一类带有Dirichlet边界条件的分数阶对流弥散方程解的多重性
Multiple Solutions for a Class of Fractional Advection-Dispersion Equation with Dirichlet Boundary Conditions
DOI: 10.12677/AAM.2020.96112, PDF, HTML, XML, 下载: 708  浏览: 940  国家自然科学基金支持
作者: 王 怡:南京航空航天大学数学系,江苏 南京
关键词: 分数阶对流弥散方程耦合系统变分方法多重解Fractional Advection-Dispersion Equation Coupled System Variational Methods Multiple Solutions
摘要: 本文研究了带有Dirichlet边界条件的分数阶对流弥散方程耦合系统的多解问题。基于变分方法和一个三临界点定理,我们得到了该分数阶系统至少有三个解的结果。
Abstract: This article concerns multiple solutions for a coupled system of fractional advection-dispersion equation with Dirichlet boundary conditions. Using variational methods and a three-critical point theorem, we obtain that the fractional system has at least three solutions.
文章引用:王怡. 一类带有Dirichlet边界条件的分数阶对流弥散方程解的多重性[J]. 应用数学进展, 2020, 9(6): 947-958. https://doi.org/10.12677/AAM.2020.96112

1. 引言

本文将研究如下带有两个参数的分数阶对流弥散方程耦合系统的多重解问题。

{ d d t ( 1 2 D 0 t β ( u ( t ) ) + 1 2 D t T β ( u ( t ) ) ) + λ F u ( t , u ( t ) , v ( t ) ) + μ G u ( t , u ( t ) , v ( t ) ) = 0 , a . e . t [ 0 , T ] d d t ( 1 2 D 0 t η ( v ( t ) ) + 1 2 D t T η ( v ( t ) ) ) + λ F v ( t , u ( t ) , v ( t ) ) + μ G v ( t , u ( t ) , v ( t ) ) = 0 , a . e . t [ 0 , T ] u ( 0 ) = u ( T ) = 0 , v ( 0 ) = v ( T ) = 0 , (1)

其中, D 0 t κ D t T κ 分别是 0 κ < 1 阶的左、右Riemann-Liouville分数阶积分, λ μ 是两个正的实参数, F ( t , x , y ) G ( t , x , y ) : [ 0 , T ] × R 2 R ,特别地,在 t [ 0 , T ] 上,对每一个 ( x , y ) R 2 F ( , x , y ) G ( , x , y ) 是连续函数,且在 R 2 上,对任意的 t [ 0 , T ] F ( t , , ) G ( t , , ) C 1 函数,且 F ( t , 0 , 0 ) = G ( t , 0 , 0 ) = 0 F s G s 分别表示F,G对s的偏导数。

近几年,关于非线性分数阶微分方程解的存在性和多重性问题被广泛的研究,目前,解决此类问题的一些主要方法包括不动点定理,重合度理论,上下解法,单调迭代法等 [1] [2] [3] [4]。除上述经典方法之外,变分方法和临界点理论已经成功地应用于研究非线性分数阶边值问题解的存在性和多重性问题,此方法对于研究一些复杂的分数阶微分方程具体重大的意义。然而,由于分数阶边值问题的临界点理论往往很难建立一个合适的空间和变分泛函,因此,迄今为止,变分方法和临界点理论应用于分数阶边值问题解的研究还很少 [5] [6] [7] [8] [9]。

在文献 [10] 中,作者研究了如下带有p-Laplacian算子的分数阶微分方程的边界值问题。

{ D t b α ( 1 a ( t ) p 2 φ ( a ( t ) D a t α u ( t ) ) ) = λ ( f u ( t , u ( t ) , v ( t ) ) + g u ( t , u ( t ) , v ( t ) ) ) , t [ a , b ] D t b β ( 1 a ( t ) p 2 φ ( a ( t ) D a t β v ( t ) ) ) = λ ( f v ( t , u ( t ) , v ( t ) ) + g v ( t , u ( t ) , v ( t ) ) ) , t [ a , b ] u ( a ) = u ( b ) = 0 , v ( a ) = v ( b ) = 0 (2)

