去乙酰化酶Sirtuins与肾脏衰老关系的研究进展
Research Progress on the Relationship between Sirtuins and Renal Aging
DOI: 10.12677/ACM.2020.106171, PDF, HTML, XML, 下载: 588  浏览: 1,343 
作者: 赵舒羽:上海市针灸经络研究所,上海;赵 琛*:上海中医药大学,上海
关键词: Sirtuins衰老肾脏Sirtuins Aging Kidney
摘要: Sirtuins蛋白被认为是一种与长寿相关的蛋白,其广泛参与机体糖脂代谢、炎症信号、氧化应激等。以往研究已经揭示了Sirtuins的抗衰老作用,且最新研究发现,Sirtuins在肾脏衰老、肾纤维化的发生发展中也起到重要作用。同时,肾脏是衰老过程中,相关组织损伤的典型靶器官。因此,本文将重点阐述Sirtuins对肾脏衰老的调节作用及机制,并探讨Sirtuins活化作为延缓衰老的新靶点的可行性及方法。
Abstract: As a type of protein associated with longevity, Sirtuins is widely involved in the glucolipid metabolism, inflammatory signals, oxidative stress in the organism. Some previous studies have revealed the anti-aging effect of Sirtuins, and the latest studies find that Sirtuins plays a critical role in the occurrence and progression of kidney senility and fibrosis. In addition, kidney is the typical target organ for aging-related tissue damages. Therefore, this paper will focus on the role and mechanism of Sirtuins in the regulation of kidney aging, and explore the feasibility and methods of Sirtuins activation as a new target for delaying aging.
文章引用:赵舒羽, 赵琛. 去乙酰化酶Sirtuins与肾脏衰老关系的研究进展[J]. 临床医学进展, 2020, 10(6): 1127-1133. https://doi.org/10.12677/ACM.2020.106171

1. 引言

衰老过程中机体器官的结构和功能都会发生相应的改变,而肾脏是衰老相关组织损伤的典型靶器官。随着年龄的增长,肾脏的宏观和微观结构均会发生变化。在宏观结构水平上,肾皮质体积减小,肾脏总体积也会在50岁之后开始逐渐收缩;相反,肾囊肿和肿瘤的数量和大小增加,肾脏表面粗糙度变大 [1] [2]。在微观结构水平上,肾脏的衰老主要表现在肾间质纤维化、肾小球硬化、基底膜增厚、肾小管萎缩和动脉硬化等方面 [3]。

相关研究表明,Sirtuins是与衰老相关的关键性调节因子。随着年龄的增长,Sirtuins在体内的表达会减少。因此,Sirtuins的活化对预防衰老相关肾脏炎症、肾纤维化和肾脏细胞凋亡以及诱导自噬中起着重要作用 [4] [5]。

2. Sirtuins蛋白的结构及功能

Sirtuin蛋白家族是沉默信息调节因子2 (silence information regulator 2, Sir2)在哺乳动物中的同源蛋白,最早在酵母菌中被发现。其作为染色质上的一种调节因子,能够导致基因表达沉默。例如,Sir2能够导致细胞代谢模式的变化,包括某些基因的表观遗传沉默,基因组稳定性的改善和寿命的延长 [6]。在哺乳动物中,Sirtuins家族包括7种蛋白(SIRT1-7),他们在特异性、催化活性和细胞定位方面的作用各不相同。SIRT1、SIRT6和SIRT7主要表达于细胞核中,SIRT3、4和5集中于线粒体中,而SIRT2主要存在于细胞质中 [7]。其中,SIRT1、SIRT3和SIRT6被认为是与衰老关系最为密切的三个成员。

SIRT1是公认的“长寿基因”,能够作用于靶标使其脱乙酰化,进而修复DNA损伤,提高细胞存活率。SIRT1介导的作用靶点有FoxO3、NF-κb、p53、ku70、eNOS、PGC-1α等 [8] - [13],这些脱乙酰化后的靶标对线粒体功能、细胞凋亡和炎症反应具有深远的影响。此外,SIRT1也是影响肾脏衰老的重要基因。SIRT1基因的过表达使肾间质细胞能够耐受氧化性髓质环境,并在肾脏中起到减少细胞凋亡和抗纤维化的作用 [14]。

