具有浓度迁移率和对数势能的修正Cahn-Hillard方程的有限元算法
Finite Element Method for the Modified Cahn-Hilliard Equation with the Concentration Mobility and the Logarithmic Potential
DOI: 10.12677/AAM.2020.99164, PDF, HTML, XML, 下载: 510  浏览: 784  科研立项经费支持
作者: 李亚楠, 王旦霞, 任永华:太原理工大学数学学院,山西 晋中
关键词: 修正Cahn-Hilliard方程浓度迁移率对数势能The Modified Cahn-Hilliard Equation The Concentration Mobility The Logarithmic Potential
摘要: 为了研究具有浓度迁移率和对数势能的修正Cahn-Hilliard方程,在空间上采用混合有限元方法进行离散,时间上采用Crank-Nicolson格式进行离散,对于非线性项采用了凸分裂的方法。证明了数值方法的稳定性,并且给出了误差估计。最后,通过数值算例对理论分析进行了验证。结果表明,理论分析与数值实验相一致。
Abstract: In order to study the modified Cahn-Hilliard equation with concentration mobility and logarithmic potential energy, the mixed finite element method was used in space, and the Crank-Nicolson scheme was used in time. The convex splitting method is used for nonlinear terms. Furthermore, the stability of the numerical method is proved and the error estimate is given. Finally, a numerical example is given to verify the theoretical analysis. The results show that the theoretical analysis is consistent with the numerical experiment.
文章引用:李亚楠, 王旦霞, 任永华. 具有浓度迁移率和对数势能的修正Cahn-Hillard方程的有限元算法[J]. 应用数学进展, 2020, 9(9): 1383-1393. https://doi.org/10.12677/AAM.2020.99164

1. 引言

Cahn-Hilliard方程最早是由Cahn和Hilliard在20世纪50年代提出的 [1],常用来描述二元合金在某种不稳定状态时相的分离和粗化现象 [2] [3] [4]。为了抑制粗化现象,Aristotelous提出修正Cahn-Hilliard方程 [5]。本文研究的具有浓度迁移率和对数势能的修正Cahn-Hilliard方程具有如下形式:

{ u t = ( m ( u ) w ) , ( x , t ) Ω × ( 0 , T ) , w = ε 2 Δ u + ϕ ( u ) + φ , ( x , t ) Ω × ( 0 , T ) , Δ φ = β ( u u ¯ 0 ) , ( x , t ) Ω × ( 0 , T ) , n u = n w = 0 , ( x , t ) Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) , x Ω . (1)

其中: Ω R d , d = 2 ε 是给定的参数; u t = u t β > 0 ;n是单位外法向量。u是混合物中某种物质的浓度,w是化学势能, φ 是辅助变量, u ¯ 0 = 1 | Ω | Ω u 0 ( x ) d x m ( u ) 是浓度迁移率,定义如下 [6]:对于 0 < σ 1

m ( u ) = { 1 4 [ 1 ( 1 σ ) ( 2 u 1 ) 2 ] , 0 u 1 , 1 8 σ [ 1 + e 2 ( 1 σ ) ( 4 u 2 4 u ) σ ] , .

容易得到,对于 u R ,存在 m 1 > m 2 > 0 ,使得 m 1 m ( u ) m 2 成立;对于 u R ,存在 M > 0 ,使得 | m ( u ) | M 成立。 Φ ( u ) 是对数势能,定义如下 [7]:对于 θ ( 0 , 1 )

Φ ( u ) = θ 2 ( ( 1 + u ) ln ( 1 + u ) + ( 1 u ) ln ( 1 u ) ) + 1 2 ( 1 u 2 ) , u ( 1 , 1 ) .

ϕ ( u ) = Φ ( u ) = θ 2 ( ln ( 1 + u ) ln ( 1 u ) ) u .