其中, [ a , b ] 是任意有界区间, λ 是一个非负的实参数, D a t α D a T β D t b α D t b β 分别为 0 < α , β 1 阶的左、右Riemann-Liouville分数阶导数,函数 a ( t ) b ( t ) L ( [ a , b ] ) ,满足 a 0 = ess inf [ a , b ] a ( t ) > 0 a 0 = ess sup [ a , b ] a ( t ) > 0 b 0 = ess inf [ a , b ] b ( t ) > 0 b 0 = ess sup [ a , b ] b ( t ) > 0 φ p ( s ) = | s | p 2 s p > 1 ,且 f ( t , u ( t ) , v ( t ) ) g ( t , u ( t ) , v ( t ) ) : [ a , b ] × R 2 R C 1 函数, f s g s 分别为f,g关于s的偏导数。首先在A-R条件下,作者证明了系统(2)存在无穷多个解,此外,在没有A-R条件的情况下,作者得出了系统(2)至少有一个非平凡解存在的结果。

在上述文献的启发之下,本文将利用变分法及一个三临界点定理研究系统(1)的多重解问题,为此,下文将会建立一个合适的函数空间以及系统(1)的变分结构。

2. 预备知识

在本文中 α = 1 β 2 ( 1 2 , 1 ] δ = 1 η 2 ( 1 2 , 1 ]

定义1令 0 < τ 1 1 < p < ,分数阶导数空间 S 0 τ 是空间 C 0 ( [ 0 , T ] , R ) 的闭包,其范数定义如下

w τ = ( 0 T | w ( t ) | p d t + 0 T | D 0 c t τ w ( t ) | p d t ) 1 p , w S 0 τ

显然,如果 w S 0 τ ,那么w, D 0 c t τ w L p ( [ 0 , T ] , R ) w ( 0 ) = w ( T ) = 0 S 0 τ 是一个自反可分空间。

命题2 ( [11])令 0 < τ 1 1 p < 。对所有的 w S 0 τ ,有

w L p T τ Γ ( τ + 1 ) D 0 c t τ w L p (3)

此外,如果 τ > 1 p ,且 1 p + 1 q = 1 ,那么

w T τ 1 p Γ ( τ ) ( ( τ 1 ) q + 1 ) 1 q D 0 c t τ w L p (4)

由(4)可知,关于空间 S 0 τ 的范数有下面等式成立

w τ = D 0 c t τ w L p = ( 0 T | D 0 c t τ w | p d t ) 1 p (5)

命题3 ( [11])对于任意的 w S 0 τ ,则有

| cos ( π τ ) | 0 T | D 0 c t τ w ( t ) | 2 d t 0 T ( D 0 c t τ w ( t ) , D t c T τ w ( t ) ) d t 1 | cos ( π τ ) | 0 T | D 0 c t τ w ( t ) | 2 d t (6)

命题4 ( [11])令 0 < τ 1 1 < p < 。设 τ > 1 p ,当序列 { w k } 在空间 S 0 τ 上弱收敛w,那么在空间 C 0 ( [ 0 , T ] , R ) 中, { w k } 强收敛到w,即 w k w 0 ,当 k

因此,对于任意的 u S 0 α v S 0 δ ,定义空间S表示空间 S 0 α × S 0 δ ,其范数定义为

( u , v ) S = u α + v δ

显然空间S是一个自反可分的Banach空间,且紧嵌入到空间 X = C 0 ( [ 0 , T ] , R ) × C 0 ( [ 0 , T ] , R ) 中。

我们考虑泛函 T λ : S R ,其定义为

T λ ( u , v ) = Φ ( u , v ) λ Ψ ( u , v )

其中:

Φ ( u , v ) : = 1 2 0 T ( D 0 c t α u ( t ) , D t c T α u ( t ) ) d t 1 2 0 T ( D 0 c t δ v ( t ) , D t c T δ v ( t ) ) d t (7)

Ψ ( u , v ) : = 0 T F ( t , u ( t ) , v ( t ) ) + μ λ G ( t , u ( t ) , v ( t ) ) d t (8)

显然, Φ Ψ 是Gâteaux可微泛函,则对任意 ( x , y ) S ,其在点 ( u , v ) S 处的导数 Φ ( u , v ) Ψ ( u , v ) S 分别为