SIRT3是调节线粒体功能、ATP产生和脂肪酸β-氧化的关键因子,具有抗氧化活性。SIRT3能够作用于线粒体,使其在应激条件维持体内平衡 [14]。而肾脏是体内ATP消耗最多的器官之一,因此线粒体的改变可以作为肾脏疾病发生和发展的标志 [15]。SIRT3还能够控制脂肪酸代谢,减少甘油三酯的积累并改善代谢综合征。研究表明,SIRT3敲除小鼠表现出脂质代谢异常 [16],同时小鼠出现了心脏,肝脏和肾脏等器官不同程度的纤维化 [17]。除此之外,SIRT3敲除的糖尿病小鼠体内活性氧(reactive oxygen species, ROS)水平增加,并能够引起胰岛素抵抗,表明SIRT3影响ROS的产生 [18]。综上所述,SIRT3可以作为调节肾纤维化、氧化应激、脂质代谢和针对果糖诱导的肾损伤的炎症的一个重要靶标。

SIRT6是组蛋白H3K9和H3K56的脱乙酰基酶,能够抑制参与衰老和炎症的几种转录因子的转录活性,促进DNA修复,防止基因组不稳定,并维持葡萄糖稳态。SIRT6的这些功能使其成为重要的抗衰老分子之一。最近研究发现,SIRT6的缺失会导致小鼠肾脏的慢性炎症和纤维化以及足细胞损伤和蛋白尿的出现 [19] [20]。

Sirtuins作为转录调控因子,参与能量代谢、DNA修复、细胞存活和炎症反应等多种调控活动。Sirtuins是烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)依赖性赖氨酸脱乙酰酶 [21],在催化脱乙酰化过程中,使NAD+分子中烟酰胺和核糖之间的化学键断裂。并与乙酰基从底物(即乙酰化赖氨酸残基)转移到剩余ADP-核糖分子内的核糖偶联。该反应的最终产物是脱乙酰化的赖氨酸残基,O-乙酰基-ADP-核糖和烟酰胺 [22]。因此,Sirtuins活性可由Sirtuins分子的数量、NAD+的可用性(作为共基质)和抑制Sirtuin活性的烟酰胺的局部浓度(作为产物)共同决定。此外,Sirtuin活性可能还受到其他细胞内蛋白的影响 [23] [24]。

3. Sirtuins蛋白对肾脏衰老的调节作用

1) Sirtuins与肾间质纤维化

肾间质纤维化的主要特征是成纤维细胞的过度积累与细胞外基质(extracellular matrix, ECM)沉积,是肾脏衰老的典型组织学特征 [25],也是慢性肾脏疾病(chronic kidney disease, CKD)进展的主要标志之一。研究表明,与青年小鼠相比,老年小鼠的肾纤维化程度显著增加 [26]。在间质纤维化的进展过程中,肾小管随着纤维化的进程可肥大或萎缩,从而导致肾小管上皮细胞的凋亡,而肾小管细胞的凋亡会导致肾损伤的进展进而加速肾脏衰老 [27]。

据报道,在单侧输尿管梗阻诱导的肾小管间质纤维化小鼠肾脏中,SIRT1的表达及活性均显著下降(P < 0.01),相比之下,通过SIRT1活化剂的干预能够增加SIRT1表达及活性,改善肾间质纤维化程度,有效减少单侧输尿管梗阻引起的肾小管上皮细胞凋亡 [28]。SIRT1活化剂对肾小管间质纤维化的保护作用可能是通过抑制肾脏氧化应激和TGF-β1/CTGF信号通路实现的。其中,转化生长因子-β1 (transforming gowth factor-betal, TGF-β1)是肾间质纤维化的关键因子,目前对TGF-β1诱导肾纤维化机制的研究主要集中在其对成纤维细胞的增殖、迁移、活化和对纤维化因子转录作用方面。TGF-β/Smad是纤维化过程中另外一条重要通路,基质蛋白的表达可由Smad3通过其与胶原基因的特定启动子区域的结合直接驱动 [29]。因此,TGF-β1还可以通过激活Smads相关信号通路诱导肾纤维化,从而导致成纤维细胞的活化和ECM的过度生成及抑制降解。免疫共沉淀显示,在小鼠单侧输尿管结扎模型中,SIRT1和Smad3相互作用,SIRT1活性显著下降时Smad3乙酰化增加,SIRT1受体激动能够显著抑制Smad3乙酰化,减轻肾间质纤维化程度 [30]。除SIRT1外,SIRT3能够通过去乙酰化激活GSK3β,从而阻断TGF-β1信号传导和组织纤维化。老年SIRT3缺陷小鼠肾脏与青年组小鼠相比出现更严重的组织纤维化 [18]。

