环状RNA特性及其在原发性肝癌中的研究进展
Characteristics of Circular RNA and Its Research Progress in Primary Liver Cancer
DOI: 10.12677/ACM.2020.1010366, PDF, HTML, XML, 下载: 576  浏览: 901 
作者: 陈芝涛*, 黄佳程, 张乐乐, 万大龙, 林胜璋#:浙江大学医学院,浙江 杭州
关键词: 环状RNA原发性肝癌研究进展Cyclic RNA Primary Liver Cancer Research Progress
摘要: 原发性肝癌是一种常见的肝脏恶性肿瘤,发病率和死亡率较高,且由于早期难以被诊断,以致于错失有效治疗机会。环状RNA (circRNA)是内源性长链非编码RNA家族中的一员,因其具有稳定性,高度保守性和时间、空间特异性等特征,故其广泛累积表达于真核细胞的细胞质中。近年来发现circRNA在原发性肝癌的细胞增殖、凋亡、侵袭转移及预后等多方面发挥着巨大作用。目前circRNA已是继LncRNA后作为多种肿瘤早期诊断标志物和新治疗靶点的研究热点。本文对circRNA特征及其在原发性肝癌中的相关研究进展进行概述,以便于进一步探究其在原发性肝癌的临床诊疗过程中的潜在应用。
Abstract: Primary liver cancer is a common malignant liver tumor with high incidence rate and mortality rate. It is difficult to be diagnosed during its early stage, which leads to missed effective treatment. Circular RNA (circRNA) is a member of the endogenous long-chain noncoding RNA family. It is widely accumulated in the cytoplasm of eukaryotic cells because of its stability, high conservation, time and space specificity. In recent years, it has been found that circRNA plays an important role in proliferation, apoptosis, invasion, metastasis and prognosis of primary liver cancer. At present, after lncRNA, circRNA has become a research hotspot as a variety of tumor early diagnostic markers and new therapeutic targets. This paper aims to summarize the characteristics of circRNA and its related research progress in primary liver cancer, so as to further explore its potential application in the clinical diagnosis and treatment of primary liver cancer.
文章引用:陈芝涛, 黄佳程, 张乐乐, 万大龙, 林胜璋. 环状RNA特性及其在原发性肝癌中的研究进展[J]. 临床医学进展, 2020, 10(10): 2424-2431. https://doi.org/10.12677/ACM.2020.1010366

1. 引言

肝癌在全世界恶性肿瘤病例中排行第五,也是男性仅次于肺癌的第二大癌症相关死亡原因。全球每年肝癌新增病例约841,000,死亡人数约782,000 [1]。在肝癌患者中以原发性肝癌中的肝细胞癌(Hepatocellular carcinoma, HCC)最为常见,约占85%。由于原发性肝癌早期缺乏特异性临床表现,多数患者就诊时已是临床中晚期,以致于错失有效治疗机会。当前的手术切除、肝移植、射频消融、靶向免疫治疗、放化疗等治疗手段虽可延长患者的生存期。但中晚期患者治疗后转移复发风险较高,远期预后仍较差。在中国,原发性肝癌的5年总体生存率甚至低于10% [2]。因此亟需寻求新的用于早期诊断和治疗靶点的物质来改善总体生存率。目前已发现circRNA在原发性肝癌中具有潜在的早期诊断和治疗靶点的功能。因此本文讨论了circRNA在原发性肝癌中细胞生长和增殖、侵袭和转移、诊断、免疫治疗和预后方面的关系。以进一步探索circRNA在原发性肝癌中的致病机理和临床应用。