Φ ( u , v ) ( x , y ) = 1 2 0 T ( D 0 c t α u ( t ) , D t c T α x ( t ) ) + ( D t c T α u ( t ) , D 0 c t α x ( t ) ) d t 1 2 0 T ( D 0 c t δ v ( t ) , D t c T δ y ( t ) ) + ( D t c T δ v ( t ) , D 0 c t δ y ( t ) ) d t (9)

Ψ ( u , v ) ( x , y ) = 0 T F u ( t , u ( t ) , v ( t ) ) x ( t ) + F v ( t , u ( t ) , v ( t ) ) y ( t ) + μ λ ( G u ( t , u ( t ) , v ( t ) ) x ( t ) + G v ( t , u ( t ) , v ( t ) ) y ( t ) ) d t (10)

因此,如果 ( u , v ) S 是等式 T λ ( u , v ) : = Φ ( u , v ) λ Ψ ( u , v ) 的解,那么 ( u , v ) 是问题(1)的弱解。

定理5 [12] 令E是一个自反可分的实Banach空间,在其上定义一个单调、强制、半连续算子 A : E E ,则下面的结果成立:

a) 如果算子A严格单调,那么其存在可逆算子 A 1 : E E ,且 A 1 是严格单调、半连续、有界算子。

b) 如果算子A强单调,那么 A 1 Lipschitz连续。

定理6 [13] 令E是一个自反可分的实Banach空间, Φ : E R 为序列弱下半连续、强制、连续Gâteaux可微算子,它的Gâteaux导数在空间 E 上存在一个连续的逆算子, Ψ : E R 是连续Gâteaux可微泛函,其Gâteaux导数是紧的,且 Φ ( 0 ) = Ψ ( 0 ) 。设存在 ρ > 0 x ˜ E ,使得 ρ < Φ ( x ˜ ) ,那么

i) sup Φ ( x ) ρ Ψ ( x ) < ρ Ψ ( x ˜ ) Φ ( x ˜ )

ii) 对每个 λ Λ ρ : = ( Φ ( x ˜ ) Ψ ( x ˜ ) , ρ sup Φ ( x ) ρ Ψ ( x ) ) ,泛函 T λ = Φ λ Ψ 是强制的,则对每个 λ Λ ρ ,泛函 T λ = Φ λ Ψ 在E上至少有三个不同的临界点。

3. 主要结果

引理7 令 1 2 < α , δ 1 ( u , v ) S 。函数 Φ Ψ 分别定义为式(7),(8),则 Φ : S R 是一个序列弱下半连续,强制,连续Gâteaux泛函可微,它的Gâteaux导数在空间 S 上有一个连续的逆, Ψ : S R 是一个连续的Gâteaux可微泛函,它的Gâteaux导数是紧的。

证明:事实上,由于S紧嵌入到X中,因此 Φ 是一个Gâteaux可微泛函,它在点 ( u , v ) S 处的Gâteaux导数为 Φ ( u , v ) S ,可见式(9)。此外,从式(6)可知,当 u + v + 时,得

Φ ( u , v ) 1 2 | cos ( π α ) | u α 2 + 1 2 | cos ( π δ ) | v δ 2 +

从而可知泛函 Φ 是强制的。下面,我们将证明 Φ S 上有一个连续的逆,令 U = ( u , v ) V = ( x , y ) ,根据式(9),得

Φ ( U ) Φ ( V ) , U V = 0 T ( D 0 c t α ( u ( t ) x ( t ) ) , D t c T α ( u ( t ) x ( t ) ) ) d t 0 T ( D 0 c t δ ( v ( t ) y ( t ) ) , D t c T δ ( v ( t ) y ( t ) ) ) d t | cos ( π α ) | u ( t ) x ( t ) α 2 + | cos ( π δ ) | v ( t ) y ( t ) δ 2 > 0

这表明 Φ 是严格单调的,又考虑到S是自反的,且在空间S中,当 n 时, ( u n , v n ) ( u , v ) ,则在空间 S 中,当 n 时, Φ ( u n , v n ) 弱收敛到 Φ ( u , v ) ,则 Φ 是半连续的,通过定理5,得到 ( Φ ) 1 存在且连续。此外,因为 Φ 是下半连续和凸的,那么它是序列弱下半连续泛函( [14] 定理1.2)。

