近视病因与发病机制的研究进展
Research Progress on Etiology and Pathogenesis of Myopia
DOI: 10.12677/ACM.2020.1011388, PDF, HTML, XML, 下载: 535  浏览: 1,434  科研立项经费支持
作者: 闫 艺, 王 平:青岛大学,山东 青岛;张 泳:山东省省立医院,山东 济南;付海涛*:临沂市人民医院,山东 临沂
关键词: 近视病因巩膜重塑炎症反应氧化应激多巴胺Etiology of Myopia Sleral Remodeling Inflammatory Response Oxidative Stress Dopamine
摘要: 近视已成为全球性的问题,尤其在东亚和东南亚的城市地区普遍,近视不仅增加患者的经济,更重要的是其相关的眼部并发症如白内障、青光眼及黄斑病变等可能导致患者视力严重下降甚至失明。近些年来关于对近视发病机制的研究已逐渐聚焦于分子生物学水平,人们开始从更深层次探索近视发病的原因,为研究近视防控提供潜在治疗靶点。
Abstract: Myopia has become a global problem, especially in urban areas of East Asia and Southeast Asia. Myopia not only increases the patient’s economy, but also, more importantly, its related ocular complications such as cataract, glaucoma and macular degeneration may lead to severe vision loss or even blindness. In recent years, the research on the pathogenesis of myopia has gradually focused on the level of molecular biology. People have begun to explore the causes of myopia from a deeper level to provide potential therapeutic targets for the prevention and control of myopia.
文章引用:闫艺, 张泳, 王平, 付海涛. 近视病因与发病机制的研究进展[J]. 临床医学进展, 2020, 10(11): 2561-2566. https://doi.org/10.12677/ACM.2020.1011388

1. 引言

近视是一种常见但病因复杂的眼部疾病,曾经被视为一种良性的屈光状态,但现如今一旦被诊断为近视,即使处在较低度数,仍增加了患数种眼部其他疾病如白内障、青光眼及黄斑病变等的风险 [1]。研究人员已报告了全世界范围内近视的流行病学情况,预计到2050年,全球将有近一半的人口将患上近视 [2]。目前近视发病机制已确定与遗传因素及环境因素相关 [3],研究者开始从更深层面探索近视的病因并取得了一定的成果。本综述总结了近视发病机制的最新进展,为研究近视防控提供潜在治疗靶点。

2. 巩膜重塑

以往的研究表明,近视的发展通常是异常的眼球伸长的结果,与巩膜重塑有关 [4]。巩膜是由在维持细胞外基质(extracellular matrix, ECM)中起到重要作用的成纤维细胞组成的纤维结缔组织 [7]。除了成纤维细胞外,巩膜还包括胶原纤维(主要是I型胶原COL1)和少量的纤维相关胶原。在近视眼中,巩膜组织由于结缔组织合成减少和COL1降解增加而持续变薄,并且眼轴伸长导致后极部血流减少,巩膜ECM缺氧后的形态改变,以及多种生物化学和生物力学信号通路的共同作用,进一步推动了近视的进展。

2.1. 缺氧

巩膜是保持眼部形状和完整性的结构框架,不同近视眼模型的巩膜形态的改变促使研究者揭示近视发展过程中巩膜变薄和弱化的机制,结果显示近视相关的ECM重塑和ECM成分的合成减缓和降解加快有关,触发变化的信号分子如维甲酸 [5]、乙酰胆碱 [6] 已被发现,但从视网膜到巩膜衔接机制仍不清楚。瞿佳与周翔天团队等 [7] 研究发现近视眼脉络膜的厚度变薄,血流减少,导致巩膜缺氧后启动信号级联,巩膜ECM重塑进一步引起近视的发展。这一发现提供了近视形成的新的假说,即缺氧可能是长期寻找的近视视觉信号传导机制,并将抗低氧治疗作为研究药物控制近视发展的新靶点,该研究为近视防控提供了新思路。

2.2. 细胞基质金属蛋白酶(Matrix Metalloproteases, MMPs)和细胞基质金属蛋白酶抑制剂(Tissue Inhibitors of MMPs, TIMPs)信号通路