2. 环状RNA概述

2.1. 环状RNA的形成机制及其分类

环状RNA (circRNA)是一种封闭结构的内源性长链非编码RNA,是通过对前体mRNA (pre-mRNAs)片段的反向剪切后并以共价键形式首尾相连而形成,被认为是非编码RNA这一大家族中最为稳定的RNA分子 [3] [4]。其形成机制主要有以下三种:(1) 在pre-mRNAs上,通过索尾插接使外显子下游的5’末端位点与上游的3’末端位点环化连接,再进行修饰剪接形成 [5] [6]。(2) 内含子的互补配对形成。Ivanov,A等 [7] 发现人与线虫的circRNA外显子的侧翼内含子上有丰富的反向互补配对序列(RCMs)可经双链RNA编辑酶ADAR1介导形成circRNA,同时这些互补序列配对可以拉近剪接位点的距离促进外显子环化。Hansen等 [8] 发现人工添加800个完全互补配对的核苷酸序列包绕外显子同样能启动外显子侧翼内含子环化形成circRNA [8]。(3) RNA结合蛋白(RNA binding protein, RBP)促进外显子环化,Ashwal-Fluss,R等 [3] 发现果蝇中存在一种称为Musclebind (MBL)蛋白,能与circMBL外显子侧面的内含子序列上的MBL结合位点结合促进外显子的自身环化,使circMBL的表达增高3倍。在circRNA分类方面,主要根据结构来源划分为四类:外显子circRNA (ecircRNA)、内含子circRNA (ciRNA)和外显子–内含子circRNA (EIciRNA),以及由病毒RNA基因组、tRNA、rRNA、snRNA等环化产生的circRNA,在哺乳动物中尤以外显子circRNA (ecircRNA)最为多见。

2.2. 环状RNA的生物学特征

(1) 高丰度性:1976年,Sanger等 [9] 首次公开报道在某些病毒内发现了circRNA后,经多年的研究后发现circRNA广泛存在于各大物种的细胞中,如人类、小鼠、果蝇、线虫等 [5] [7] [10] [11]。在大多数生物体内,circRNA含量比与之相对应的miRNA要高。Jeck等 [5] 通过qRT-PCR等技术检测发现circHIPK3的第二外显子的转录本约是相应的miRNA的5倍。并且近年来发现,circRNA广泛存在于人体的唾液,血液,胸腔积液以及外泌体中 [12] [13]。

(2) 高稳定性:与miRNA不同,circRNA虽不具有5’末端帽子和3’末端多聚核苷酸尾巴结构,但因其特殊的环状结构,缺乏游离的3’poly A末端,使之能避免被3’-5’核酸外切酶RNase R和脱支酶识别降解,更具有稳定性 [4]。阻断DNA转录24小时后发现circRNA的含量仍高度稳定,甚至超过了管家基因GAPDH31的稳定性 [11]。

(3) 高度保守性:大量研究发现circRNA在不同的哺乳动物间有着大量的高度保守性序列。如表达于小鼠大脑神经元中的circRNA部分也能在人类或者果蝇的大脑神经元中被发现 [10]。同时还发现在circRNA剪接点周围的内含子序列保守性更高,均存在相似的RCMs [10] [14]。这一特性同时也能证实circRNA并非是pre-mRNA的随意错误剪接而成的无功能副产品,而是带有特殊生物学功能的物质。

(4) 空间和时间表达差异性:在时间表达差异上,如CDR1as在小鼠突触神经元成熟的不同时间点含量不同,在出生后的发育过程中富集;在空间表达上也有明显差异性,大多数的ecircRNA存在细胞质中,而ciRNA存在细胞核中。如circPlxnd1在大脑皮质高度富集circRims2仅存在于小脑颗粒层存在,而circElf2和circPhf21a在小脑和嗅球颗粒层表达占优势 [10] [11]。同时Li等 [13] 还发现外泌体中的circRNA约是细胞内的两倍。

2.3. 环状RNA的生物学功能

(1) miRNA 海绵作用

miRNA是一类通过碱基配对结合相应mRNA内的靶位点来调节相应基因表达,在癌症的增殖、侵袭、转移上起着重要作用 [15]。越来越多的证据表明,circRNA可以充当miRNA的海绵分子来调节基因表达,与其他的内源性RNA (ceRNA)相比,circRNA不但有高度稳定性,而且具备更多的miRNA反应元件和结合位点,因此被称为:“超级海绵” [8]。例如,ciRS-7 (也称为CDR1as)是一种充当miR-7海绵的circRNA,含有70多个选择性保守的miRNA靶位点,通过抑制miR-7的活性,使得miR-7靶标水平增加。同时在小鼠脑中,尤其是在新皮质和海马神经元中,发现ciRS-7与miR-7的表达高度重叠,表明两者具有高度内源性相互作用 [8]。此外还发现circFBLIM1可以通过使miR-346海绵化来调节FBLIM1表达。抑制circFBLIM1可抑制肝细胞癌细胞生长和侵袭,并促进肝细胞癌细胞凋亡 [16]。