考虑泛函 Ψ ,显然,由式(8),(10)可知, Ψ 是连续的Gâteaux可微泛函,它的导数为 Ψ : S S 。此外,对于固定的 ( u , v ) S ,设 { ( u n , v n ) } S ,当 n + 时,在空间S中, ( u n , v n ) 弱收敛到 ( u , v ) ,那么 ( u n , v n ) 一致收敛到 ( u , v ) ,即

lim sup n + Ψ ( u n , v n ) 0 T lim sup n + ( F ( t , u n , v n ) + μ λ G ( t , u n , v n ) ) d t = 0 T F ( t , u , v ) + μ λ G ( t , u , v ) d t = Ψ ( u , v ) (11)

式(11)表明 Ψ 是序列弱上半连续。另一方面,在 R 2 上,对所有的 t [ 0 , T ] ,由于 F ( t , , ) G ( t , , ) C 1 函数,那么它是连续函数,则当 n + 时, F ( t , u n , v n ) F ( t , u , v ) G ( t , u n , v n ) G ( t , u , v ) ,利用Lebesgue控制收敛定理, Ψ ( u n , v n ) 强收敛到 Ψ ( u , v ) ,则 Ψ 在S上是强连续的,则 Ψ 是紧算子,因此引理7得证。

我们给出了一些符号,这些符号将在后面的证明中使用。

M : = max { T 2 α 1 | cos ( π α ) | Γ 2 ( α ) ( 2 α 1 ) , T 2 δ 1 | cos ( π δ ) | Γ 2 ( δ ) ( 2 δ 1 ) }

c : = min { | cos ( π α ) | , | cos ( π δ ) | }

ϖ α , δ : = ω 1 α 2 2 | cos ( π α ) | + ω 2 δ 2 2 | cos ( π δ ) |

ξ ( k ) : = { ( σ , ς ) R 2 : 1 2 σ 2 + 1 2 ς 2 k }

ϑ 1 : = min { k M λ 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t M G k , ϖ α , δ λ T 4 3 T 4 F ( t , d 1 , d 2 ) d t T G d }

定理8设存在正常数k和一个函数 ω = ( ω 1 , ω 2 ) 满足

k < M 2 c ( ω 1 α 2 + ω 2 δ 2 ) (12)

(H1)对每一个 ( t , σ , ς ) [ 0 , T ] × [ 0 , d 1 ] × [ 0 , d 2 ] F ( t , σ , ς ) 0

(H2) 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t k < T 4 3 T 4 F ( t , d 1 , d 2 ) d t M ϖ α , δ

(H3) lim sup | σ | + , | ς | + sup t [ 0 , T ] F ( t , σ , ς ) σ 2 + ς 2 < 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t 4 k T min { 2 | cos ( π α ) | c , 2 | cos ( π δ ) | c }

则,对任意的 λ Λ : = ( λ 1 , λ 2 ) ,对每一个连续函数 G : [ 0 , T ] × R × R R

lim sup | σ | + , | ς | + sup t [ 0 , T ] G ( t , σ , ς ) σ 2 + ς 2 < +

存在 ϑ > 0 ,对任意的 μ [ 0 , ϑ ) ,系统(1)至少存在三个解。其中:令 z 0 = + ,且

λ 1 : = ϖ α , δ T 4 3 T 4 F ( t , d 1 , d 2 ) d t , λ 2 : = k M 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t

ϑ : = min { ϑ 1 , 1 max { 0 , 4 T M c lim sup | σ | + , | ς | + sup t [ 0 , T ] G ( t , σ , ς ) σ 2 + ς 2 } }

证明:考虑到引理7,为了证明问题(1)存在多重解,我们只需要证明定理6的条件i)和ii)成立。令 ( u 0 , v 0 ) = ( 0 , 0 ) ,则根据式(7)及(8)可知, Φ ( 0 , 0 ) = 0 Ψ ( 0 , 0 ) = 0

ω = ( ω 1 ( t ) , ω 2 ( t ) ) ,且

ω 1 ( t ) = { 4 d 1 T t , t [ 0 , T 4 ) , d 1 , t [ T 4 , 3 T 4 ] , 4 d 1 T ( T t ) , t ( 3 T 4 , T ] , ω 2 ( t ) = { 4 d 2 T t , t [ 0 , T 4 ) d 2 , t [ T 4 , 3 T 4 ] 4 d 2 T ( T t ) , t ( 3 T 4 , T ]