另一方面,Sirtuins可以通过调控线粒体功能调节肾间质纤维化。线粒体动力学改变及ROS的过量产生是肾小管细胞氧化损伤和凋亡的关键 [31],而氧化损伤的增加是衰老的标志之一。SIRT3是调节线粒体的关键因子,研究表明,在hg诱导的hk-2细胞中,SIRT3蛋白的表达下调。SIRT3的过表达能够关闭参与糖尿病肾病的ROS敏感Akt/Foxo信号通路,从而减少高糖诱导的肾小管上皮凋亡。除此之外,Kim等通过观察非诺贝特喂养的C57BL/6大鼠,发现SIRT1表达上调,进而PGC-1α及ERR-1α表达上调,线粒体稳定性增加,小管间质纤维化减轻 [32]。

此外,SIRT1可与叉头转录因子(Forkhead box O, FoxO)相互作用并使其去乙酰化 [33],进而实现双向调控过氧化氢酶的表达,减少肾小管细胞凋亡 [34]。

2) Sirtuins与肾脏自噬

自噬是一种细胞循环过程,涉及细胞的自我降解和受损细胞器以及蛋白质的重建。自噬功能异常可诱导足细胞缺失,损伤近端肾小管细胞,导致肾小球硬化。研究表明,老龄大鼠和小鼠的肾脏内均会出现线粒体形态改变和衰老相关蛋白质累积,同时伴有自噬活性的降低 [35]。敲除小鼠足细胞或近端肾小管上皮细胞特异性Atg5基因都会导致细胞内损伤线粒体和泛素化蛋白的累积 [36],进而引起肾脏细胞衰老。这些研究结果提示,对于足细胞和肾小管上皮细胞而言,自噬水平降低会加速肾脏衰老,自噬活性与年龄相关的肾脏疾病的发生密切相关 [37]。

热量限制已被证明能够诱导肾脏自噬,减缓间质纤维化和肾小管萎缩的进程 [38]。在营养过剩的条件下,自噬活性降低,一旦营养物质耗尽,自噬就被激活,为细胞提供能量资源。对老年大鼠进行8周的热量限制干预可以促进老年大鼠肾脏的自噬活动,并减少线粒体氧化损伤 [39]。然而,长时间的热量限制将重新激活mTOR途径,并通过负反馈和自噬溶酶体降解物质的积累来抑制自噬。因此,考虑自噬激活的平衡热量限制策略是延迟老年患者CKD进展的治疗选择之一 [40]。据报道,SIRT1的活化与能量限制介导的寿命延长有着密切的联系 [41]。一方面,SIRT1可以活化自噬信号途径中的关键信号分子(Atg7、Atg5和LC3),促进自噬小体形成从而提高肾脏细胞自噬水平;另一方面,在FoxO参与下,SIRT1还可以调控近端肾小管上皮细胞自噬,延缓肾脏衰老。由此可见,增加肾脏SIRT1表达可以促进细胞自噬,减轻肾脏衰老。

3) Sirtuins与肾脏局部炎症因子产生

炎症是导致急性和慢性肾病发生和发展的重要机制之一。许多急性或慢性损伤,如缺血、药物损伤、代谢紊乱以及炎症本身,都会损伤肾小管。反过来,肾小管的损伤会引起炎症反应并导致肾纤维化,加速肾脏衰老的发生 [42]。

目前关于Sirtuins影响肾脏炎症因子的研究主要集中在其对NF-κB和高迁移率族蛋白1 (HMGB1)的调节作用。NF-κB是免疫反应和炎症的主要调节因子,NF-κB通过TNF-α、IL-1β、IL-6和IL-8的逆向反馈,增加细胞凋亡、增殖和胰岛素抵抗,进一步增强机体的炎症状态 [43]。