根据正则化思想,考虑下面的对数势能函数 [8]:对于 k ( 0 , 1 )

Φ ( u ) : = { θ 2 ( 1 + u ) ln ( 1 + u ) + θ 4 k ( 1 u ) 2 θ k 4 + θ 2 ( 1 u ) ln k + 1 2 ( 1 u 2 ) , u 1 k , θ 2 ( ( 1 + u ) ln ( 1 + u ) ( 1 u ) ln ( 1 u ) ) + 1 2 ( 1 u 2 ) , | u | < 1 k , θ 2 ( 1 u ) ln ( 1 u ) + θ 4 k ( 1 + u ) 2 θ k 4 + θ 2 ( 1 + u ) ln k + 1 2 ( 1 u 2 ) , u 1 + k .

ϕ : = Φ ( u ) = { θ 2 ln ( 1 + u ) + θ 2 θ 2 k ( 1 u ) θ 2 ln k u , u 1 k , θ 2 ( ln ( 1 + u ) ln ( 1 u ) ) u , | u | < 1 k , θ 2 ln ( 1 u ) θ 2 + θ 2 k ( 1 + u ) + θ 2 ln k u , u 1 + k .

在接下来的研究中,将用正则化的对数势能 Φ 及其导数 ϕ 来代替 Φ ϕ ,为了简单,仍记为 Φ ϕ 。自由能函数定义为:

E = Ω ( ε 2 2 | u | 2 + Φ ( u ) ) d x + β 2 u u ¯ 0 H 1 2 .

2. 数值格式

L 2 ( Ω ) 是平方可积函数空间,内积为 ( u , v ) = Ω u ( x ) v ( x ) d x ,相应范数为 u = u L 2 ( Ω ) = ( u , u ) H 1 ( Ω ) 是通常的Sobolev空间,相应的半范和范数分别为

| u | H 1 = ( Ω | D u | 2 d x ) 1 2 , u H 1 = ( Ω | u | 2 d x + Ω | D u | 2 d x ) 1 2 .

具有浓度迁移率和对数势能的修正Cahn-Hilliard方程的弱解形式为:

{ ( u t , q ) + ( ( m ( u ) w ) , q ) = 0 , q H 1 ( Ω ) , ( w , v ) ε 2 ( u , v ) ( ϕ 1 ( u ) ϕ 2 ( u ) , v ) ( φ , v ) = 0 , v H 1 ( Ω ) , ( φ , ψ ) β ( u u ¯ 0 , ψ ) = 0 , ψ H 1 ( Ω ) . (2)

其中

ϕ 1 ( u ) = { θ 2 ln ( 1 + u ) + θ 2 θ 2 k ( 1 u ) θ 2 ln k , u 1 k , θ 2 ( ln ( 1 + u ) ln ( 1 u ) ) , | u | < 1 k , θ 2 ln ( 1 u ) θ 2 + θ 2 k ( 1 + u ) + θ 2 ln k , u 1 + k .

ϕ 2 ( u ) = u 。容易得到 u ( , ) 0 < ϕ 1 L : = θ ( 2 k ) k ϕ 2 = 1

2.1. 半离散格式

把时间区间 [ 0 , T ] 进行剖分, 0 = t 0 < t 1 < < t N = T ,N是一个正整数,时间节点满足 t i = i τ i = 0 , 1 , , N τ = T N 是时间步长。接下来构造具有浓度迁移率和对数势能的修正Cahn-Hilliard方程的半离散格式:给定 u n ,求 u n + 1 w n + 1 φ n + 1 ,当 n 1 时,满足

{ ( δ τ u n + 1 , q ) + ( ( m ( u n ) w n + 1 ) , q ) = 0 , q H 1 ( Ω ) , ( w n + 1 , v ) ε 2 ( u n + 1 , v ) ( φ n + 1 , v ) ( ϕ 1 ( u n + 1 ) ϕ 2 ( u n ) , v ) = 0 , v H 1 ( Ω ) , ( φ n + 1 , ψ ) β ( u n + 1 u ¯ 0 , ψ ) = 0 , ψ H 1 ( Ω ) . (3)