巩膜成纤维细胞参与基质金属蛋白(matrix metalloproteases, MMP)和基质金属蛋白酶组织抑制因子(tissue inhibitors of MMPs, TIMP)的表达。MMPs是一个酶家族,至少包含28个成员,大部分均参与细胞外基质蛋白降解、组织重建、炎症反应以及调节巩膜延展性 [8]。在各种实验性近视模型中,MMP2的表达和活性在近视的形成过程中增加,在恢复阶段下降 [9]。这些发现可能与巩膜ECM的降解有关,导致巩膜重塑和近视的进展。考虑到动物模型中展现的MMPs在实验性近视进展中的重要作用,Hall等研究了近视与三种金属蛋白酶基因变异的关系。结果提示MMP1、MMP3与MMP9的过度表达有助于单纯性近视的发展。MMPs受多种细胞因子和生长因子的调节,包括hs-CRP、肿瘤坏死因子和补体成分。而TIMPs可抑制MMPs,对MMPs活性有负向控制作用 [8]。周激波等 [10] 通过测定房水标本中MMPs/TIMPs水平发现,眼轴较长的房水中MMP2、TIMP-1、TIMP-2和TIMP-3水平升高;徐格致团队等 [11] 通过酶联免疫吸附法测定高度近视患者玻璃体标本中转化生长因子TGF-β、MMP2、TIMP-2的含量,发现MMPs/TIMPs比值和MMP活性升高可能在高度近视的发病机制中起到一定的作用。

2.3. 转化生长因子TGF-β

其他研究表明转化生长因子TGF-β参与巩膜重塑,其在巩膜ECM的重构中起着重要的作用 [4]。近视眼巩膜中三种不同类型的TGF-β表达下调,而在体外实验中可以促进巩膜成纤维细胞胶原的产生 [12]。其中TGF-β超家族中最大的亚家族骨形态发生蛋白(bone morphogenetic proteins, BMPs),参与多种细胞功能,包括发育、增殖和ECM合成 [13],是早期眼形态发生所必需的 [14]。BMP2和骨形态发生蛋白受体(bone morphogenetic protein receptors, BMPRs)在人巩膜成纤维细胞和人巩膜中均有表达 [15]。中国学者 [16] 通过测定晶体诱导性近视豚鼠巩膜组织中BMP2的表达,探讨了BMP2对体外培养的人巩膜成纤维细胞(human scleral fibroblsasts, HSFs)和细胞外基质ECM合成的影响,认为BMP2在晶体诱导性近视的发生和恢复过程中参与巩膜重塑。

转化生长因子TGF-β在核因子(NF)-κB的激活过程中调节MMP2的水平,这决定了成纤维细胞中炎性细胞因子的产生,如肿瘤坏死因子TNF-ɑ和IL-6 [17]。更重要的是,TGF-β的过度表达将会继续激活MMP2的表达,使得COL1在近视眼中表达下调 [18]。Li等 [19] 发现TGF-β亚型表达的减少与胶原合成减少有关,并可能会增加病理轴向伸长的易感性。

巩膜细胞因子间的这种相互作用显示出巩膜生物力学特性和巩膜生物化学的变化,从而导致巩膜重塑及眼轴的伸长,进而发展为近视。

3. 炎症反应

新进研究发现近视进展与炎症反应有关。为了研究炎症在近视进展中的作用,Lin等 [20] 对c-Fos、NFκB、IL-6和肿瘤坏死因子-ɑ (TNF-ɑ)等炎症反应相关蛋白的表达进行探索,结果显示,近视动物模型仓鼠体内这些蛋白的含量增加。并且,在接受脂多糖和肽聚糖治疗的仓鼠中,这些蛋白的表达增加并伴随近视进展。另一方面,用抗炎药物环孢霉素治疗的仓鼠中,这些蛋白的表达减少并伴随近视进展减缓。Wei等 [18] 人报道了眼部变应性炎症介导近视进展的理论。研究表明,患有过敏性结膜炎的儿童的近视发病率高于未患过敏性结膜炎的儿童的2.35倍。此外,他们还建立了变态反应性结膜炎动物模型,以证明变态反应作为近视危险因素的可能的机制。结果发现变态反应性结膜炎的大鼠发生近视(屈光度误差变化= −1.68 ± 2.52 D),对照组无屈光误差变化(1.07 ± 1.56 D)。变态反应性结膜炎大鼠眼轴长度(0.27 ± 0.12 mm)长于对照组(0.14 ± 0.09 mm)。而在正常人体中,补体系统的激活在人体内得到很好的调节,以避免炎症引起的过度刺激和损伤。Long等 [21] 人在2013年发现病理性近视患者C3和CH50水平过高,提示补体激活诱导炎症反应可能在近视发病机制中起重要作用。为证实炎症与近视的关系,建立了动物模型。Gao等 [22] 发现近视豚鼠巩膜中C1q、C3和C5b-9水平升高具有统计学意义(P < 0.05),提示补体系统的激活可能导致细胞外基质重塑和近视进展。

