L-脯氨酸衍生的新型硫脲催化剂催化苯甲醛的加成烷基化
L-Proline Derived New Thiourea Catalysts Catalyzed Addition Alkylation of Benzaldehyde
DOI: 10.12677/SSC.2020.81003, PDF, HTML, XML, 下载: 752  浏览: 1,940  国家自然科学基金支持
作者: 贾 俊:苏州大学,分析测试中心,江苏 苏州;刘国桂, 王兴旺*:苏州大学,材料与化学化工学部,江苏 苏州
关键词: 不对称催化手性硫脲12-加成二乙基锌手性醇Asymmetric Catalysis Chiral Thiourea 12-Addition Diethylzinc Chiral Alcohol
摘要: 本文以L-脯氨酸衍生的手性硫脲为催化剂,对苯甲醛与二乙基锌的不对称1,2-加成烷基化反应进行了研究。我们发现在最优化的催化剂反应条件下,该反应可以以高收率和中等的对映选择性得到1-苯基-1-丙醇化合物。该催化体系具有高效、低成本、反应条件温和等特点,为合成手性芳基醇类化合物提供了一条有效、方便的路径。
Abstract: In this paper, a series of L-proline derived chiral thioureas were designed and synthesized. Then the resulting catalysts were applied into the 1,2-addition reation of diethylzinc to benzaldehyde, which provided 1-phenylpropan-1-ol with good to excellent yields, albeit with moderate enatioselectivity. The catalytic system is featured with high efficiency, low cost as well as mild reaction conditions, and it was proved to be an effective and convenient route for the synthesis of chiral aromatic alcohols.
文章引用:贾俊, 刘国桂, 王兴旺. L-脯氨酸衍生的新型硫脲催化剂催化苯甲醛的加成烷基化[J]. 合成化学研究, 2020, 8(1): 25-32. https://doi.org/10.12677/SSC.2020.81003

参考文献

[1] Hasegawa, J., Nanba, H., Yasohara, Y. and Federsel, H.J. (2010) Application of a Multiple-Enzyme System for Chiral Alcohol Production. In: Blaser, H.-U., Ed., Asymmetric Catalysis on Industrial Scale, 2nd Edition, Springer, Berlin, 81-109.
https://doi.org/10.1002/9783527630639.ch6
[2] Huisman, G. W., Liang, J. and Krebber, A. (2010) Practical Chiral Alcohol Manufacture Using Ketoreductases. Current Opinion in Chemical Biology, 14, 122-129.
https://doi.org/10.1016/j.cbpa.2009.12.003
[3] 曾嵘, 杨忠华, 姚善泾. 生物催化羰基不对称还原合成手性醇的研究及应用进展[J]. 化工进展, 2004, 23(11): 1169-1173.
[4] Piccirillo, S., Satta, M., Catone, D., Scuderi, D., Paladini, A., Rondino, F., Speranza, M. and Guidoni, A.G. (2004) Mass Resolved Laser Spectroscopy of Micro-Solvated R-(+)-1-Phenyl-1-Propanol: A Chiral Molecule of Biological Interest. Physical Chemistry Chemical Physics, 6, 2858-2862.
https://doi.org/10.1039/b316737b
[5] Bielawska, A., Greenberg, S.M., Perry, D., Jayadev, S., Shayman, J.A., McKay, C. and Hannun, Y.A. (1996) (1S,2R)-D-Erythro-2-(N-Myristoylamino)-1-Phenyl-1-Propanol as an Inhibitor of Ceramidase. The Journal of Biological Chemistry, 271, 12646-12654.
https://doi.org/10.1074/jbc.271.21.12646
[6] Gilheany, D. and Bieszczad, B. (2015) Preparation of Chiral Diamine Compounds as Ligands for the Preparation of Chiral Alcohol and Chiral Amine. WO 2015181182 A1 20151203.