不难发现 ω i ( 0 ) = ω i ( T ) = 0 ω i L 2 ( [ 0 , T ] ) i = 1 , 2

通过计算,有

D 0 c t α ω 1 ( t ) = { 4 d 1 T Γ ( 2 α ) t 1 α , t [ 0 , T 4 ) 4 d 1 T Γ ( 2 α ) [ t 1 α ( t T 4 ) 1 α ] , t [ T 4 , 3 T 4 ] 4 d 1 T Γ ( 2 α ) [ t 1 α ( t T 4 ) 1 α + ( t 3 T 4 ) 1 α ] , t ( 3 T 4 , T ]

D 0 c t δ ω 2 ( t ) = { 4 d 2 T Γ ( 2 δ ) t 1 δ , t [ 0 , T 4 ) 4 d 2 T Γ ( 2 δ ) [ t 1 δ ( t T 4 ) 1 δ ] , t [ T 4 , 3 T 4 ] 4 d 2 T Γ ( 2 δ ) [ t 1 δ ( t T 4 ) 1 δ + ( t 3 T 4 ) 1 δ ] , t ( 3 T 4 , T ]

显然,在 t [ 0 , T ] 上, D 0 c t α ω 1 ( t ) D 0 c t δ ω 2 ( t ) 是连续的,且

ω 1 α 2 = 16 d 1 2 T 2 Γ 2 ( 2 α ) { 0 T 4 t 2 2 α d t + T 4 3 T 4 [ t 1 α ( t T 4 ) 1 α ] 2 d t + 3 T 4 T [ t 1 α ( t T 4 ) 1 α + ( t 3 T 4 ) 1 α ] 2 d t } (13)

ω 2 δ 2 = 16 d 2 2 T 2 Γ 2 ( 2 δ ) { 0 T 4 t 2 2 δ d t + T 4 3 T 4 [ t 1 δ ( t T 4 ) 1 δ ] 2 d t + 3 T 4 T [ t 1 δ ( t T 4 ) 1 δ + ( t 3 T 4 ) 1 δ ] 2 d t } (14)

ρ = k M ,则根据式(6),(7),(12)得

Φ ( ω 1 , ω 2 ) 1 2 | cos ( π α ) | ω 1 α 2 + 1 2 | cos ( π δ ) | ω 2 δ 2 > 1 2 c ( ω 1 α 2 + ω 2 δ 2 ) > ρ

接下来,证明定理6的条件i)成立。通过使用定理8的条件(H1),以及 0 ω i ( t ) d i i = 1 , 2 ,得

Ψ ( ω 1 , ω 2 ) = 0 T F ( t , ω 1 , ω 2 ) + μ λ G ( t , ω 1 , ω 2 ) d t T 4 3 T 4 F ( t , d 1 , d 2 ) + μ λ 0 T G ( t , ω 1 , ω 2 ) d t T 4 3 T 4 F ( t , d 1 , d 2 ) d t + μ λ T G d (15)

其中, G d : = inf [ 0 , T ] × [ 0 , d 1 ] × [ 0 , d 2 ] G ,对于所有的 d 1 , d 2 > 0 ,显然 G d 0

根据式(4),(6),(7)得

{ ( u , v ) X : Φ ( u , v ) ρ } = { ( u , v ) X : 1 2 0 T ( D 0 c t α u ( t ) , D t c T α u ( t ) ) d t 1 2 0 T ( D 0 c t δ v ( t ) , D t c T δ v ( t ) ) d t ρ } { ( u , v ) X : | cos ( π α ) | Γ 2 ( α ) ( 2 α 1 ) 2T 2 α -1 u 2 + | cos ( π δ ) | Γ 2 ( δ ) ( 2 δ 1 ) 2T 2 δ -1 v 2 ρ } { ( u , v ) X : | u ( t ) | 2 2 + | v ( t ) | 2 2 M ρ = k , t [ 0 , T ] }

因此,有

sup Φ ( u , v ) ρ Ψ ( u , v ) ρ 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t + μ λ 0 T max ( σ , ς ) ξ ( k ) G ( t , σ , ς ) d t k M = M k ( 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t + μ λ G k )