(2) 调控基因的转录

尽管只有少部分的circRNA位于细胞核中,但其对调控基因的剪接,转录和翻译具有不可或缺的作用。EIciRNA是一种主要位于细胞核中的circRNA,可与U1 snRNP相互作用并促进其亲本基因的转录,它的存在增强了顺式中亲本基因表达 [17]。circPOK是一种新发现的于肿瘤细胞中的circRNA,其由Zbtb7a基因编码而得,它通过编码Pokemon转录因子参与基因转录调控,从而通过共同激活ILF2/3复合物来调节促增殖和促血管生成因子 [18]。此外,circRNA还可以通过与miRNA 结合改变其相应结构来影响基因的转录或转录后水平来调控基因表达,含有circRNA位点的miRNA可以通过与相应的circRNA相互作用来解除miRNAs对靶基mRNA的调控作用,从而在转录后水平调控靶基因表达 [8] [19]。

(3) 与RNA结合蛋白(RNA binding protein, RBP)相互作用

RNA结合蛋白(RNA binding protein, RBP)是一组广泛参与基因转录和翻译的蛋白。证据表明circRNA可以充当蛋白支架作用促进两个或多个蛋白质之间的接触并发挥其作用。circ-Foxo3存在于大多数的肿瘤细胞。它可以充当蛋白支架连接MDM2和p53,促进了MDM2介导的p53降解,避免了MDM2诱导Foxo3泛素化从而对肿瘤细胞的凋亡起作用 [20]。RBM3是一种常见的RNA结合蛋白,在肝癌细胞中,它可以动态调节SCD-circRNA 2的合成,实验干扰SCD-circRNA 2的表达可以消除RBM3促进的细胞周期转变,这表明SCD-circRNA 2可能是RBM3的下游靶分子,来影响肝细胞癌的细胞增殖 [21]。此外,一些含有RBP结合位点的circRNA可以与阿格蛋白(Argunaute, AGO)相互作用,控制mRNA的转录和翻译的过程 [22]。

(4) 翻译成特定的蛋白质来发挥作用。

在过去,circRNA因其编码蛋白基因的起始密码子和/或终止密码子被删除故被认为是一种不能被编码为蛋白质的长链非编码RNA。但近年来研究发现,部分circRNA可以编码为特定的蛋白质来影响肿瘤的发生发展。Circβ-catenins是一种在肝癌组织中高度表达的circRNA,Liang等 [23] 发现它可以表达一种新颖的含370个氨基酸的β-catenin同工型(β-catenin370),它使用线性β-catenin mRNA转录物作为起始密码子并在环化产生的新的终止密码子处终止翻译。这种新颖的β-catenin370可通过拮抗GSK3β诱导β-catenin的磷酸化和降解,从而稳定β-catenin并激活Wnt信号通路,敲除Circβ-catenins发现可以降低β-catenin水平,但不会影响其mRNA水平。

3. circRNA在原发性肝癌中的研究进展

circRNA在肿瘤的发生和发展有着密切的关联,其具有可调控肿瘤细胞的增殖、分化和迁移等作用。近年研究发现circRNA有望成为一些肿瘤的重要生物标志物,在肿瘤的早期筛查和治疗靶点上提供新思路。目前已有报道circRNA与肝癌、胃肠道肿瘤、乳腺癌、膀胱癌等肿瘤疾病的发生发展有关 [24] [25] [26] [27] [28]。尤其circRNA与原发性肝癌的关系已成为研究的热点。