4. Sirtuins:延缓衰老的新靶点

1) 热量限制

热量限制(caloric restriction, CR),也被称为卡路里限制,是一种非遗传性干预措施,可预防衰老相关疾病的发生,并延长大多数动物的寿命。CR延缓衰老的两大主要途径是调节线粒体的活性和减少氧化损伤。最近研究表明,CR和营养缺乏会增加Sirtuins的表达和活性,其对Sirtuins的激活主要是通过上调AMPK和NAD+的水平来介导的 [44]。Sirtuins通过检测NAD+/NADH比率的波动来充当营养和代谢传感器,当营养物质,特别是葡萄糖减少时,NAD +在体内积累,Sirtuins被激活 [45]。

短期的热量限制能够通过增加自噬活性,减少氧化损伤来延缓老年大鼠的肾衰老。CR治疗6个月后的老年小鼠SIRT6的表达增加,肾功能不全的状况得到改善,这主要是通过CR触发SIRT6激活,从而介导NF-κB信号传导来实现的 [46]。CR干预12个月后,衰老小鼠肾脏的自噬水平增强,SIRT1活性升高;低氧诱导的bcl2/腺病毒E1b19kDa相互作用蛋白3 (bnip3)的表达升高,由于bnip3是低氧诱导自噬的启动子,而CR小鼠bnip3的表达显著增强,bnip3的表达受到某些转录因子的正调控,包括缺氧诱导因子1α (hif1a)和叉头转录因子O3 (FoxO3),染色质免疫共沉淀结果表明,FoxO3介导的bnip3过表达应该是CR介导的老年肾脏缺氧诱导自噬增强的分子靶点 [41]。

2) 姜黄素

姜黄素是一种天然多酚,主要存在于姜科及天南星科植物的根茎中,作为传统中药已经使用了数千年,是中药姜黄、郁金、莪术、石菖蒲的主要有效成分 [47]。姜黄素对许多疾病都有治疗效果,包括癌症、骨关节炎、非酒精性脂肪性肝病、焦虑抑郁、呼吸系统疾病和血脂异常,其发挥作用的主要机制包括抗炎、抗氧化、免疫调节等。

姜黄素能够作用于多种蛋白,起到抗衰老的作用。大量研究表明,饮食补充姜黄素能够延长果蝇、线虫等动物的寿命,这是因为姜黄素可以激活Sirtuins,从而达到抗衰老作用 [48] [49]。在衰老的主动脉血管平滑肌细胞(vascular smooth muscle cells, VSMC)中,姜黄素能够增加Sirtuins的水平 [50]。

姜黄素作为一种廉价易得的中药成分,副作用小,具有显著的抗炎、抗氧化作用,在肾脏衰老相关疾病中可以被广泛使用。

3) 白藜芦醇

白藜芦醇(resveratrol, RSV)是一种酚类化合物,在70种不同的植物中都有存在,如葡萄、浆果、花生和松树等。白藜芦醇不仅能够通过降低ROS水平,延缓肾纤维化的过程,减少在膜性肾病和糖尿病肾病模型肾小球损伤和蛋白尿减少氧化应激,还可以显著降低NF-κB的转录活性,减少IL-1β、IL-6、MCP-1、TNF-α和其他SASP表型的分泌,最终延缓肾脏衰老。SIRT1被认为是白藜芦醇发挥作用的中心靶点。白藜芦醇治疗可增加大鼠体内SIRT1、NF-κB等水平 [51]。

5. 结语与展望

肾脏是典型的衰老靶器官,通过研究Sirtuins家族与肾脏生理功能之间的关系,进而探讨肾脏衰老的机制,有利于寻找治疗包括慢性肾病、糖尿病肾病、肾纤维化等在内的衰老相关肾脏疾病的突破点,延缓肾脏衰老的进程。