其中, G k : = 0 T max ( σ , ς ) ξ ( k ) G ( t , σ , ς ) d t ,对 k > 0 G k 0

如果 G k = 0 ,得

sup Φ ( u , v ) ρ Ψ ( u , v ) ρ < 1 λ (16)

如果 G k > 0 ,为了使式(16)仍然成立,得

μ < k M λ 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t M G k

另一方面,根据式(6),(7),显然

Φ ( ω 1 , ω 2 ) ω 1 α 2 2 | cos ( π α ) | + ω 2 β 2 2 | cos ( π β ) | = ϖ α , δ (17)

则由式(15),(17)可知,

Ψ ( ω ) Φ ( ω ) T 4 3 T 4 F ( t , d 1 , d 2 ) d t + μ λ T G d ϖ α , δ

如果 G d = 0 ,得

Ψ ( ω ) Φ ( ω ) 1 λ (18)

如果 G d < 0 ,为了使式(18)成立,得

μ < ϖ α , δ λ T 4 3 T 4 F ( t , d 1 , d 2 ) d t T G d

因此,由式(16),(18)可知,定理6的条件i)得证。

现在,我们验证定理6的条件ii)。为了证明泛函 T λ 的强制性,我们假设

lim sup | σ | + , | ς | + sup t [ 0 , T ] F ( t , σ , ς ) σ 2 + ς 2 0

固定一个 ε ,使得下列不等式成立

lim sup | σ | + , | ς | + sup t [ 0 , T ] F ( t , σ , ς ) σ 2 + ς 2 < ε < 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t 4 k T min { 2 | cos ( π α ) | c , 2 | cos ( π δ ) | c }

则存在一个函数 ϕ ε ( t ) L 1 ( [ 0 , T ] ) 使得

F ( t , σ , ς ) ε ( σ 2 + ς 2 ) + ϕ ε ( t )

其中 t [ 0 , T ] σ , ς R 。那么由 λ 的范围以及上式,对于每一个 ( u , v ) S ,得

λ 0 T F ( t , u ( t ) , v ( t ) ) d t λ ( ε 0 T ( u 2 ( t ) + v 2 ( t ) ) d t + 0 T ϕ ε ( t ) d t ) < k M 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t ( ε M T ( u α 2 + v δ 2 ) + ϕ ε L 1 ( [ 0 , T ] ) ) (19)

由于 μ < ϑ ,则有

lim sup | σ | + , | ς | + sup t [ 0 , T ] G ( t , σ , ς ) σ 2 + ς 2 < c 4 T μ M

那么存在一个函数 ϕ μ L 1 ( [ 0 , T ] ) ,使得对每一个 t [ 0 , T ] σ , ς R ,有

G ( t , σ , ς ) c 4 T μ M ( σ 2 + ς 2 ) + ϕ μ ( t )

因此,我们有

0 T G ( t , u ( t ) , v ( t ) ) d t c 4 T μ M 0 T u 2 ( t ) + v 2 ( t ) d t + 0 T ϕ μ ( t ) d t c 4 μ ( u α 2 + v δ 2 ) + ϕ μ L 1 ( [ 0 , T ] ) (20)

则根据式(6),(7),(8),(19),(20),当 ( u , v ) S + 时,得

T λ ( u , v ) | cos ( π α ) | 2 u α 2 + | cos ( π δ ) | 2 v δ 2 k M 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t ( ε M T ( u α 2 + v δ 2 ) + ϕ ε L 1 ( [ 0 , T ] ) ) c 4 ( u α 2 + v δ 2 ) μ ϕ μ L 1 ( [ 0 , T ] )

( 1 2 | cos ( π α ) | k ε T 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t c 4 ) u α 2 + ( 1 2 | cos ( π δ ) | k ε T 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t c 4 ) u δ 2 k M 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t ϕ ε L 1 ( [ 0 , T ] ) μ ϕ μ L 1 ( [ 0 , T ] ) +

即泛函 T λ ( u , v ) = Φ ( u , v ) λ Ψ ( u , v ) 是强制的。

另一方面,如果

lim sup | σ | + , | ς | + sup t [ 0 , T ] F ( t , σ , ς ) σ 2 + ς 2 < 0

那么存在一个函数 ϕ ε L 1 ( [ 0 , T ] ) ,满足 F ( t , σ , ς ) ϕ ε ( t ) ,对于每一个 t [ 0 , T ] σ , ς R 。和前面证明过程相似,当 ( u , v ) S + ,我们可得到