其中 δ τ u n + 1 = u n + 1 u n τ

2.2. 全离散格式

T h = K 是区域 Ω 上拟一致剖分, h i 表示网格大小, h = max 0 i N h i S h 是分片连续的有限元空间,定义 S h = { v h C ( Ω ) | v h | K P k ( x , y ) , K T h } S h H 1 ( Ω ) 。这里 P k ( x , y ) x , y 的次数不超过 k ( Z + ) 的线性多项式的集合。定义 L 0 2 : = { u L 2 ( Ω ) | ( u , 1 ) = 0 } S ˙ h : = S h L 0 2 ( Ω ) 。接下来构造具有浓度迁移率和对数势能的修正Cahn-Hilliard方程的全离散格式:给定 u h n ,求 u h n + 1 w h n + 1 φ h n + 1 ,当 n 1 时,满足

{ ( δ τ u h n + 1 , q h ) + ( ( m ( u h n ) w h n + 1 ) , q h ) = 0 , q h S h , ( w h n + 1 , v h ) ε 2 ( u h n + 1 , v h ) ( φ h n + 1 , v h ) ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , v h ) = 0 , v h S h , ( φ h n + 1 , ψ h ) β ( u h n + 1 u ¯ 0 , ψ h ) = 0 , ψ h S h . (4)

Ritz投影算子 R h : H 1 ( Ω ) S h 满足 ( ( u R h u ) , v ) = 0 ( R h u u , 1 ) = 0 ,其中 u h 0 = R h u 0

3. 稳定性分析

定义3.1: H 1 范数定义如下:

v h 1 , h : = ( v h , ( Δ h ) 1 v h ) = sup 0 χ S ˙ h ( v , χ ) χ , v h S ˙ h .

引理3.1 [9]:设 ζ , χ S ˙ h ( Ω ) ,有

( ζ , χ ) 1 , h : = ( T h ( ζ ) , T h ( χ ) ) = ( ζ , T h ( χ ) ) = ( T h ( ζ ) , χ ) .

其中 T h : S ˙ h ( Ω ) S ˙ h ( Ω ) 是可逆线性算子, ( T h ( χ ) , ν ) = ( χ , ν ) ,且满足

| ( χ , g ) | χ 1 , h g ,

其中 g S h ( Ω ) 。进一步,下面估计式成立

ζ 1 , h C ζ , ζ S ˙ h .

定理3.1:令 ( u h n + 1 , w h n + 1 ) 是(4)的解,对任意的 τ , h , ε > 0 ,下面的不等式成立

E ( u h n + 1 ) + τ m ( u h n ) w h n + 1 2 + ε 2 2 u h n + 1 u h n 2 + β 2 u h n + 1 u h n 1 , h 2 E ( u h n ) . (5)

证明:在(4)的第1式中,令 q h = τ w h n + 1 ,得

( u h n + 1 u h n , w h n + 1 ) + τ m ( u h n ) w h n + 1 2 = 0. (6)

在(4)的第2式中,令 v h = ( u h n + 1 u h n ) ,并运用 2 ( a b , a ) = a 2 b 2 + ( a b ) 2

( w h n + 1 , u h n + 1 u h n ) + ε 2 2 ( u h n + 1 2 u h n 2 + u h n + 1 u h n 2 ) + ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , u h n + 1 u h n ) + ( φ h n + 1 , u h n + 1 u h n ) = 0. (7)

在(4)的第(3)式中,令 ψ h = T h ( u h n + 1 u h n ) ,得

( φ h n + 1 , T h ( u h n + 1 u h n ) ) + β ( u h n + 1 u ¯ 0 , T h ( u h n + 1 u h n ) ) = 0. (8)

将(6),(7),(8)相加并利用引理3.1得

τ m ( u h n ) w h n + 1 2 + ε 2 2 ( u h n + 1 2 u h n 2 + u h n + 1 u h n 2 ) + ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , u h n + 1 u h n ) + β ( u h n + 1 u ¯ 0 , u h n + 1 u h n ) 1 , h = 0. (9)

Φ ( u ) 的定义中,用 Φ 1 ( u ) Φ 2 ( u ) 来表示 ϕ 1 ( u ) ϕ 2 ( u ) 的原函数所对应的部分,即 Φ ( u ) = Φ 1 ( u ) Φ 2 ( u ) Φ 1 ( u ) = ϕ 1 ( u ) Φ 2 ( u ) = ϕ 2 ( u )