3.1. circRNA与原发性肝癌的生长和增殖

大量研究表明,circRNA对原发性肝癌细胞的增殖有一定影响。Liang等 [23] 发现Circβ-catenin可以通过Wnt/β-catenin途径来调节肝癌细胞的生长以及细胞周期的进展,体内外实验敲除Circβ-catenin可以显著抑制肝癌细胞增殖。另外,circMTO1通过充当致癌miR-9的海绵来促进p21表达来抑制肝癌细胞的增殖,同时发现肝癌组织中circMTO1的减少可作为评估患者生存不良的预后指标 [29]。circSMARCA5在肝癌组织中低表达它可以通过miR-17-3p/miR-181b-5p-TIMP3途径上调肿瘤抑制物TIMP3来抑制肝癌细胞增殖。更有趣的是,当肝癌中circSMARCA5的水平显着下调,而其产物miRNA SMARCA5和SMARCA5的蛋白水平却上调,并且SMARCA5蛋白通过激活Wnt/β-catenin信号传导途径促进肝癌细胞增殖 [30] [31]。这些结果表明circRNA在肝癌细胞生长和增殖中起着至关重要的作用。

3.2. circRNA与原发性肝癌的侵袭和转移

近年来发现很多circRNA可以通过影响肝癌细胞的侵袭和转移来调节肝癌疾病进展。Huang等 [32] [33] 发现circRNA-100338与肝癌细胞的侵袭和转移作用呈正相关,升高的circRNA-100338通过circRNA-100338/miR-141-3p/RHEB轴激活肝癌细胞中的mTOR信号传导通路使恶性肿瘤发生侵袭和转移。敲除circRNA-100338能显著抑制肿瘤的生长和肝外侵袭和转移结节的数量,使肝癌患者具有更好的预后 [34]。circ_0000517是另一种在肿瘤组织表达明显高于其邻近的正常组织且与肝癌的不良预后有关的circRNA,ROC曲线下面积(Area Under Curve, AUC)为0.783 [35]。He等 [36] [37] 发现它可充当miR-326的海绵,在肝癌细胞中miR-326表达与circ_0000517呈负相关,高表达的circ_0000517可通过miR-326/IGF1R或SMAD6轴促进了肝癌细胞的侵袭和转移。

3.3. circRNA与原发性肝癌的诊断

目前临床常用的原发性肝癌的诊断标志物,例如 甲胎蛋白(Alpha fetoprotein, AFP),甲胎蛋白异质体 (Alpha-fetoprotein variants, AFP-L3),异常凝血酶原(des-carboxy prothrombin DCP又称PIVKA-II)等具有一定局限性使其只有约1/3的患者能早期被诊断 [38] [39]。晚期肝癌的治疗效果极差且为社会经济带来沉重负担,因此迫切需要探索出新颖的用于诊断的生物标志物。circRNA是具有单链封闭结构的环状RNA,且与线性RNA相比它具有高丰度,稳定性和保守性等特点,使其存在于人体多数组织细胞中,这些优势使circRNAs在原发性肝癌的诊断中成为最具有前途的生物标准物之一 [40] [41]。

在肝癌的组织中,Wei等 [42] 发现了circ-CDYL具有早期诊断肝癌的性能,ROC曲线下面积(AUC)为0.64 (95%CI = 0.55~0.72),进一步研究circ-CDYL联合HDGF和HIF1A的早期肝癌组织和癌旁组织表达差异时,发现诊断性能得到明显改善,AUC为0.73 (95%CI = 0.65~0.80),敏感性为75.36%,特异性为66.67%。与circ-CDYL联合HDGF和HIF1A相比,AFP仅显示AUC为0.59 (95%CI = 0.49~0.70),灵敏度为50.72%和特异性为83.78%。这项研究表明,circCDYL联合HDGF和HIF1AN可作为区分早期肝癌组织的独立标志物且其效果优于甲胎蛋白。

除肝癌组织外,血浆中circRNA的改变也可用作肝癌早期诊断生物标志物。一项大规模的研究发现血浆中hsa_circ_0001445的水平可以很好地作为确诊早期肝癌的指标(AUC = 0.862, 95%CI = 0.710~0.845),并且其特异性和敏感性分别为94.2%和71.2%。此外,血浆hsa_circ_0001445水平还可用于区分肝癌和肝硬化(AUC = 0.672, 95%CI = 0.586~0.758)和乙型肝炎患者(AUC = 0.764,95%CI = 0.686~0.842)。并且与单独使用AFP或hsa_circ_0001445相比,两者联合在诊断早期肝癌、肝硬化或乙型肝炎患者和健康对照中的功效更高。这些结果表明血浆hsa_circ_0001445可以作为早期肝癌的新型诊断生物标志物 [43]。