T λ ( u , v ) = Φ ( u , v ) λ Ψ ( u , v ) ( | cos ( π α ) | 2 c 4 ) u α 2 + ( | cos ( π δ ) | 2 c 4 ) v δ 2 k M 0 T max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t ϕ ε L 1 ( [ 0 , T ] ) μ ϕ μ L 1 ( [ 0 , T ] ) +

在上述两种情况中, T λ ( u , v ) 的强制性成立,则定理6的条件ii)得证。

根据式(16),(18)可知

λ Λ ( Φ ( ω ) Ψ ( ω ) , ρ sup Φ ( u , v ) ρ Ψ ( u , v ) )

则根据定理6,泛函 T λ ( u , v ) 至少存在三个临界点,证明完成。

例子:令 β = 0 .8 η = 0 .4 T = 1 ,则系统(1)变成下面的形式

{ d d t ( 1 2 D 0 t 0 .8 ( u ( t ) ) + 1 2 D t 1 0 .8 ( u ( t ) ) ) + λ F u ( t , u ( t ) , v ( t ) ) + μ G u ( t , u ( t ) , v ( t ) ) = 0 , a . e . t [ 0 , 1 ] d d t ( 1 2 D 0 t 0 .4 ( v ( t ) ) + 1 2 D t 1 0 .4 ( v ( t ) ) ) + λ F v ( t , u ( t ) , v ( t ) ) + μ G v ( t , u ( t ) , v ( t ) ) = 0 , a . e . t [ 0 , 1 ] u ( 0 ) = u ( 1 ) = 0 , v ( 0 ) = v ( 1 ) = 0 (21)

其中: F ( t , u , v ) = ( 1 + t ) H ( u , v ) G ( t , u , v ) = ( 1 + t 2 ) K ( u , v )

H ( u , v ) : = { ( u 2 + v 2 ) 2 , u 2 + v 2 1 , 8 ( u 2 + v 2 ) 1 2 5 ( u 2 + v 2 ) 1 3 , u 2 + v 2 > 1. K ( u , v ) : = { ( u 2 + v 2 ) 3 , u 2 + v 2 1 , 1 2 ( u 2 + v 2 ) 1 3 + 1 16 ( u 2 + v 2 ) 1 4 , u 2 + v 2 > 1.

显然,对所有的 t [ 0 , 1 ] F ( t , 0 , 0 ) = 0 G ( t , 0 , 0 ) = 0 ,计算可得

M = max { 1 | cos ( 0.6 π ) | Γ 2 ( 0.6 ) × 0 .2 , 1 | cos ( 0.8 π ) | Γ 2 ( 0.8 ) × 0 .6 } 7 .296

c = min { | cos ( 0.6 π ) | , | cos ( 0.8 π ) | } 0. 3 09

ω 1 : = { t , t [ 0 , 1 4 ) , 1 4 , t [ 1 4 , 3 4 ] 1 t , t ( 3 4 , 1 ] . , ω 2 : = { 2 t , t [ 0 , 1 4 ) , 1 2 , t [ 1 4 , 3 4 ] 2 ( 1 t ) , t ( 3 4 , 1 ] . ,

则有 ω 1 0 .6 2 0 .183 ω 2 0 .8 2 1 .131 ϖ α , δ 0.995 ,取 ρ = 1 × 10 4 ,则 k = ρ × M 7.296 × 10 4 ,得

M 2 c ( ω 1 0.6 2 + ω 2 0.8 2 ) 1.481 > k

显然,对每一个 ( t , σ , ς ) [ 0 , 1 ] × [ 0 , 1 4 ] × [ 0 , 1 2 ] F ( t , σ , ς ) 0

0 .004 0 1 max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t k < 1 4 3 4 F ( t , d 1 , d 2 ) d t M ϖ α , δ 0 .01

0 = lim sup | σ | + , | ς | + sup t [ 0 , 1 ] F ( t , σ , ς ) σ 2 + ς 2 < 0 1 max ( σ , ς ) ξ ( k ) F ( t , σ , ς ) d t 4 k min { 2 | cos ( 0 .6 π ) | c , 2 | cos ( 0 .8 π ) | c } 3 .38 × 10 -4

lim sup | σ | + , | ς | + sup t [ 0 , 1 ] G ( t , σ , ς ) σ 2 + ς 2 = 0 < +

则定理8的所有条件成立,即对任意的 λ ( 13.5 85 , 31.31 ) ,这里取 λ = 25 ,则对任意的 μ [ 0 , 4865 .819 ) ,系统(21)在空间S中至少有三个解。

致谢

感谢导师陈芳启教授的悉心指导!