然后利用泰勒展开公式,得到:

Φ 1 ( u h n ) Φ 1 ( u h n + 1 ) = ϕ 1 ( u h n + 1 ) ( u h n u h n + 1 ) + 1 2 ϕ 1 ( ξ 1 ) ( u h n u h n + 1 ) 2 ϕ 1 ( u h n + 1 ) ( u h n u h n + 1 ) . (10)

Φ 2 ( u h n + 1 ) Φ 2 ( u h n ) = ϕ 2 ( u h n ) ( u h n + 1 u h n ) + 1 2 ϕ 2 ( ξ 2 ) ( u h n + 1 u h n ) 2 ϕ 2 ( u h n ) ( u h n + 1 u h n ) . (11)

结合(10),(11) 得到:

( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) ) ( u h n + 1 u h n ) Φ ( u h n + 1 ) Φ ( u h n ) . (12)

将(12)代入(9)式,并对(9)式最后一项运用 2 ( a b , a ) = a 2 b 2 + ( a b ) 2 ,得

τ m ( u h n ) w h n + 1 2 + ε 2 2 ( u h n + 1 2 u h n 2 + u h n + 1 u h n 2 ) + ( Φ ( u h n + 1 ) Φ ( u h n ) , 1 ) + β 2 ( u h n + 1 u ¯ 0 1 , h 2 u h n u ¯ 0 1 , h 2 + u h n + 1 u h n 1 , h 2 ) 0. (13)

根据自由能函数的定义,则上式变为

E ( u h n + 1 ) + τ m ( u h n ) w h n + 1 2 + ε 2 2 u h n + 1 u h n 2 + β 2 u h n + 1 u h n 1 , h 2 E ( u h n ) .

则稳定性得证。

4. 误差估计

为了之后证明的简单,介绍下面一些符号:

e ^ u n + 1 : = R h u n + 1 u h n + 1 , e ˜ u n + 1 : = u n + 1 R h u n + 1 ,

e ^ w n + 1 : = R h w n + 1 w h n + 1 , e ˜ w n + 1 : = w n + 1 R h w n + 1 ,

e ^ φ n + 1 : = R h φ n + 1 φ h n + 1 , e ˜ φ n + 1 : = φ n + 1 R h φ n + 1 ,

σ ( u n + 1 ) = δ τ R h u n + 1 u t n + 1 .

对于 ( u , w , φ ) ,做如下正则性假设:

u L ( 0 , T ; W 1 , 5 ( Ω ) ) L ( 0 , T ; H r + 1 ( Ω ) ) ,

w L ( 0 , T ; H r + 1 ( Ω ) ) ,

φ L ( 0 , T ; H r + 1 ( Ω ) ) .

引理4.2 [10]:Ritz投影算子 R h 满足下面的估计:

R h u 1 C u 1 , u H 1 ( Ω ) ,

u R h u + h u R h u 1 C h r + 1 u r + 1 , u H r + 1 ( Ω ) .

引理4.3 [11]:假设 ( u , w ) 是(2)的解,则有下面估计:

σ ( u n + 1 ) 2 C h 2 r + 2 + C τ 2 .

定理4.2:设初始问题(2),全离散格式(4)的解分别是 ( u , w ) ( u h n + 1 , w h n + 1 ) ,存在常数 C , τ , h ,则有估计式

i = 1 n C τ e ^ w i + 1 2 + ε 2 e ^ u n + 1 2 + β e ^ u n + 1 1 , h 2 C τ 2 + C h 2 r . (14)

证明:对于(3)式,令 q = q h v = v h ψ = ψ h ,利用 R h 的性质,在 t = t n + 1 ,有

{ ( δ τ R h u n + 1 , q h ) + ( m ( u n + 1 ) R h w n + 1 , q h ) = ( σ ( u n + 1 ) , q h ) , ε 2 ( R h u n + 1 , v h ) ( R h w n + 1 , v h ) + ( R h φ n + 1 , v h ) = ( e ˜ w n + 1 , v h ) ( e ˜ φ n + 1 , v h ) ( ϕ 1 ( u n + 1 ) ϕ 2 ( u n + 1 ) , v h ) , ( R h φ n + 1 , ψ h ) β ( R h u n + 1 u ¯ 0 , ψ h ) = β ( e ˜ u n + 1 , ψ h ) . (15)