NOTES

*通讯作者。

参考文献

[1] Denic, A., Glassock, R.J. and Rule, A.D. (2016) Structural and Functional Changes with the Aging Kidney. Advances in Chronic Kidney Disease, 23, 19-28.
https://doi.org/10.1053/j.ackd.2015.08.004
[2] Hommos, M.S., Glassock, R.J. and Rule, A.D. (2017) Structural and Functional Changes in Human Kidneys with Healthy Aging. Journal of the American Society of Nephrology, 28, 2838-2844.
https://doi.org/10.1681/ASN.2017040421
[3] Karam, Z. and Tuazon, J. (2013) Anatomic and Physiologic Changes of the Aging Kidney. Clinics in Geriatric Medicine, 29, 555-564.
https://doi.org/10.1016/j.cger.2013.05.006
[4] Kitada, M., Kume, S., Takeda-Watanabe, A., et al. (2013) Sirtuins and Renal Diseases: Relationship with Aging and Diabetic Nephropathy. Clinical Science (London), 124, 153-164.
https://doi.org/10.1042/CS20120190
[5] Morigi, M., Perico, L. and Benigni, A. (2018) Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology, 29, 1799-1809.
https://doi.org/10.1681/ASN.2017111218
[6] Guarente, L. (2000) Sir2 Links Chromatin Silencing, Metabolism, and Aging. Genes & Development, 14, 1021-1026.
[7] Houtkooper, R.H., Pirinen, E. and Auwerx, J. (2012) Sirtuins as Regulators of Metabolism and Healthspan. Nature Reviews Molecular Cell Biology, 13, 225-238.
https://doi.org/10.1038/nrm3293
[8] Roy, S., Saha, S., Gupta, P., et al. (2019) Crosstalk of PD-1 Signaling with SIRT1/FOXO-1 Axis in Progression of Visceral Leishmaniasis. Journal of Cell Science, 132.
https://doi.org/10.1242/jcs.226274
[9] Yeung, F., Hoberg, J.E., Ramsey, C.S., et al. (2004) Modulation of NF-kappaB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase. EMBO Journal, 23, 2369-2380.
https://doi.org/10.1038/sj.emboj.7600244
[10] Ong, A. and Ramasamy, T.S. (2018) Role of Sirtuin1-p53 Regulatory Axis in Aging, Cancer and Cellular Reprogramming. Ageing Research Reviews, 43, 64-80.
https://doi.org/10.1016/j.arr.2018.02.004
[11] Radak, Z., Koltai, E., Taylor, A.W., et al. (2013) Redox-Regulating Sirtuins in Aging, Caloric Restriction, and Exercise. Free Radical Biology and Medicine, 58, 87-97.
https://doi.org/10.1016/j.freeradbiomed.2013.01.004
[12] Luo, Y., Lu, S., Ai, Q., et al. (2019) SIRT1/AMPK and Akt/eNOS Signaling Pathways Are Involved in Endothelial Protection of Total Aralosides of Aralia elata (Miq) Seem against High-Fat Diet-Induced Atherosclerosis in ApoE-/- Mice. Phytotherapy Research, 33, 768-778.
https://doi.org/10.1002/ptr.6269
[13] Bu, X., Wu, Lu, X., et al. (2017) Role of SIRT1/PGC-1alpha in Mitochondrial Oxidative Stress in Autistic Spectrum Disorder. Neuropsychiatric Disease and Treatment, 13, 1633-1645.
https://doi.org/10.2147/NDT.S129081
[14] He, W., Wang, Y., Zhang, M.Z., et al. (2010) Sirt1 Activation Protects the Mouse Renal Medulla from Oxidative Injury. Journal of Clinical Investigation, 120, 1056-1068.
https://doi.org/10.1172/JCI41563
[15] Linkermann, A., Chen, G., Dong, G., et al. (2014) Regulated Cell Death in AKI. Journal of the American Society of Nephrology, 25, 2689-2701.
https://doi.org/10.1681/ASN.2014030262
[16] Kim, H.S., Patel, K., Muldoon-Jacobs, K., et al. (2010) SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress. Cancer Cell, 17, 41-52.
https://doi.org/10.1016/j.ccr.2009.11.023
[17] Sundaresan, N.R., Bindu, S., Pillai, V.B., et al. (2015) SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3beta. Molecular and Cellular Biology, 36, 678-692.