3.3.1. circRNA与原发性肝癌免疫治疗敏感性

靶向和免疫治疗是近年来用于治疗晚期肝癌的两大有效方法,但因肝癌细胞易对其产生耐药性,使得肝癌患者的5年总生存率并没有达到很乐观的转变。因此探索引起肝癌耐药机制,并从中加以阻断成为了研究肝癌新的治疗策略中的热点。T细胞免疫球蛋白和粘蛋白结构域3 (TIM-3)是一种免疫调节受体能与肿瘤细胞和微环境上以NK细胞为主的配体结合,以抑制NK细胞介导的在包括肝癌在内的多种癌症的抗肿瘤免疫力 [44] [45]。Zhang等 [46] 通过对抗PD1免疫治疗耐药的患者研究发现,原发性肝癌衍生的外泌体circUHRF1通过降解miR-449c-5p来上调NK细胞中miR-449c-5p靶基因TIM-3的表达,导致NK细胞衰竭,从而促进肝癌中的免疫逃逸和对抗PD1免疫疗法的抵抗。他们还猜想靶向circUHRF1可能是恢复肝癌对抗PD1治疗敏感性的有前途和有效的方法。此外,7q21-7q31染色体的扩增被认为与肝癌的易感性,复发和多药耐药性相关 [47]。Huang等 [48] 发现circMET是染色体7q21-7q31区域中的一个癌基因,并且circMET的过表达通过miR-30-5p/Snail/DPP4/CXCL10轴诱导肝癌的发展和免疫耐受,同时发现DPP4抑制剂如西他列汀可以阻断该途径进展,可增强PD1抑制剂治疗肝癌的疗效。

3.3.2. circRNA与原发性肝癌的预后

原发性肝癌的预后较差,5年生存率较低,治疗后复发率较高,因此有必要发现一种新的生物标记物来判断原发性肝癌的预后以便于更合理地选用有效的治疗方案。Zhang等 [49] 通过对77对肝癌组织和癌旁组织研究分析发现,与邻近的非肿瘤组织相比,hsa_circ_0001649在肝癌组织中被下调。此外,低表达的hsa_circ_0001649与肝癌患者的整体生存预后不良有关,通过Cox多变量分析发现hsa_circ_0001649可以作为肝癌的一种新的独立预后因素。Huang等 [32] [33] [34] 发现升高的circRNA-100338可通过circRNA-100338/miR-141-3p/RHEB轴激活肝癌中的mTOR信号通路,并与乙型肝炎相关肝癌患者的预后不良相关。circMTO1通过充当致癌miR-9的海绵体来促进p21表达,从而抑制肝癌的进程,肝癌组织中circMTO1表达降低与患者的存活期缩短显著相关,表明肝癌组织中circMTO1的表达量可以作为评估肝癌患者预后不良的重要标志物 [29] [50]。

4. 展望

circRNA作为一个继LncRNA之后新的研究热点,随着circRNA与原发性肝癌的作用机制及临床应用研究报道的不断深入,亟需更加系统地探究circRNA在原发性肝癌中的作用机制及调控方式。circRNA有望成为原发性肝癌早期诊断的生物标志物或分子基因治疗的新靶点。

