一类具有恐怖因子和羊群效应的捕食者–食饵模型的动力学行为
Dynamic Behavior of a Predator-Prey Model with Fear Factor and Herding Effect
DOI: 10.12677/AAM.2020.911238, PDF, HTML, XML, 下载: 708  浏览: 987 
作者: 吴耀冲, 温洁嫦:广东工业大学应用数学学院,广东 广州
关键词: 捕食者–食饵模型恐怖因子Hopf分支平衡点Predator-Prey Model Fear Factor Hopf Bifurcation Equilibrium Point
摘要: 在生物种群中,由于食饵会对天敌的捕食产生恐惧,所以他们会降低自身出生率来抵抗捕食者的捕抓,针对这一情况研究了一类具有恐怖因子和羊群效应的捕食者–食饵模型,首先证明了解的一致有界性;然后由Routh-Hurwitz准则讨论了系统平衡点的存在性和存在时平衡点的类型,以及稳定性;并且根据Poincare’-Andronov-Hopf分支定理得到了系统产生Hopf分支的条件。最后,通过Matlab软件仿生所得到的定理,并得出了只要选取恰当的参数便可使系统中的两类种群一直稳定存在下去的结论。
Abstract: In the biological population, the prey will be afraid of the predator, so they will reduce their own natality to prevent being caught. Considering this situation, a predator-prey model with fear factor and herd effect is studied. Firstly, we discuss uniform boundedness of this model. Then Routh-Hurwitz criterion is used to discuss the existence of the equilibrium point of the system, the type of the equilibrium point and its stability. Moreover, according to the Poincare’-Andronov-Hopf branch theorem, conditions for the generation of Hopf branch were obtained. Finally, the theoretical results are verified by numerical simulation, and a conclusion is drawn that the predator and the prey in the system can be kept stable as long as appropriate parameters are chosen.
文章引用:吴耀冲, 温洁嫦. 一类具有恐怖因子和羊群效应的捕食者–食饵模型的动力学行为[J]. 应用数学进展, 2020, 9(11): 2053-2062. https://doi.org/10.12677/AAM.2020.911238

参考文献

[1] Bera, S.P., Maiti, A. and Samanta, G. (2016) Stochastic Analysis of a Prey-Predator Model with Herd Behaviour of Prey. Nonlinear Analysis: Modelling and Control, 21, 345-361.
https://doi.org/10.15388/NA.2016.3.4
[2] 李玉叶, 石惠文, 李旭超. 具有时滞的食饵–捕食者模型Hopf分岔分析[J]. 赤峰学院学报(自然版), 2018, 34(3): 1-4.
[3] 邓田. 一类生物动力系统的稳定性与Hopf分岔研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2016.
[4] 王新秀, 窦霁虹, 彭煜. 一类具有时滞的捕食–食饵系统发生Hopf分支的条件[J]. 西北大学学报(自然科学版), 2010, 40(6): 957-960.
[5] 邹桂华, 刘宣亮. 一类具有常数收获率的捕食者–食饵模型的分支分析[J]. 动力系统与控制, 2019, 8(3): 181-190.
[6] 吴凡, 焦玉娟. 一类带有线性收获率的捕食者–食饵模型的稳定性分析[J]. 湖北民族学院学报(自然科学版), 2019, 37(3): 282-286.
[7] Zanette, L.Y., White, A.F., Allen, M.C. and Clinchy, M. (2011) Perceived Predation Risk Reduces the Number of Offspring Songbirds Produce per Year. Science, 334, 1398-1401.
https://doi.org/10.1126/science.1210908
[8] Sasmal, S.K. (2018) Population Dynamics with Multiple Allee Effects Induced by Fear Factors—A Mathematical Study on Prey-Predator Interactions. Applied Mathematical Modelling, 64, 1-14.
https://doi.org/10.1016/j.apm.2018.07.021
[9] Stoks, R., Govaert, L., Pauwels, K., et al. (2016) Resurrecting Complexity: The Interplay of Plasticity and Rapid Evolution in the Multiple Trait Response to Strong Changes in Predation Pressure in the Water Flea Daphnia Magna. Ecology Letters, 19, 180-190.
https://doi.org/10.1111/ele.12551
[10] Trussell, G.C., Ewanchuk, P.J. and Matassa, C.M. (2006) The Fear of Being Eaten Reduces Energy Transfer in a Simple Food Chain. Ecology, 87, 2979-2984.
https://doi.org/10.1890/0012-9658(2006)87[2979:TFOBER]2.0.CO;2
[11] Fraker, M.E. (2009) Predation Risk Assessment by Green Frog (Rana clamitans) Tadpoles through Chemical Cues Produced by Multiple Prey. Behavioral Ecology & Sociobiology, 63, 1397-1402.
https://doi.org/10.1007/s00265-009-0822-6
[12] McCauley, S.J., Rowe, L. and Fortin, M.-J. (2011) The Deadly Effects of “Nonlethal” Predators. Ecology, 92, No. 11.
https://doi.org/10.1890/11-0455.1
[13] Preisser, E.L. (2010) The Physiology of Predator Stress in Free-Ranging Prey. Journal of Animal Ecology, 78, 1103-1105.
https://doi.org/10.1111/j.1365-2656.2009.01602.x
[14] Zhu, Z., Wu, R., Lai, L., et al. (2020) The Influence of Fear Effect to the Lotka-Volterra Predator-Prey System with Predator Has Other Food Resource. Advances in Difference Equations, 2020, Article No. 237.
https://doi.org/10.1186/s13662-020-02612-1
[15] Vesely, L., Boukal, D.S., Buřič, M., et al. (2017) Effects of Prey Density, Temperature and Predator Diversity on Nonconsumptive Predator-Driven Mortality in a Freshwater Food Web. Scientific Reports, 7, Article No. 18075.
https://doi.org/10.1038/s41598-017-17998-4
[16] Mukherjee, D. (2020) Role of Fear in Predator-Prey System with Intraspecific Competition. Mathematics and Computers in Simulation, 177, 263-275.
https://doi.org/10.1016/j.matcom.2020.04.025
[17] Ajrald, V., Pittavino, M. and Venturino, E. (2011) Modeling Herd Behavior in Population Systems. Nonlinear Analysis: Real World Applications, 12, 2319-2338.
https://doi.org/10.1016/j.nonrwa.2011.02.002
[18] 马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2001.
[19] Kuznetsov, Y.A. (2004) Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, 288, 715-730.
https://doi.org/10.1007/978-1-4757-3978-7