(15)式减去(4)式得

{ ( δ τ e ^ u n + 1 , q h ) + ( m ( u n + 1 ) R h w n + 1 , q h ) ( m ( u h n ) w h n + 1 , q h ) = ( σ ( u n + 1 ) , q h ) , ε 2 ( e ^ u n + 1 , v h ) ( e ^ w n + 1 , v h ) + ( e ^ φ n + 1 , v h ) = ( e ˜ w n + 1 , v h ) ( e ˜ φ n + 1 , v h ) ( ϕ 1 ( u n + 1 ) ϕ 2 ( u n + 1 ) , v h ) + ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , v h ) , ( e ^ φ n + 1 , ψ h ) β ( e ^ u n + 1 , ψ h ) = β ( e ˜ u n + 1 , ψ h ) . (16)

在(16)式中,令 q h = e ^ w n + 1 v h = δ τ e ^ u n + 1 ψ h = T h ( δ τ e ^ u n + 1 ) ,然后三式相加得

( m ( u n + 1 ) R h w n + 1 , e ^ w n + 1 ) ( m ( u h n ) w h n + 1 , e ^ w n + 1 ) + ε 2 2 τ ( e ^ u n + 1 2 e ^ u n 2 + e ^ u n + 1 e ^ u n 2 ) + β 2 τ ( e ^ u n + 1 1 , h 2 e ^ u n 1 , h 2 + e ^ u n + 1 e ^ u n 1 , h 2 ) = ( σ ( u n + 1 ) , e ^ w n + 1 ) + ( e ˜ w n + 1 , δ τ e ^ u n + 1 ) ( e ˜ φ n + 1 , δ τ e ^ u n + 1 ) β ( e ˜ u n + 1 , T h ( δ τ e ^ u n + 1 ) ) ( ϕ 1 ( u n + 1 ) ϕ 2 ( u n + 1 ) , δ τ e ^ u n + 1 ) + ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , δ τ e ^ u n + 1 ) . (17)

其中

( m ( u n + 1 ) R h w n + 1 , e ^ w n + 1 ) ( m ( u h n ) w h n + 1 , e ^ w n + 1 ) = ( ( m ( u h n ) + m ( ξ 3 ) ( u n + 1 u h n ) ) R h w n + 1 , e ^ w n + 1 ) ( m ( u h n ) w h n + 1 , e ^ w n + 1 ) = m ( u h n ) e ^ w n + 1 2 + ( m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 , e ^ w n + 1 ) . (18)

则(17)式变为

m ( u h n ) e ^ w n + 1 2 + ε 2 2 τ ( e ^ u n + 1 2 e ^ u n 2 + e ^ u n + 1 e ^ u n 2 ) + β 2 τ ( e ^ u n + 1 1 , h 2 e ^ u n 1 , h 2 + e ^ u n + 1 e ^ u n 1 , h 2 ) = ( σ ( u n + 1 ) , e ^ w n + 1 ) + ( e ˜ w n + 1 , δ τ e ^ u n + 1 ) ( e ˜ φ n + 1 , δ τ e ^ u n + 1 ) β ( e ˜ u n + 1 , T h ( δ τ e ^ u n + 1 ) ) ( ϕ 1 ( u n + 1 ) ϕ 2 ( u n + 1 ) , δ τ e ^ u n + 1 ) + ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , δ τ e ^ u n + 1 ) ( m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 , e ^ w n + 1 ) = i = 1 6 G i . (19)

接下来,根据 Cauchy-Schwarz不等式,庞加莱不等式和Young不等式估计 G i

G 1 = ( σ ( u n + 1 ) , e ^ w n + 1 ) | ( σ ( u n + 1 ) , e ^ w n + 1 ) | C σ ( u n + 1 ) e ^ w n + 1 C 2 m 1 σ ( u n + 1 ) 2 + m 1 4 e ^ w n + 1 2 C τ 2 + C h 2 r + 2 + m 1 4 e ^ w n + 1 2 . (20)