https://doi.org/10.1128/MCB.00586-15
[18] Jing, E., Emanuelli, B., Hirschey, M.D., et al. (2011) Sirtuin-3 (Sirt3) Regulates Skeletal Muscle Metabolism and Insulin Signaling via Altered Mitochondrial Oxidation and Reactive Oxygen Species Production. Proceedings of the National Academy of Sciences of the United States of America, 108, 14608-14613.
https://doi.org/10.1073/pnas.1111308108
[19] Huang, W., Liu, H., Zhu, S., et al. (2017) Sirt6 Deficiency Results in Progression of Glomerular Injury in the Kidney. Aging, 9, 1069-1083.
https://doi.org/10.18632/aging.101214
[20] Liu, M., Liang, K., Zhen, J., et al. (2017) Sirt6 Deficiency Exacerbates Podocyte Injury and Proteinuria through Targeting Notch Signaling. Nature Communications, 8, Article No.: 413.
https://doi.org/10.1038/s41467-017-00498-4
[21] Watroba, M. and Szukiewicz, D. (2016) The Role of Sirtuins in Aging and Age-Related Diseases. Advances in Medical Sciences, 61, 52-62.
https://doi.org/10.1016/j.advms.2015.09.003
[22] Tanner, K.G., Landry, J., Sternglanz, R., et al. (2000) Silent Information Regulator 2 Family of NAD-Dependent Histone/Protein Deacetylases Generates a Unique Product, 1-O-Acetyl-ADP-Ribose. Proceedings of the National Academy of Sciences of the United States of America, 97, 14178-14182.
https://doi.org/10.1073/pnas.250422697
[23] Kim, E.J., Kho, J.H., Kang, M.R., et al. (2007) Active Regulator of SIRT1 Cooperates with SIRT1 and Facilitates Suppression of p53 Activity. Molecular Cell, 28, 277-290.
https://doi.org/10.1016/j.molcel.2007.08.030
[24] Zhao, W., Kruse, J.P., Tang, Y., et al. (2008) Negative Regulation of the Deacetylase SIRT1 by DBC1. Nature, 451, 587-590.
https://doi.org/10.1038/nature06515
[25] Yang, H.C. and Fogo, A.B. (2014) Fibrosis and Renal Aging. Kidney International Supplements, 4, 75-78.
https://doi.org/10.1038/kisup.2014.14
[26] Stefanska, A., Eng, D., Kaverina, N., et al. (2015) Interstitial Pericytes Decrease in Aged Mouse Kidneys. Aging, 7, 370-382.
https://doi.org/10.18632/aging.100756
[27] 顾铜, 李均. 肾小管上皮细胞凋亡与肾纤维化及中药组分的干预进展[J]. 中国老年学杂志, 2014, 34(17): 5011-5014.
[28] 杜春阳, 王珊, 姜珊珊, 等. Sirt1活化剂对肾间质纤维化的保护作用及机制研究[J]. 中国细胞生物学学报, 2015, 37(8): 1115-1121.
[29] Meng, X.M., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-Beta: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338.
https://doi.org/10.1038/nrneph.2016.48
[30] 梁瑾. 白藜芦醇对肾脏纤维化的保护作用及相关机制研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2015.
[31] 王心, 陈铖. 沉默信息调节因子1对肾间质保护作用的研究进展[J]. 东南国防医药, 2018, 20(2): 177-180.
[32] Kim, E.N., Lim, J.H., Kim, M.Y., et al. (2016) PPARα Agonist, Fenofibrate, Ameliorates Age-Related Renal Injury. Experimental Gerontology, 81, 42-50.
https://doi.org/10.1016/j.exger.2016.04.021
[33] Brunet, A., Sweeney, L.B., Sturgill, J.F., et al. (2004) Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science, 303, 2011-2015.
https://doi.org/10.1126/science.1094637
[34] Hasegawa, K., Wakino, S., Yoshioka, K., et al. (2008) Sirt1 Protects against Oxidative Stress-Induced Renal Tubular Cell Apoptosis by the Bidirectional Regulation of Catalase Expression. Biochemical and Biophysical Research Communications, 372, 51-56.
https://doi.org/10.1016/j.bbrc.2008.04.176
[35] Yamamoto, T., Takabatake, Y., Kimura, T., et al. (2016) Time-Dependent Dysregulation of Autophagy: Implications in Aging and Mitochondrial Homeostasis in the Kidney Proximal Tubule. Autophagy, 12, 801-813.