4. 氧化应激

氧化应激在青光眼、老年性黄斑变性、干眼症、圆锥角膜和近视的发病机制中起着越来越重要的作用 [23] [24] [25] [26]。氧化应激是由于自由基产生与抗氧化防御机制之间的不平衡 [27]。除了引起炎症和细胞死亡外,它还通过改变细胞功能来决定氧化损伤 [28]。许多研究表明 [29],锌(Zn)、铜(Cu)、硒(Se)、锰(Mn)、维生素E、抗坏血酸(维生素C)、谷胱甘肽(GSH)和胡萝卜素在巩膜的抗氧化过程和生化重建中起到重要作用。视网膜的一个关键作用是维持足够的氧气供应,在正常生理条件下,氧的代谢产生活性氧,活性氧是氧化应激的主要贡献者之一 [30]。视网膜组织在体内耗氧量最高,从而决定了ROS的过度表达 [27]。随着活性氧的增高,它可能会损害流向视网膜的血液,从而导致氧化应激的水平的增加。同时,视网膜的持续光照会产生大量的活性氧。大量的氧气消耗和光照,是氧化应激与近视之间相关性的重要条件 [27]。

为了预测近视患者的氧化应激状态,考虑到8-OHdG是细胞氧化应激最广泛分析的生物标志物之一,Kim等 [31] 测定了15只高度近视眼和23只对照眼房水中8-OHdG水平,结果报告显示,高度近视组的8-OHdG水平低于对照组,这一结果表明,近视眼代谢活动降低,从而导致眼部氧化应激水平下降。

有研究显示锌不足会导致氧化损伤 [32],Fedor等 [33] 调查了中高度近视儿童和青少年血清锌、铜浓度和铜/锌比值,以探讨近视与氧化应激的关系。与对照组相比,近视组血清锌含量明显降低,铜/锌比值明显升高。因此,这些结果显示这些抗氧化剂微量元素不足可能与近视的发展有关。研究组铜/锌比值较高,提示近视患者存在抗氧化机制的紊乱。

5. 光保护机制

多巴胺(DA)是视网膜中一种重要的神经递质,介导眼部多种功能,包括视觉发育、信号传导和屈光发育,由无长突细胞和水平细胞的亚型合成并释放出来。来自不同物种的几个实验的数据均表明DA可以阻止屈光性眼球伸长 [34],而光刺激可以以线性方式增加多巴胺的释放 [35]。最近的流行病学研究显示 [36],户外运动与近视进展之间存在反比关系,因此人们猜测强光对近视进展的保护作用,可能是通过多巴胺信号的传导引起的。但杨智宽团队 [37] 研究了不同光照对大鼠视网膜前体细胞中的多巴胺受体表达的影响,结果显示视网膜上的多巴胺D1和D5受体对环境照明有积极的反应,在光照诱导的近视发病相关的眼部结构中,多巴胺能系统的激活中起着重要的作用。

DA受体是G蛋白偶联受体,几乎存在于视网膜内的所有神经元类。视网膜表达5种DA受体亚型中的4种 [38],但是通过药理学方法,研究者得知,在屈光发育方面,DA受体的激活或者抑制不是针对特定的DA受体亚型,而是作用于DA受体家族(D1样和D2样)。中国有研究者发现 [39],D1样受体激活剂导致远视,D2样受体激活剂导致近视,共同介导稳态平衡机制,在屈光发育中起到相互拮抗的作用。