NOTES

#通讯作者。

参考文献

[1] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] Chen, W., Zheng, R., Baade, P.D., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[3] Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., et al. (2014) circRNA Biogenesis Competes with Pre-mRNA Splicing. Molecular Cell, 56, 55-66.
https://doi.org/10.1016/j.molcel.2014.08.019
[4] Jeck, W.R. and Sharpless, N.E. (2014) Detecting and Characterizing Circular RNAs. Nature Biotechnology, 32, 453-461.
https://doi.org/10.1038/nbt.2890
[5] Jeck, W.R., Sorrentino, J.A., Wang, K., et al. (2013) Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. RNA, 19, 141-157.
https://doi.org/10.1261/rna.035667.112
[6] Zhang, X.O., Wang, H.B., Zhang, Y., et al. (2014) Complementary Sequence-Mediated Exon Circularization. Cell, 159, 134-147.
https://doi.org/10.1016/j.cell.2014.09.001
[7] Ivanov, A., Memczak, S., Wyler, E., et al. (2015) Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Reports, 10, 170-177.
https://doi.org/10.1016/j.celrep.2014.12.019
[8] Hansen, T.B., Jensen, T.I., Clausen, B.H., et al. (2013) Natural RNA Circles Function as Efficient microRNA Sponges. Nature, 495, 384-388.
https://doi.org/10.1038/nature11993
[9] Sanger, H.L., Klotz, G., Riesner, D., et al. (1976) Viroids Are Single-Stranded Covalently Closed Circular RNA Molecules Existing as Highly Base-Paired Rod-Like Structures. Proceedings of the National Academy of Sciences of the United States of America, 73, 3852-3856.
https://doi.org/10.1073/pnas.73.11.3852
[10] Rybak-Wolf, A., Stottmeister, C., Glazar, P., et al. (2015) Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular Cell, 58, 870-885.
https://doi.org/10.1016/j.molcel.2015.03.027
[11] Memczak, S., Jens, M., Elefsinioti, A., et al. (2013) Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature, 495, 333-338.
https://doi.org/10.1038/nature11928
[12] Li, X., Yang, L. and Chen, L.L. (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Molecular Cell, 71, 428-442.
https://doi.org/10.1016/j.molcel.2018.06.034
[13] Li, Y., Zheng, Q., Bao, C., et al. (2015) Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Research, 25, 981-984.
https://doi.org/10.1038/cr.2015.82
[14] You, X., Vlatkovic, I., Babic, A., et al. (2015) Neural Circular RNAs Are Derived from Synaptic Genes and Regulated by Development and Plasticity. Nature Neuroscience, 18, 603-610.
https://doi.org/10.1038/nn.3975
[15] Bach, D.H. and Lee, S.K. (2018) Long Noncoding RNAs in Cancer Cells. Cancer Letters, 419, 152-166.
https://doi.org/10.1016/j.canlet.2018.01.053
[16] Bai, N., Peng, E., Qiu, X., et al. (2018) circFBLIM1 Act as a ceRNA to Promote Hepatocellular Cancer Progression by Sponging miR-346. Journal of Experimental & Clinical Cancer Research, 37, 172.
https://doi.org/10.1186/s13046-018-0838-8
[17] Li, Z., Huang, C., Bao, C., et al. (2017) Corrigendum: Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nature Structural & Molecular Biology, 24, 194.
https://doi.org/10.1038/nsmb0217-194a
[18] Guarnerio, J., Zhang, Y., Cheloni, G., et al. (2020) Intragenic Antagonistic Roles of Protein and circRNA in Tumorigenesis. Cell Research, 30, 188.
https://doi.org/10.1038/s41422-019-0262-4
[19] Hansen, T.B., Kjems, J. and Damgaard, C.K. (2013) Circular RNA and miR-7 in Cancer. Cancer Research, 73, 5609-5612.
https://doi.org/10.1158/0008-5472.CAN-13-1568
[20] Du, W.W., Fang, L., Yang, W., et al. (2017) Induction of Tumor Apoptosis through a Circular RNA Enhancing Foxo3 Activity. Cell Death & Differentiation, 24, 357-370.