[7] Ahmad, I.S. and Mallah, A.R. (2017) Advances in Asymmetric Oxidative Kinetic Resolution of Racemic Secondary Alcohols Catalyzed by Chiral Mn(III) Salen Complexes. Chirality, 29, 798-810.
https://doi.org/10.1002/chir.22768
[8] Wu, H.-L., Chang, C.-A., Wu, P.-Y. and Uang, B.-J. (2017) Recent Developments in Zn-Catalyzed Asymmetric Addition Reaction to Ketones: Syntheses of Chiral Tertiary Alcohols. Tetrahedron Letters, 58, 706-710.
https://doi.org/10.1016/j.tetlet.2017.01.034
[9] Foubelo, F., Najera, C. and Yus, M. (2015) Catalytic Asymmetric Transfer Hydrogenation of Ketones: Recent Advances. Tetrahedron: Asymmetry, 26, 769-790.
https://doi.org/10.1016/j.tetasy.2015.06.016
[10] Tomasz, B. (2015) Enantioselective Dialkylzinc-Mediated Alkynylation, Arylation and Alkenylation of Carbonyl Groups. Coordination Chemistry Reviews, 299, 83-150.
https://doi.org/10.1016/j.ccr.2015.03.025
[11] Li, L., Lu Z., Wu M., Yuan, L., Guan, H. and Zhang, M. (2009) Aldo-Keto Reductase Superfamily and Its Application for Chiral Alcohol Asymmetric Synthesis. Chemistry & Bioengineering, 26, 62-67.
[12] Yoshioka, M., Kawakita, T. and Ohno, M. (1989) Asymmetric Induction Catalyzed by Conjugate Bases of Chiral Proton Acid as Ligands: Enantioselective Addition of Dialkylzinc-Orthotitanate Complex to Benzaldehyde with Catalytic Ability of a Remarkable High Order. Tetrahedron Letters, 30, 1657-1660.
https://doi.org/10.1016/S0040-4039(00)99546-7
[13] Dosa, P.I., Ruble, J.C. and Fu, G.C. (1997) Planar-Chiral Heterocycles as Ligands in Metal-Catalyzed Processes: Enantioselective Addition of Organozinc Reagents to Aldehydes. The Journal of Organic Chemistry, 62, 444-445.
https://doi.org/10.1021/jo962156g
[14] Sellner, H. and Seebach, D. (1999) Dendritically Cross-Linking Chiral Ligands: High Stability of a Polystyrene-Bound Ti-TADDOLate Catalyst with Diffusion Control. Angewandte Chemie International Edition, 38, 1918-1920.
https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1918::AID-ANIE1918>3.0.CO;2-3
[15] Paquette, L.A. and Zhou, R.J. (1999) Synthesis of Enantiopure C2-Symmetric VERDI Disulfonamides and Their Application to the Catalytic Enantioselective Addition of Diethylzinc to Aromatic and Aliphatic Aldehydes. The Journal of Organic Chemistry, 64, 7929-7934.
https://doi.org/10.1021/jo990984e
[16] Schinnerl, M., Seitz, M., Kaiser, A. and Reiser, O. (2001) New Applications of Bis(oxazoline) Ligands in Catalysis: Asymmetric1, 2-and 1, 4-Addition of ZnR2 to Carbonyl Compounds. Organic Letters, 3, 4259-4262.
https://doi.org/10.1021/ol016925g
[17] Yus, M., Ramon, D.J. and Prieto, O. (2003) Synthesis of New C2-Symmetrical Bis-(Hydroxycamphorsulfonamide) Ligands and Their Application in the Enantioselective Addition of Dialkylzinc Reagents to Aldehydes and Ketones. Tetrahedron: Asymmetry, 14, 1103-1114.
https://doi.org/10.1016/S0957-4166(03)00045-4
[18] Danilova, T.I., Rozenberg, V.I., Starikova, Z.A. and Brӓse, S. (2004) Planar-Chiral Salen and Hemisalen [2.2] paracyclophane Ligands for Asymmetric Diethylzinc Addition to Aldehydes. Tetrahedron: Asymmetry, 15, 223-229.
https://doi.org/10.1016/j.tetasy.2003.11.031
[19] Armarego, W.E. and Chai, C.L.L. (2003) Purification of Laboratory Chemicals. 5th Edition, Butterworth-Heineman, Oxford.
https://doi.org/10.1016/B978-075067571-0/50008-9