我国学者近几年在关于近视病因与发病机制的研究中取得了卓越的成果。瞿佳与周天翔团队等的发现将近视的形成过程中原先相互独立的视网膜、脉络膜以及巩膜与分子过程有机衔接,形成了完整的近视发病机制的体系,为近视防控提供了新思路;周激波团队及徐格致团队等对MMPs/TIMPs信号通路研究及曾骏文团队对转化生长因子TGF-β的研究对巩膜重塑这一近视发展机制从分子生物学水平进行了进一步的阐释;刘双珍团队等 [40] 对视黄酸受体通路、柯碧莲团队等 [41] 对Wnt信号通路的研究,均为研究近视病因及发病机制重要发现。此外,眼部炎症反应及氧化应激所产生化学物质是近视的发生发展过程中的重要条件;多巴胺在近视发展过程中的作用是近几年的研究热点,国内外的研究者对此进行了大量实验来验证了多巴胺对近视的影响。越来越多的证据表明,近视的病因及发病机制复杂多样,如果在细胞和分子水平进行进一步的探索,我们将更好地理解近视发生发展过程中异常生理变化地完整机制,并且也为近视防控领域提供了新的思路和治疗靶点,以便未来探索更为高效、便捷的防控手段来阻止和减缓近视的发生和发展。