G 2 = ( e ˜ w n + 1 , δ τ e ^ u n + 1 ) | ( e ˜ w n + 1 , δ τ e ^ u n + 1 ) | C e ˜ w n + 1 δ τ e ^ u n + 1 1 , h 4 C 2 α e ˜ w n + 1 2 + α 16 δ τ e ^ u n + 1 1 , h 2 C h 2 r + α 16 δ τ e ^ u n + 1 1 , h 2 . (21)

G 3 = ( e ˜ φ n + 1 , δ τ e ^ u n + 1 ) | ( e ˜ φ n + 1 , δ τ e ^ u n + 1 ) | C e ˜ φ n + 1 δ τ e ^ u n + 1 1 , h 4 C 2 α e ˜ φ n + 1 2 + α 16 δ τ e ^ u n + 1 1 , h 2 C h 2 r + α 16 δ τ e ^ u n + 1 1 , h 2 . (22)

G 4 = β ( e ˜ u n + 1 , T h ( δ τ e ^ u n + 1 ) ) β | ( e ˜ u n + 1 , T h ( δ τ e ^ u n + 1 ) ) | C β e ˜ u n + 1 T h ( δ τ e ^ u n + 1 ) C β e ˜ u n + 1 δ τ e ^ u n + 1 1 , h 4 C 2 β 2 α e ˜ u n + 1 2 + α 16 δ τ e ^ u n + 1 1 , h 2 C h 2 r + α 16 δ τ e ^ u n + 1 1 , h 2 . (23)

运用泰勒展开,有

τ δ τ u ( t ) = t τ t u s ( s ) d s 2 ( t τ t u s ( s ) d s ) 2 ( t τ t u s ( s ) 3 d s ) 2 3 ( t τ t 1 3 2 d s ) 4 3 τ 4 3 ( t τ t u s ( s ) 3 d s ) 2 3 C τ 2 . (24)

因此

G 5 = ( ϕ 1 ( u n + 1 ) ϕ 2 ( u n + 1 ) , δ τ e ^ u n + 1 ) + ( ϕ 1 ( u h n + 1 ) ϕ 2 ( u h n ) , δ τ e ^ u n + 1 ) = ( ϕ 1 ( u h n + 1 ) ϕ 1 ( u n + 1 ) , δ τ e ^ u n + 1 ) + ( ϕ 2 ( u n + 1 ) ϕ 2 ( u h n ) , δ τ e ^ u n + 1 ) = ( ϕ 1 ( ξ 3 ) ( u n + 1 u h n + 1 ) , δ τ e ^ u n + 1 ) + ( u n + 1 u h n , δ τ e ^ u n + 1 ) L | ( u n + 1 u h n + 1 , δ τ e ^ u n + 1 ) | + τ ( δ τ u n + 1 , δ τ e ^ u n + 1 ) + ( u n u h n , δ τ e ^ u n + 1 )

4 L 2 α ( u n + 1 u h n + 1 ) 2 + α 16 δ τ e ^ u n + 1 1 , h 2 + τ δ τ u n + 1 δ τ e ^ u n + 1 1 , h + ( u n u h n ) δ τ e ^ u n + 1 1 , h C h 2 r + C e ^ u n + 1 2 + α 16 δ τ e ^ u n + 1 1 , h 2 + 4 α τ δ τ u n + 1 2 + α 16 δ τ e ^ u n + 1 1 , h 2 + C h 2 r + C e ^ u n 2 + α 16 δ τ e ^ u n + 1 1 , h 2 C τ 2 + C h 2 r + C e ^ u n + 1 2 + C e ^ u n 2 + 3 α 16 δ τ e ^ u n + 1 1 , h 2 . (25)

G 6 = ( m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 , e ^ w n + 1 ) m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 e ^ w n + 1 1 m 1 m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 2 + m 1 4 e ^ w n + 1 2 C M 2 m 1 ( u n + 1 u h n ) 2 w n + 1 1 , h 2 + m 1 4 e ^ w n + 1 2 C τ 2 + C h 2 r + C e ^ u n + 1 2 + m 1 4 e ^ w n + 1 2 . (26)

