两用核不育系的研究现状与发展策略[J]. 湖南农业大学学报(自然科学版), 2019, 45(3): 225-230.
[119] Wong, Y.P., Othman, S., Lau, Y.L., et al. (2018) Loop-Mediated Isothermal Am-plification (LAMP): A Versatile Technique for Detection of Micro-Organisms. Journal of Applied Microbiology, 124, 626-643.
https://doi.org/10.1111/jam.13647
[120] Fukuta, S., Tsuji, T., Suzuki, R., et al. (2015) Development of a Loop-Mediated Isothermal Amplification Marker for Genotyping of the Wheat Wx-B1 Allele. Molecular Breeding, 35, 42.
https://doi.org/10.1007/s11032-015-0191-y
[121] Lobato, I.M. and O’sullivan, C.K. (2018) Recombinase Polymer-ase Amplification: Basics, Applications and Recent Advances. Trac Trends in Analytical Chemistry, 98, 19-35.
https://doi.org/10.1016/j.trac.2017.10.015
[122] Li, X., Chen, Z., Zhang, G., et al. (2020) Analysis of Genetic Ar-chitecture and Favorable Allele Usage of Agronomic Traits in a Large Collection of Chinese Rice Accessions. Science China Life Sciences, 63, 1688-1702.
[123] Huang, X., Kurata, N., Wei, X., et al. (2012) A Map of Rice Genome Varia-tion Reveals the Origin of Cultivated Rice. Nature, 490, 497-501.
https://doi.org/10.1038/nature11532
[124] Wang, W., Mauleon, R., Hu, Z., et al. (2018) Genomic Variation in 3,010 Diverse Accessions of Asian Cultivated Rice. Nature, 557, 43-49.
https://doi.org/10.1038/s41586-018-0063-9
[125] Lv, Q., Li, W., Sun, Z., et al. (2020) Resequencing of 1,143 Indica Rice Accessions Reveals Important Genetic Variations and Different Heterosis Patterns. Nature Communi-cations, 11, Article No. 4778.
https://doi.org/10.1038/s41467-020-18608-0
[126] Zhou, Y., Chebotarov, D., Kudrna, D., et al. (2020) A Platinum Standard Pan-Genome Resource That Represents the Population Structure of Asian Rice. Scientific Data, 7, 1-11.
https://doi.org/10.1038/s41597-020-0438-2
[127] Mccouch, S.R., Wright, M.H., Tung, C.W., et al. (2016) Open Access Resources for Genome-Wide Association Mapping in Rice. Nature Communications, 7, 1-13.
https://doi.org/10.1038/ncomms10532
[128] Singh, N., Jayaswal, P.K., Panda, K., et al. (2015) Single-Copy Gene Based 50 K SNP Chip for Genetic Studies and Molecular Breeding in Rice. Scientific Reports, 5, Article No. 11600.
https://doi.org/10.1038/srep11600
[129] Chen, H., Xie, W., He, H., et al. (2014) A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Molecular Plant, 7, 541-553.
https://doi.org/10.1093/mp/sst135
[130] Zhao, K., Tung, C.W., Eizenga, G.C., et al. (2011) Genome-Wide Associa-tion Mapping Reveals a Rich Genetic Architecture of Complex Traits in Oryza sativa. Nature Communications, 2, Article No. 467.
https://doi.org/10.1038/ncomms1467
[131] Morales, K.Y., Singh, N., Perez, F.A., et al. (2020) An Improved 7K SNP Array, the C7AIR, Provides a Wealth of Validated SNP Markers for Rice Breeding and Genetics Studies. PLoS ONE, 15, e0232479.
https://doi.org/10.1371/journal.pone.0232479
[132] Thomson, M.J., Singh, N., Dwiyanti, M.S., et al. (2017) Large-Scale Deployment of a Rice 6 K SNP Array for Genetics and Breeding Applications. Rice (New York, NY), 10, 40.
https://doi.org/10.1186/s12284-017-0181-2
[133] Li, T., Fang, Z., Peng, H., et al. (2019) Application of High-Throughput Amplicon Sequencing-Based SSR Genotyping in Genetic Background Screening. BMC Genomics, 20, Article No. 444.
https://doi.org/10.1186/s12864-019-5800-4
[134] Arbelaez, J.D., Dwiyanti, M.S., Tandayu, E., et al. (2019) 1k-RiCA (1K-Rice Custom Amplicon) a Novel Genotyping Amplicon-Based SNP Assay for Genetics and Breeding Applications in Rice. Rice (New York, NY), 12, 1-15.
https://doi.org/10.1186/s12284-019-0311-0