基金项目

山东省医药卫生科技发展计划项目2017WSA13049。

NOTES

*通讯作者。

参考文献

[1] Flitcroft, D.I. (2012) The Complex Interactions of Retinal, Optical and Environmental Factors in Myopia Aetiology. Progress in Retinal and Eye Research, 31, 622-660.
https://doi.org/10.1016/j.preteyeres.2012.06.004
[2] Holden, B.A. (2015) The Charles F. Prentice Award Lecture 2014: A 50-Year Research Journey: Giants and Great Collaborators. Optometry and Vision Science, 92, 741-749.
https://doi.org/10.1097/OPX.0000000000000624
[3] Tkatchenko, A.V., Tkatchenko, T.V., Guggenheim, J.A., et al. (2015) APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLOS Genetics, 11, e1005432.
https://doi.org/10.1371/journal.pgen.1005432
[4] McBrien, N.A., Lawlor, P. and Gentle, A. (2000) Scleral Remodeling during the Development of and Recovery from Axial Myopia in the Tree Shrew. Investigative Ophthalmology & Visual Science, 41, 3713-3719.
[5] Wu, H., Chen, W., Zhao, F., et al. (2018) Scleral Hypoxia Is a Target for Myopia Control. Proceedings of the National Academy of Sciences of the United States of America, 115, E7091-E7100.
https://doi.org/10.1073/pnas.1721443115
[6] McFadden, S.A., Howlett, M.H. and Mertz, J.R. (2004) Retinoic Acid Signals the Direction of Ocular Elongation in the Guinea Pig Eye. Vision Research, 44, 643-653.
https://doi.org/10.1016/j.visres.2003.11.002
[7] McBrien, N.A., Jobling, A.I., Truong, H.T., et al. (2009) Expression of Muscarinic Receptor Subtypes in Tree Shrew Ocular Tissues and Their Regulation during the Development of Myopia. Molecular Vision, 15, 464-475.
[8] Groblewska, M., Siewko, M., Mroczko, B., et al. (2012) The Role of Matrix Metalloproteinases (MMPs) and Their Inhibitors (TIMPs) in the Development of Esophageal Cancer. Folia Histochemica et Cytobiologica, 50, 12-19.
https://doi.org/10.5603/FHC.2012.0002
[9] Yang, S.R., Ye, J.J. and Long, Q. (2010) Expressions of Collagen, Matrix Metalloproteases-2, and Tissue Inhibitor of Matrix Metalloproteinase-2 in the Posterior Sclera of Newborn Guinea Pigs with Negative Lens-Defocused Myopia. Acta Academiae Medicinae Sinicae, 32, 55-59.
[10] Jia, Y., Hu, D.N., Zhu, D., et al. (2014) MMP-2, MMP-3, TIMP-1, TIMP-2, and TIMP-3 Protein Levels in Human Aqueous Humor: Relationship with Axial Length. Investigative Ophthalmology & Visual Science, 55, 3922-3928.
https://doi.org/10.1167/iovs.14-13983
[11] Zhuang, H., Zhang, R., Shu, Q., et al. (2014) Changes of TGF-beta2, MMP-2, and TIMP-2 Levels in the Vitreous of Patients with High Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1763-1767.
https://doi.org/10.1007/s00417-014-2768-2
[12] Jobling, A.I., Nguyen, M., Gentle, A., et al. (2004) Isoform-Specific Changes in Scleral Transforming Growth Factor-Beta Expression and the Regulation of Collagen Synthesis during Myopia Progression. Journal of Biological Chemistry, 279, 18121-18126.
https://doi.org/10.1074/jbc.M400381200
[13] Shea, C.M., Edgar, C.M., Einhorn, T.A., et al. (2003) BMP Treatment of C3H10T1/2 Mesenchymal Stem Cells Induces Both Chondrogenesis and Osteogenesis. Journal of Cellular Biochemistry, 90, 1112-1127.
https://doi.org/10.1002/jcb.10734
[14] Wordinger, R.J. and Clark, A.F. (2007) Bone Morphogenetic Proteins and Their Receptors in the Eye. Experimental Biology and Medicine (Maywood), 232, 979-992.
https://doi.org/10.3181/0510-MR-345
[15] Gao, Z.Y., Huo, L.J., Cui, D.M., et al. (2012) Distribution of Bone Morphogenetic Protein Receptors in Human Scleral Fibroblasts Cultured in Vitro and Human Sclera. International Journal of Ophthalmology, 5, 661-666.
[16] Li, H., Cui, D., Zhao, F., et al. (2015) BMP-2 Is Involved in Scleral Remodeling in Myopia Development. PLoS ONE, 10, e125219.
https://doi.org/10.1371/journal.pone.0125219
[17] Wang, Y., Tang, Z., Xue, R., et al. (2011) TGF-beta1 Promoted MMP-2 Mediated Wound Healing of Anterior Cruciate Ligament Fibroblasts through NF-kappaB. Connective Tissue Research, 52, 218-225.
https://doi.org/10.3109/03008207.2010.516849
[18] Wei, C.C., Kung, Y.J., Chen, C.S., et al. (2018) Allergic Conjunctivitis-Induced Retinal Inflammation Promotes Myopia Progression. EBioMedicine, 28, 274-286.
https://doi.org/10.1016/j.ebiom.2018.01.024
[19] Li, J. and Zhang, Q. (2017) Insight into the Molecular Genetics of Myopia. Molecular Vision, 23, 1048-1080.
[20] Lin, H.J., Wei, C.C., Chang, C.Y., et al. (2016) Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 10, 269-281.