则(19)式变为

m ( u h n ) e ^ w n + 1 2 + ε 2 2 τ ( e ^ u n + 1 2 e ^ u n 2 + e ^ u n + 1 e ^ u n 2 ) + β 2 τ ( e ^ u n + 1 1 , h 2 e ^ u n 1 , h 2 + e ^ u n + 1 e ^ u n 1 , h 2 ) C τ 2 + C h 2 r + C e ^ u n + 1 2 + C e ^ u n 2 + m 1 2 e ^ w n + 1 2 + 3 α 8 δ τ e ^ u n + 1 1 , h 2 . (27)

在(16)式的第一式中令 q h = T h ( δ τ e ^ u n + 1 ) ,有

δ τ e ^ u n + 1 1 , h 2 = ( σ ( u n + 1 ) , T h ( δ τ e ^ u n + 1 ) ) ( m ( u n + 1 ) R h w n + 1 , T h ( δ τ e ^ u n + 1 ) ) + ( m ( u h n ) w h n + 1 , T h ( δ τ e ^ u n + 1 ) ) = ( σ ( u n + 1 ) , T h ( δ τ e ^ u n + 1 ) ) ( ( m ( u h n ) + m ( ξ 3 ) ( u n + 1 u h n ) ) R h w n + 1 , T h ( δ τ e ^ u n + 1 ) ) + ( m ( u h n ) w h n + 1 , T h ( δ τ e ^ u n + 1 ) ) = ( σ ( u n + 1 ) , T h ( δ τ e ^ u n + 1 ) ) ( m ( u h n ) e ^ w n + 1 , T h ( δ τ e ^ u n + 1 ) )

( m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 , T h ( δ τ e ^ u n + 1 ) ) σ ( u n + 1 ) T h ( δ τ e ^ u n + 1 ) + m ( u h n ) L e ^ w n + 1 T h ( δ τ e ^ u n + 1 ) + m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 T h ( δ τ e ^ u n + 1 ) 3 2 σ ( u n + 1 ) 2 + 1 2 δ τ e ^ u n + 1 1 , h 2 + 3 m 1 2 2 e ^ w n + 1 2 + 3 2 m ( ξ 3 ) ( u n + 1 u h n ) R h w n + 1 2 C τ 2 + C h 2 r + C h 2 r + 2 + 3 m 1 2 2 e ^ w n + 1 2 + C e ^ u n + 1 2 + 1 2 δ τ e ^ u n + 1 1 , h 2 . (28)

δ τ e ^ u n + 1 1 , h 2 C τ 2 + C h 2 r + 3 m 1 2 e ^ w n + 1 2 + C e ^ u n + 1 2 . (29)

将(29)式代入(27)式得

m ( u h n ) e ^ w n + 1 2 + ε 2 2 τ ( e ^ u n + 1 2 e ^ u n 2 ) + β 2 τ ( e ^ u n + 1 1 , h 2 e ^ u n 1 , h 2 ) C τ 2 + C h 2 r + C e ^ u n + 1 2 + C e ^ u n 2 + ( m 1 2 + 9 m 1 2 α 8 ) e ^ w n + 1 2 . (30)

在(30)式中取适当的 α ( 0 < α < 4 ( 2 m 2 m 1 ) 9 m 1 2 ) ,并乘以 2 τ 得:

C τ e ^ w n + 1 2 + ε 2 ( e ^ u n + 1 2 e ^ u n 2 ) + β ( e ^ u n + 1 1 , h 2 e ^ u n 1 , h 2 ) C τ τ 2 + C τ h 2 r + C e ^ u n + 1 2 + C e ^ u n 2 . (31)

上式从1到n求和,根据离散的Gronwall不等式,有:

i = 1 n C τ e ^ w i + 1 2 + ε 2 e ^ u n + 1 2 + β e ^ u n + 1 1 , h 2 C τ 2 + C h 2 r . (32)

5. 数值实验

在数值实验部分,采用一些数值算例验证理论分析的正确性和有效性。选择初始条件为

u 0 = 0.5 + 0.17 cos ( π x ) cos ( 2 π y ) + 0.2 cos ( 3 π x ) cos ( π y )