https://doi.org/10.1080/15548627.2016.1159376
[36] Hartleben, B., Godel, M., Meyer-Schwesinger, C., et al. (2010) Autophagy Influences Glomerular Disease Susceptibility and Maintains Podocyte Homeostasis in Aging Mice. Journal of Clinical Investigation, 120, 1084-1096.
https://doi.org/10.1172/JCI39492
[37] De Rechter, S., Decuypere, J.P., Ivanova, E., et al. (2016) Autophagy in Renal Diseases. Pediatric Nephrology, 31, 737-752.
https://doi.org/10.1007/s00467-015-3134-2
[38] Schmitt, R. and Melk, A. (2017) Molecular Mechanisms of Renal Aging. Kidney International, 92, 569-579.
https://doi.org/10.1016/j.kint.2017.02.036
[39] Ning, Y.C., Cai, G.Y., Zhuo, L., et al. (2013) Short-Term Calorie Restriction Protects against Renal Senescence of Aged Rats by Increasing Autophagic Activity and Reducing Oxidative Damage. Mechanisms of Ageing and Development, 134, 570-579.
https://doi.org/10.1016/j.mad.2013.11.006
[40] Lin, T.A., Wu, V.C. and Wang, C.Y. (2019) Autophagy in Chronic Kidney Diseases. Cells, 8, 61.
https://doi.org/10.3390/cells8010061
[41] Kume, S., Uzu, T., Horiike, K., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1-Dependent Mitochondrial Autophagy in Mouse Aged Kidney. Journal of Clinical Investigation, 120, 1043-1055.
https://doi.org/10.1172/JCI41376
[42] Kimura, T., Isaka, Y. and Yoshimori, T. (2017) Autophagy and Kidney Inflammation. Autophagy, 13, 997-1003.
https://doi.org/10.1080/15548627.2017.1309485
[43] Di Maggio, F.M., Minafra, L., Forte, G.I., et al. (2015) Portrait of Inflammatory Response to Ionizing Radiation Treatment. Journal of Inflammation, 12, Article No.: 14.
https://doi.org/10.1186/s12950-015-0058-3
[44] Lee, S.H., Lee, J.H., Lee, H.Y., et al. (2019) Sirtuin Signaling in Cellular Senescence and Aging. BMB Reports, 52, 24-34.
https://doi.org/10.5483/BMBRep.2019.52.1.290
[45] Lopez-Lluch, G. and Navas, P. (2016) Calorie Restriction as an Intervention in Ageing. Journal of Physiology, 594, 2043-2060.
https://doi.org/10.1113/JP270543
[46] Zhang, N., Li, Z., Mu, W., et al. (2016) Calorie Restriction-Induced SIRT6 Activation Delays Aging by Suppressing NF-kappaB Signaling. Cell Cycle, 15, 1009-1018.
https://doi.org/10.1080/15384101.2016.1152427
[47] 胡良煜, 王红伟, 张嘉慧, 等. 姜黄素对多器官损伤保护作用的研究进展[J]. 医学综述, 2018, 24(20): 4097-4102.
[48] Liao, V.H., Yu, C.W., Chu, Y.J., et al. (2011) Curcumin-Mediated Lifespan Extension in Caenorhabditis elegans. Mechanisms of Ageing and Development, 132, 480-487.
https://doi.org/10.1016/j.mad.2011.07.008
[49] Lee, K.S., Lee, B.S., Semnani, S., et al. (2010) Curcumin Extends Life Span, Improves Health Span, and Modulates the Expression of Age-Associated Aging Genes in Drosophila Melanogaster. Rejuvenation Research, 13, 561-570.
https://doi.org/10.1089/rej.2010.1031
[50] Grabowska, W., Suszek, M., Wnuk, M., et al. (2016) Curcumin Elevates Sirtuin Level but Does Not Postpone in Vitro Senescence of Human Cells Building the Vasculature. Oncotarget, 7, 19201-19213.
https://doi.org/10.18632/oncotarget.8450
[51] Erkasap, S., Erkasap, N., Bradford, B., et al. (2017) The Effect of Leptin and Resveratrol on JAK/STAT Pathways and Sirt-1 Gene Expression in the Renal Tissue of Ischemia/Reperfusion Induced Rats. Bratislava Medical Journal, 118, 443-448.
https://doi.org/10.4149/BLL_2017_086