基金项目

国家自然科学基金(11872201)。

参考文献

[1] Ahmad, B., Ntouyas, S.K. and Alsaedi, A. (2016) On a Coupled System of Fractional Differential Equations with Coupled Nonlocal and Integral Boundary Conditions. Chaos Solitons Fractals, 83, 234-241.
https://doi.org/10.1016/j.chaos.2015.12.014
[2] Peng, L. and Zhou, Y. (2015) Bifurcation from Interval and Positive Solutions of the Three-Point Boundary Value Problem for Fractional Differential Equations. Applied Mathematics and Computation, 257, 458-466.
https://doi.org/10.1016/j.amc.2014.11.092
[3] Jia, M. and Liu, X. (2014) Multiplicity of Solutions for Integral Boundary Value Problems of Fractional Differential Equations with Upper and Lower Solutions. Applied Mathematics and Computation, 232, 313-323.
https://doi.org/10.1016/j.amc.2014.01.073
[4] Zhang, S. (2011) Existence of ASolution for the Fractional Differential Equation with Nonlinear Boundary Conditions. Computational &Applied Mathematics, 61, 1202-1208.
https://doi.org/10.1016/j.camwa.2010.12.071
[5] Ferrara, M. and Hadjian, A. (2015) Variational Approach to Fractional Boundary Value Problems with Two Control Parameters. Electronic Journal of Differential Equations, 2015, 1-15.
[6] Rodríguez-López, R. and Tersian, S. (2014) Multiple Solutions to Boundary Value Problem for Impulsive Fractional Differential Equations. Fractional Calculus & Applied Analysis, 17, 1016-1038.
https://doi.org/10.2478/s13540-014-0212-2
[7] Hu, Z., Liu, W. and Chen, T. (2016) The Existence of a Ground State Solution for a Class of Fractional Differential Equation with p-Laplacian Operator. Boundary Value Problem, 2016, 1-12.
https://doi.org/10.1186/s13661-016-0557-z
[8] Zhao, Y. and Tang, L. (2017) Multiplicity Results for Impulsive Fractional Differential Equations with p-Laplacian via Variational Methods. Boundary Value Problem, 2017, 1-15.
https://doi.org/10.1186/s13661-017-0855-0
[9] Zhao, Y., Chen, H. and Zhang, Q. (2015) Infinitely Many Solutions for Fractional Differential System via Variational Method. Journal of Applied Mathematics and Computation, 50, 589-609.
https://doi.org/10.1007/s12190-015-0886-6
[10] Li, D., Chen, F. and An, Y. (2018) Existence and Multiplicity of Nontrivial Solutions for Nonlinear Fractional Differential Systems with p-Laplacian via Critical Point Theory. Mathematical Methods in the Applied Sciences, 41, 3197-3212.
https://doi.org/10.1002/mma.4810
[11] Jiao, F. and Zhou, Y. (2011) Existence of Solutions for a Class of Fractional Boundary Value Problems via Critical Point Theory. Computers & Mathematics with Applications, 62, 1181-1199.
https://doi.org/10.1016/j.camwa.2011.03.086
[12] Zeidler, E. (1985) Nonlinear Functional Analysis and Its Applications. Vol. II, Springer, Berlin-Heidelberg-New York.
https://doi.org/10.1007/978-1-4612-5020-3
[13] Bonanno, G. and Marano, S.A. (2010) On the Structure of the Critical Set of Non-Differentiable Functions with a Weak Compactness Condition. Applicable Analysis, 89, 1-10.
https://doi.org/10.1080/00036810903397438
[14] Mawhin, J. and Willem, M. (1989) Critical Point Theory and Hamiltonian Systems. Springer, Berlin.
https://doi.org/10.1007/978-1-4757-2061-7