CSTR生物催化反应过程数学模型拉氏变换及过程动态特性
Laplace Transforming and Dynamics of CSTR Bioreaction Mathematical Models
DOI: 10.12677/bp.2011.12002, PDF, HTML, 下载: 3,778  浏览: 12,836  国家自然科学基金支持
作者: 高玲, 任一林, 林建群, 庞欣, 林建强
关键词: 生物数学模型拉氏变换CSTR生物催化
Mathematical Model; Laplace; CSTR; Biocatalyze
摘要: 连续搅拌反应器是固定化酶、固定化细胞经常采用的反应器形式。数学模型是反应器设计、操作条件优化以及催化生产过程优化的必要工具。动态过程的数学模型一般是微分方程的形式。拉氏(Laplace)变换可以简化微分方程的求解,此外,拉氏变换还是自动控制领域构建传递函数数学模型的工具。本文以连续搅拌反应器固定化酶或固定化细胞催化过程的数学模型为例,介绍生物催化过程数学模型拉氏变换及过程动态特性分析方法。
Abstract: Continuous Stirred Tank Reactor (CSTR) is commonly used in case of immobilized enzyme or immobilized cells. Mathematical model is a useful tool in reactor design, operation condition optimization, and production process optimization. The mathematical models of dynamic process are usually in forms of differential equations. Laplace transforming can make the solution of the differential equations easy. In addi- tion, Laplace transforming is often used in building the transfer function in field of process automation. In this paper, the methods of Laplace transforming and dynamic analysis of the mathematical models for CSTR with immobilized biocatalysts are introduced in detail.
文章引用:高玲, 任一林, 林建群, 庞欣, 林建强. CSTR生物催化反应过程数学模型拉氏变换及过程动态特性[J]. 生物过程, 2011, 1(2): 5-8. http://dx.doi.org/10.12677/bp.2011.12002

参考文献

[1] 欧阳平凯. 走向21世纪的化学化工与生物化工技术[J]. 江苏科技信息, 2000, 17(5): 22-25.
[2] K. Ban, S. Hama, K. Nishizuk, M. Kaieda, T. Matsumoto, A. Kondo, H. Noda and H. Fukuda. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. Journal of Molecular Catalysis B: Enzymatic, 2002, 17(3-5): 157-165.
[3] J. Lin, S. Lee, H. Lee and Y. Koo. Modeling of typical microbial cell growth in batch culture. Biotechnology and Bioprocess Engineering, 2000, 5(5): 382-385.
[4] J. Lin, S. Lee and Y. Koo. Model development for lactic acid fermentation and parameter optimization using genetic algorithm. Journal of Microbiology and Biotechnology, 2004, 14(6): 1163- 1169.
[5] J. Lin, S. Lee and Y. Koo. Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Bio- technology and Bioprocess Engineering, 2004, 9(1): 52-58.
[6] J. Lin, S. Lee and Y. Koo. Modeling and simulation of simultaneous saccharification and fermentation of paper mill sludge to lactic acid. Journal of Microbiology and Biotechnology, 2005, 15(1): 40-47.
[7] D. E. Seborg, T. F. Edgar and D. A. Mellichamp. Process dyna- mics and control. New York: John Wiley & Sons, 2004: 15-65.