计算区域为 [ 1 , 1 ] × [ 1 , 1 ] 。在表1~4中,选择固定的参数 τ = 1 1000 ,变化的网格步长为 h = 1 16 h = 1 32 h = 1 64 h = 1 128 h = 1 256 k = 0.01 。相对误差 e ^ u e ^ u H 1 的空间收敛阶接近于2和1,与理论部分得到的收敛阶保持一致,且不同的 θ β 对收敛阶影响不大。

Table 1. ε = 0.09 , θ = 0.1 , β = 0

表1. ε = 0.09 , θ = 0.1 , β = 0

Table 2. ε = 0.09 , θ = 0.1 , β = 1

表2. ε = 0.09 , θ = 0.1 , β = 1

Table 3. ε = 0.09 , θ = 0.7 , β = 0

表3. ε = 0.09 , θ = 0.7 , β = 0

Table 4. ε = 0.09 , θ = 0.7 , β = 1

表4. ε = 0.09 , θ = 0.7 , β = 1

6. 结论

本文研究了具有浓度迁移率和对数势能的修正Cahn-Hilliard方程,在理论分析中证明了它的稳定性和误差估计,并给出了数值算例验证了它的结论。

基金项目

山西省自然科学基金(No:201901D111123)。

参考文献

[1] Cahn, J.W. and Hilliard, J.E. (1958) Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 28, 258-267.
https://doi.org/10.1063/1.1744102
[2] Yan, Y., Chen, W., Wang, C. and Wise, S.M. (2018) A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation. Communications in Computation Physics, 23, 572-602.
https://doi.org/10.4208/cicp.OA-2016-0197
[3] Dong, S., Yang, Z. and Lin, L. (2019) A Family of Second-Order Energy-Stable Schemes for Cahn-Hilliard Type Equation. Journal of Computational Physics, 383, 24-54.
https://doi.org/10.1016/j.jcp.2019.01.014
[4] Elliott, C.M. and Garcke, H. (1996) On the Cahn-Hilliard Equation with Degenerate Mobility. Society for Industrial SIAM Journal on Mathematical Analysis, 27, 404-423.
https://doi.org/10.1137/S0036141094267662
[5] Aristotelous, A.C., Karakashian, O. and Wise, S. (2017) Local Discontinuous Galerkin Methods for the Cahn-Hilliard Type Equations. Journal of Computational Physics, 227, 472-491.
https://doi.org/10.1016/j.jcp.2007.08.001
[6] Yang, X. and Zhao, J. (2019) On Linear and Unconditionally Energy Stable Algorithms for Variable Mobility Cahn-Hilliard Type Equation with Logarithmic Flory-Huggins Potential. Communications in Computational Physics, 25, 703-728.
https://doi.org/10.4208/cicp.OA-2017-0259
[7] Al Ghafli, A.A.M. (2010) Mathematical and Numerical Analysis of a Pair of Coupled Cahn-Hilliard Equations with a Logarithmic Potential. Doctoral Thesis, Durham University, Durham, 47-52.
[8] Barrett, J.W. and Blowey, J.F. (1999) Finite Element Approximation of the Cahn-Hilliard Equation with Concentration Dependent Mobility. Mathematics of Computation, 68, 487-517.
https://doi.org/10.1090/S0025-5718-99-01015-7
[9] Liu, Y., Chen, W., Wang, C., et al. (2017) Error Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Hele-Shaw System. Numerische Mathematik, 135, 679-709.
https://doi.org/10.1007/s00211-016-0813-2
[10] Diegel, A.E., Feng, X.H. and Wise, S.M. (2015) Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Darcy-Stokes System. SIAM Journal on Numerical Analysis, 53, 127-152.
https://doi.org/10.1137/130950628
[11] Diegel, A.E., Wang, C., Wang, X., et al. (2017) Convergence Analysis and Error Estimates for a Second Order Accurate Finite Element Method for the Cahn-Hilliard-Navier-Stokes System. Numerische Mathematik, 137, 495-534.
https://doi.org/10.1007/s00211-017-0887-5