川中高石梯地区龙王庙组深层白云岩孔隙类型、成因及演化
Porosity Types, Origin and Evolution of Deep-Dolostone of Lower Cambrian Longwangmiao Formation in the Gaoshiti Area in Central Part of Sichuan Basin, SW China
DOI: 10.12677/AG.2020.1011106, PDF, HTML, XML, 下载: 531  浏览: 754  国家自然科学基金支持
作者: 何溥为, 杨 航, 孙启蒙:中国石油西南油气田分公司,四川 成都;屈海洲*:油气藏地质及开发工程国家重点实验室,四川 成都;西南石油大学地球科学与技术学院,四川 成都;张兴宇, 宁科科, 李泯星, 曾 浩, 何云恒, 颜赞旭, 郭玉凤:西南石油大学地球科学与技术学院,四川 成都
关键词: 孔隙演化孔隙成因孔隙类型龙王庙组川中高石梯地区Porosity Evolution Porosity Origin Porosity Types Longwangmiao Formation Gaoshiti Area in Central Part of Sichuan Basin
摘要: 川中高石梯地区寒武系龙王庙组是四川盆地天然气勘探生产的重要层位。根据岩心、薄片等资料,对高石梯地区龙王庙组深层白云岩孔隙类型、成因以及其演化进行了研究。龙王庙组白云岩宏观储集空间类型主要有溶蚀孔洞、裂缝,微观储集空间主要有原生的晶间孔、次生的粒间溶孔、晶间溶孔、粒内溶孔、铸模孔、微裂缝等。龙王庙组主要成岩作用经历了同生成岩阶段的胶结作用、白云石化作用、大气淡水溶蚀作用,初次埋藏阶段的压实作用、压溶作用、溶蚀作用、白云石胶结作用,表生成岩阶段的顺层岩溶作用,二次埋藏阶段的胶结作用、构造破裂作用、溶蚀作用、热液作用等。其中,控制有效孔隙的关键因素是沉积微地貌与同生成岩阶段的白云石化、大气水溶蚀作用的匹配关系,岩溶作用及埋藏期的溶蚀–热液作用等控制作用次之。
Abstract: The Cambrian Longwangmiao Formation in Gaoshiti area, central Sichuan Basin, is an important horizon for oil and gas exploration and research. According to the cores, thin-sections and logging data, researches have been done in terms of the deep dolomitic pore types, formation mechanism and evolution. The main macroscopic pore type in Longwangmiao Formation can be divided into dissolved vug and fissures. The microscopic pore types can be divided into primary intercrystalline pores, secondary intracrystalline dissolved pores, intergranular dissolved pores, intercrystalline dissolved pores and microfissures. In the syndiagenetic stage, the diagenesis underwent cementation, dolomitization, atmospheric freshwater dissolution. In the primary burial stage, it underwent compaction, pressure solution, dissolution and dolomitic cementation. In the supergene stage, it underwent parallel karstification, secondary burial cementation, tectonic fracturing, dissolution and hydrothermalism. Among these digenesis, the critical factor controlling the effective pores is the matching relation between sedimentary microtopography and syndiagenetic dolomitization and atmospheric freshwater dissolution, followed by karstification and dissolution-hydrothermalism of the burial period.
文章引用:何溥为, 屈海洲, 杨航, 孙启蒙, 张兴宇, 宁科科, 李泯星, 曾浩, 何云恒, 颜赞旭, 郭玉凤. 川中高石梯地区龙王庙组深层白云岩孔隙类型、成因及演化[J]. 地球科学前沿, 2020, 10(11): 1075-1084. https://doi.org/10.12677/AG.2020.1011106

参考文献

[1] 陈代钊, 钱一雄. 深层–超深层白云岩储集层: 机遇与挑战[J]. 古地理学报, 2017, 19(2): 187-196.
[2] 马永生, 何治亮, 赵培荣, 等. 深层–超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
[3] 朱光有, 孙崇浩, 赵斌, 等. 7000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[4] 马锋, 杨柳明, 顾家裕, 等. 世界白云岩油气田勘探综述[J]. 沉积学报, 2011, 29(5): 1010-1021.