https://doi.org/10.1038/cdd.2016.133
[21] Dong, W., Dai, Z.H., Liu, F.C., et al. (2019) The RNA-Binding Protein RBM3 Promotes Cell Proliferation in Hepatocellular Carcinoma by Regulating Circular RNA SCD-circRNA 2 Production. EBioMedicine, 45, 155-167.
https://doi.org/10.1016/j.ebiom.2019.06.030
[22] Chen, Y., Yang, F., Fang, E., et al. (2019) Circular RNA circAGO2 Drives Cancer Progression through Facilitating HuR-Repressed Functions of AGO2-miRNA Complexes. Cell Death & Differentiation, 26, 1346-1364.
https://doi.org/10.1038/s41418-018-0220-6
[23] Liang, W.C., Wong, C.W., Liang, P.P., et al. (2019) Translation of the Circular RNA circβ-catenin Promotes Liver Cancer Cell Growth through Activation of the Wnt Pathway. Genome Biology, 20, 84.
https://doi.org/10.1186/s13059-019-1685-4
[24] Tang, X., Zhu, J., Liu, Y., et al. (2019) Current Understanding of Circular RNAs in Gastric Cancer. Cancer Management and Research, 11, 10509-10521.
https://doi.org/10.2147/CMAR.S223204
[25] Wang, H.Y., Wang, Y.P., Zeng, X., et al. (2020) Circular RNA Is a Popular Molecule in Tumors of the Digestive System (Review). International Journal of Oncology, 57, 21-42.
https://doi.org/10.3892/ijo.2020.5054
[26] Sun, J.Y., Zhang, X.Y., Cao, Y.Z., et al. (2020) Diagnostic and Prognostic Value of Circular RNAs in Hepatocellular Carcinoma. Journal of Cellular and Molecular Medicine, 24, 5438-5445.
https://doi.org/10.1111/jcmm.15258
[27] Fu, B., Zhang, A., Li, M., et al. (2018) Circular RNA Profile of Breast Cancer Brain Metastasis: Identification of Potential Biomarkers and Therapeutic Targets. Epigenomics, 10, 1619-1630.
https://doi.org/10.2217/epi-2018-0090
[28] Yang, X., Yuan, W., Tao, J., et al. (2017) Identification of Circular RNA Signature in Bladder Cancer. Journal of Cancer, 8, 3456-3463.
https://doi.org/10.7150/jca.19345
[29] Han, D., Li, J., Wang, H., et al. (2017) Circular RNA circMTO1 Acts as the Sponge of microRNA-9 to Suppress Hepatocellular Carcinoma Progression. Hepatology, 66, 1151-1164.
https://doi.org/10.1002/hep.29270
[30] Wang, Y., Qin, J., Liu, Q., et al. (2016) SNF2H Promotes Hepatocellular Carcinoma Proliferation by Activating the Wnt/beta-Catenin Signaling Pathway. Oncology Letters, 12, 1329-1336.
https://doi.org/10.3892/ol.2016.4681
[31] Yu, J., Xu, Q.G., Wang, Z.G., et al. (2018) Circular RNA cSMARCA5 Inhibits Growth and Metastasis in Hepatocellular Carcinoma. Journal of Hepatology, 68, 1214-1227.
https://doi.org/10.1016/j.jhep.2018.01.012
[32] Huang, X.Y., Huang, Z.L., Xu, Y.H., et al. (2017) Comprehensive Circular RNA Profiling Reveals the Regulatory Role of the circRNA-100338/miR-141-3p Pathway in Hepatitis B-Related Hepatocellular Carcinoma. Scientific Reports, 7, Article No. 5428.
https://doi.org/10.1038/s41598-017-05432-8
[33] Huang, X.Y., Huang, Z.L., Zhang, P.B., et al. (2019) CircRNA-100338 Is Associated with mTOR Signaling Pathway and Poor Prognosis in Hepatocellular Carcinoma. Frontiers in Oncology, 9, 392.
https://doi.org/10.3389/fonc.2019.00392
[34] Huang, X.Y., Huang, Z.L., Huang, J., et al. (2020) Exosomal circRNA-100338 Promotes Hepatocellular Carcinoma Metastasis via Enhancing Invasiveness and Angiogenesis. Journal of Experimental & Clinical Cancer Research, 39, 20.
https://doi.org/10.1186/s13046-020-1529-9
[35] Wang, X., Wang, X., Li, W., et al. (2019) Up-Regulation of hsa_circ_0000517 Predicts Adverse Prognosis of Hepatocellular Carcinoma. Frontiers in Oncology, 9, 1105.