https://doi.org/10.1016/j.ebiom.2016.07.021
[21] Long, Q., Ye, J., Li, Y., et al. (2013) C-Reactive Protein and Complement Components in Patients with Pathological Myopia. Optometry and Vision Science, 90, 501-506.
https://doi.org/10.1097/OPX.0b013e31828daa6e
[22] Gao, T.T., Long, Q. and Yang, X. (2015) Complement Factors C1q, C3 and C5b-9 in the Posterior Sclera of Guinea Pigs with Negative Lens-Defocused Myopia. International Journal of Ophthalmology, 8, 675-680.
[23] Wakamatsu, T.H., Dogru, M., Matsumoto, Y., et al. (2013) Evaluation of Lipid Oxidative Stress Status in Sjogren Syndrome Patients. Investigative Ophthalmology & Visual Science, 54, 201-210.
https://doi.org/10.1167/iovs.12-10325
[24] Chen, Y., Mehta, G. and Vasiliou, V. (2009) Antioxidant Defenses in the Ocular Surface. Ocular Surface, 7, 176-185.
https://doi.org/10.1016/S1542-0124(12)70185-4
[25] Arnal, E., Peris-Martinez, C., Menezo, J.L., et al. (2011) Oxidative Stress in Keratoconus?. Investigative Ophthalmology & Visual Science, 52, 8592-8597.
https://doi.org/10.1167/iovs.11-7732
[26] Izuta, H., Matsunaga, N., Shimazawa, M., et al. (2010) Proliferative Diabetic Retinopathy and Relations among Antioxidant Activity, Oxidative Stress, and VEGF in the Vitreous Body. Molecular Vision, 16, 130-136.
[27] Francisco, B.M., Salvador, M. and Amparo, N. (2015) Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 750637.
https://doi.org/10.1155/2015/750637
[28] Ito, K. and Suda, T. (2014) Metabolic Requirements for the Maintenance of Self-Renewing Stem Cells. Nature Reviews Molecular Cell Biology, 15, 243-256.
https://doi.org/10.1038/nrm3772
[29] Rahman, M.A., Rahman, B. and Ahmed, N. (2013) High Blood Manganese in Iron-Deficient Children in Karachi. Public Health Nutrition, 16, 1677-1683.
https://doi.org/10.1017/S1368980013000839
[30] Mozaffarieh, M., Grieshaber, M.C. and Flammer, J. (2008) Oxygen and Blood Flow: Players in the Pathogenesis of Glaucoma. Molecular Vision, 14, 224-233.
[31] Kim, E.B., Kim, H.K., Hyon, J.Y., et al. (2016) Oxidative Stress Levels in Aqueous Humor from High Myopic Patients. Korean Journal of Ophthalmology, 30, 172-179.
https://doi.org/10.3341/kjo.2016.30.3.172
[32] Powell, S.R. (2000) The Antioxidant Properties of Zinc. Journal of Nutrition, 130, 1447S-1454S.
https://doi.org/10.1093/jn/130.5.1447S
[33] Fedor, M., Socha, K., Urban, B., et al. (2017) Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia. Biological Trace Element Research, 176, 1-9.
https://doi.org/10.1007/s12011-016-0805-1
[34] Feldkaemper, M. and Schaeffel, F. (2013) An Updated View on the Role of Dopamine in Myopia. Experimental Eye Research, 114, 106-119.
https://doi.org/10.1016/j.exer.2013.02.007
[35] Cohen, Y., Peleg, E., Belkin, M., et al. (2012) Ambient Illuminance, Retinal Dopamine Release and Refractive Development in Chicks. Experimental Eye Research, 103, 33-40.
https://doi.org/10.1016/j.exer.2012.08.004
[36] Karouta, C. and Ashby, R.S. (2014) Correlation between Light Levels and the Development of Deprivation Myopia. Investigative Ophthalmology & Visual Science, 56, 299-309.
https://doi.org/10.1167/iovs.14-15499
[37] Ke, Y., Li, W., Tan, Z., et al. (2017) Induction of Dopamine D1 and D5 Receptors in R28 Cells by Light Exposures. Biochemical and Biophysical Research Communications, 486, 686-692.
https://doi.org/10.1016/j.bbrc.2017.03.099
[38] Jackson, C.R., Chaurasia, S.S., Zhou, H., et al. (2009) Essential Roles of Dopamine D4 Receptors and the Type 1 Adenylyl Cyclase in Photic Control of Cyclic AMP in Photoreceptor Cells. Journal of Neurochemistry, 109, 148-157.
https://doi.org/10.1111/j.1471-4159.2009.05920.x
[39] Zhou, X., Pardue, M.T., Iuvone, P.M., et al. (2017) Dopamine Signaling and Myopia Development: What Are the Key Challenges. Progress in Retinal and Eye Research, 61, 60-71.
https://doi.org/10.1016/j.preteyeres.2017.06.003
[40] Wang, S., Liu, S., Mao, J., et al. (2014) Effect of Retinoic Acid on the Tight Junctions of the Retinal Pigment Epithelium-Choroid Complex of Guinea Pigs with Lens-Induced Myopia in Vivo. International Journal of Molecular Medicine, 33, 825-832.
https://doi.org/10.3892/ijmm.2014.1651
[41] Ma, M., Zhang, Z., Du, E., et al. (2014) Wnt Signaling in Form Deprivation Myopia of the Mice Retina. PLoS ONE, 9, e91086.
https://doi.org/10.1371/journal.pone.0091086