[5] 陈代钊. 构造–热液白云岩化作用与白云岩储集层[J]. 石油与天然气地质, 2008, 29(5): 614-622.
[6] 赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935.
[7] 李红, 柳益群. “白云石(岩)问题”与湖相白云岩研究[J]. 沉积学报, 2013, 31(2): 302-314.
[8] 由雪莲, 孙枢, 朱井泉, 等. 微生物白云岩模式研究进展[J]. 地学前缘, 2011, 18(4): 52-64.
[9] Bontognall, T.R.R., Vasconcelos, C., Warthmann, R.J., et al. (2012) Dolomite-Mediating Bacterium Isolated from the Sabkha of Abu Dhabi (UAE). Terra Nova, 24, 248-254.
https://doi.org/10.1111/j.1365-3121.2012.01065.x
[10] Davies, G.R. and Smith, L.B. (2006) Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90, 1641-1690.
https://doi.org/10.1306/05220605164
[11] Land, L.S. (1998) Failure to Precipitate Dolomite at 25 ˚C from Dilute Solution despite 1000-Fold Oversaturation after 32 Years. Aquatic Geochemistry, 4, 361-368.
https://doi.org/10.1023/A:1009688315854
[12] Moore, T.S., Murray, R.W., Kurtz, A.C., et al. (2004) Anaerobic Methane Oxidation and the Formation of Dolomite. Earth and Planetary Science Letters, 229, 141-154.
https://doi.org/10.1016/j.epsl.2004.10.015
[13] Kenward, P.A., Goldstein, R.H., González, L.A., et al. (2009) Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium: The Role of Methanogenic Archaea. Geobiology, 7, 556-565.
https://doi.org/10.1111/j.1472-4669.2009.00210.x
[14] Vasconcelos, C., Mckenzie, J.A., Bernasconi, S., et al. (1995) Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377, 220-222.
https://doi.org/10.1038/377220a0
[15] Sanchez-Roman, M., Vasconcelos, C., Warthmann, R., et al. (2009) Microbial Dolomite Precipitation under Aerobic Conditions: Results from Brejo do Espinho Lagoon (Brazil) and Culture Experiments. In: Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg, John Wiley & Sons Ltd., Hoboken, 167-178.
https://doi.org/10.1002/9781444312065.ch11
[16] Roberts, J.A., Bennett, P.C., Gonzalez, L.A., et al. (2004) Microbial Precipitation of Dolomite in Methanogenic Groundwater. Geology, 32, 277-280.
https://doi.org/10.1130/G20246.2
[17] Warren, J. (2000) Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52, 1-81.
https://doi.org/10.1016/S0012-8252(00)00022-2
[18] 杜金虎, 张宝民, 汪泽成, 等. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因[J]. 天然气工业, 2016, 36(6): 1-10.
[19] 周进高, 徐春春, 姚根顺, 等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发, 2015, 42(2): 158-166.
[20] 杨雪飞, 王兴志, 唐浩, 等. 四川盆地中部磨溪地区龙王庙组沉积微相研究[J]. 沉积学报, 2015, 33(5): 972-981.
[21] 代林呈, 王兴志, 杜双宇, 等. 四川盆地中部龙王庙组滩相储层特征及形成机制[J]. 海相油气地质, 2016, 21(1): 19-28.
[22] 沈安江, 陈娅娜, 潘立银, 等. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28(8): 1176-1190.
[23] 刘树根, 宋金民, 赵异华, 等. 四川盆地龙王庙组优质储层形成与分布的主控因素[J]. 成都理工大学学报, 2014, 41(6): 657-670.
[24] 张建勇, 罗文军, 周进高, 等. 四川盆地安岳特大型气田下寒武统龙王庙组优质储层形成的主控因素[J]. 天然气地球科学, 2015, 26(11): 2063-2074.
[25] 赵文智, 沈安江, 郑剑锋, 等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学, 2014, 44(9): 1925-1939.
[26] Archie, G.E. (1952) Classification of Carbonate Reservoir Rocks and Petrophysical Considerations. AAPG Bulletin, 36, 278-298.
https://doi.org/10.1306/3D9343F7-16B1-11D7-8645000102C1865D