https://doi.org/10.3389/fonc.2019.01105
[36] He, S., Guo, Z., Kang, Q., et al. (2020) Circular RNA hsa_circ_0000517 Modulates Hepatocellular Carcinoma Advancement via the miR-326/SMAD6 Axis. Cancer Cell International, 20, 360.
https://doi.org/10.1186/s12935-020-01447-w
[37] He, S., Yang, J., Jiang, S., et al. (2020) Circular RNA circ_0000517 Regulates Hepatocellular Carcinoma Development via miR-326/IGF1R Axis. Cancer Cell International, 20, 404.
https://doi.org/10.1186/s12935-020-01496-1
[38] Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314.
https://doi.org/10.1016/S0140-6736(18)30010-2
[39] Juarez-Hernandez, E., Motola-Kuba, D., Chavez-Tapia, N.C., et al. (2017) Biomarkers in Hepatocellular Carcinoma: An Overview. Expert Review of Gastroenterology & Hepatology, 11, 549-558.
https://doi.org/10.1080/17474124.2017.1311785
[40] Wang, F., Nazarali, A.J. and Ji, S. (2016) Circular RNAs as Potential Biomarkers for Cancer Diagnosis and Therapy. American Journal of Cancer Research, 6, 1167-1176.
[41] Qu, S., Yang, X., Li, X., et al. (2015) Circular RNA: A New Star of Noncoding RNAs. Cancer Letters, 365, 141-148.
https://doi.org/10.1016/j.canlet.2015.06.003
[42] Wei, Y., Chen, X., Liang, C., et al. (2020) A Noncoding Regulatory RNAs Network Driven by Circ-CDYL Acts Specifically in the Early Stages Hepatocellular Carcinoma. Hepatology, 71, 130-147.
https://doi.org/10.1002/hep.30795
[43] Zhang, X., Zhou, H., Jing, W., et al. (2018) The Circular RNA hsa_circ_0001445 Regulates the Proliferation and Migration of Hepatocellular Carcinoma and May Serve as a Diagnostic Biomarker. Disease Markers, 2018, Article ID: 3073467.
https://doi.org/10.1155/2018/3073467
[44] Ju, Y., Hou, N., Meng, J., et al. (2010) T Cell Immunoglobulin- and Mucin-Domain-Containing Molecule-3 (Tim-3) Mediates Natural Killer Cell Suppression in Chronic Hepatitis B. Journal of Hepatology, 52, 322-329.
https://doi.org/10.1016/j.jhep.2009.12.005
[45] Sanchez-Correa, B., Lopez-Sejas, N., Duran, E., et al. (2019) Modulation of NK Cells with Checkpoint Inhibitors in the Context of Cancer Immunotherapy. Cancer Immunology, Immunotherapy, 68, 861-870.
https://doi.org/10.1007/s00262-019-02336-6
[46] Zhang, P.F., Gao, C., Huang, X.Y., et al. (2020) Cancer Cell-Derived Exosomal circUHRF1 Induces Natural Killer Cell Exhaustion and May Cause Resistance to Anti-PD1 Therapy in Hepatocellular Carcinoma. Molecular Cancer, 19, 110.
https://doi.org/10.1186/s12943-020-01222-5
[47] Li, Y., Zhai, Y., Song, Q., et al. (2018) Genome-Wide Association Study Identifies a New Locus at 7q21.13 Associated with Hepatitis B Virus-Related Hepatocellular Carcinoma. Clinical Cancer Research, 24, 906-915.
https://doi.org/10.1158/1078-0432.CCR-17-2537
[48] Huang, X.Y., Zhang, P.F., Wei, C.Y., et al. (2020) Circular RNA circMET Drives Immunosuppression and Anti-PD1 Therapy Resistance in Hepatocellular Carcinoma via the miR-30-5p/snail/DPP4 Axis. Molecular Cancer, 19, 92.
https://doi.org/10.1186/s12943-020-01213-6
[49] Zhang, X., Qiu, S., Luo, P., et al. (2018) Down-Regulation of hsa_circ_0001649 in Hepatocellular Carcinoma Predicts a Poor Prognosis. Cancer Biomark, 22, 135-142.
https://doi.org/10.3233/CBM-171109
[50] Wang, J., Tan, Q., Wang, W., et al. (2020) Mechanism of the Regulatory Effect of Overexpression of circMTO1 on Proliferation and Apoptosis of Hepatoma Cells via miR-9-5p/NOX4 Axis. Cancer Management and Research, 12, 3915-3925.
https://doi.org/10.2147/CMAR.S240719