基于BP神经网络的GB-SAR大气改正模型
A GB-SAR Atmospheric Correction Model Based on BP Neural Network
DOI: 10.12677/GST.2018.64045, PDF,  被引量 下载: 1,211  浏览: 3,224  国家自然科学基金支持
作者: 郭旭东, 洪瑞凯, 涂晋升:西南交通大学测绘遥感信息系,四川 成都;张瑞:西南交通大学测绘遥感信息系,四川 成都;西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室,四川 成都
关键词: 地基SARBP神经网络大气改正滑坡监测GB-SAR BP Neural Network Atmospheric Correction Landslide Monitoring
摘要: 基于微波传感器成像的新型地基合成孔径雷达(GB-SAR)系统,对于地表形变的干涉测量精度达到亚毫米级,兼具遥感和地面测量途径的技术优势,在地质灾害调查及应急监测中的应用潜力巨大。因地基SAR系统的视场范围较大,监测区域内的水汽扰动对精度的影响较为显著,如何保证连续成像监测过程的精度,一直是该应用研究领域中的核心问题。针对现有地基SAR大气改正方法的局限与不足,本文提出基于BP神经网络大气改正模型,并以宝兴县硗碛水库边坡为典型研究区域,论证该模型的可靠性和可行性。实验结果表明,BP神经网络大气改正模型的使用,在温度和水汽变化较快的日间连续监测过程中取得了较好的应用效果,总体精度控制在±0.7 mm以内。同期对滑坡的监测分析亦揭示了滑坡点具体位置及发展态势,获得蠕变滑移速率接近8 mm/天,表明该滑坡对周边道路、建筑的安全性与稳定性已构成威胁。
Abstract: As a newly arising microwave sensor imaging system, ground-based synthetic aperture radar (GB-SAR) integrated the advantages of both remote sensing and ground measurement, and has great potential in geological disaster investigation and emergency monitoring. Because the GB-SAR system has a wide field of view, the water vapor disturbance in the local monitoring area may induce significant influence to the monitoring accuracy. How to ensure the precision of the continuous imaging monitoring process has always been the core issue in the application research field. To overcome the limitations and shortcomings of existing GB-SAR atmospheric correction methods, this paper proposed an atmospheric correction model based on BP neural network. For validation purpose, the landslide around Qiaoqi water reservoir in Baoxing County, Ya’an City, was selected as a typical study area to implement the experiment. The statistical analysis showed that the BP neural network atmospheric correction model has achieved good application results in continuous monitoring process by the situation of the rapid temperature and water vapor changes during the daytime. The overall precision is controlled within ±0.7 mm. In addition, the monitoring and analysis results of the landslide also revealed the specific location and development trend of the landslide point. It is worth noting that the creep slip rate is close to 8 mm/day, which indicated that the landslide poses a threat to the safety and stability of surrounding roads and buildings.
文章引用:郭旭东, 洪瑞凯, 涂晋升, 张瑞. 基于BP神经网络的GB-SAR大气改正模型[J]. 测绘科学技术, 2018, 6(4): 374-386. https://doi.org/10.12677/GST.2018.64045

参考文献

[1] 王锐. 地质灾害保险若干问题初探[J]. 农村经济与科技, 2013(2): 133-134.
[2] 中华人民共和国国土资源部官网[EB/OL]. http://www.mlr.gov.cn/zwgk/, 2017-4-25.
[3] 许波. 蠕动型滑坡变形失稳特征及滑动模型研究[D]: [博士学位论文]. 北京: 北京科技大学, 2017.
[4] 唐亚明, 张茂省, 薛强, 等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评, 2012(3): 533-541.
[5] 何杨. 高分遥感与InSAR技术在黄土滑坡识别和监测中的应用研究[D]: [硕士学位论文]. 西安: 长安大学, 2016.
[6] Luzi, G., Pieraccini, M., Mecatti, D., et al. (2007) Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry. IEEE Geoscience and Remote Sensing Letters, 4, 495-499.
https://doi.org/10.1109/LGRS.2007.898282
[7] Atzeni, C., Barla, M., Pieraccini, M., et al. (2015) Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based Synthetic Aperture Radar. Rock Mechanics and Rock Engineering, 48, 235-246.
https://doi.org/10.1007/s00603-014-0554-4
[8] 邢诚, 韩贤权, 周校, 王鹏. 地基合成孔径雷达大坝监测应用研究[J]. 长江科学院院报, 2014, 31(7): 128-134.
[9] 杨红磊, 彭军还, 崔洪曜. GB-InSAR监测大型露天矿边坡形变[J]. 地球物理学进展, 2012, 27(4): 1804-1811.
[10] Tarchi, D., Rudolf, H., Luzi, G., et al. (1999) SAR Interferometry for Structural Changes Detection: A Demonstration Test on a Dam. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS '99). IEEE, Hamburg, 1522-1524.
[11] Leva, D., Nico, G., Tarchi, D., Fortuny, J. and Sieber, A.J. (2003) Temporal Analysis of a Landslide by Means of a Ground-Based SAR Interferometer. IEEE Transactions on Geoscience and Remote Sensing, 41,745-752.
https://doi.org/10.1109/TGRS.2003.808902
[12] Bernardini, G., Ricci, P. and Coppi, F. (2007) A Ground Based Microwave Interferometer with Imaging Capabilities for Remote Measurements of Displacements. Proceedings of the 7th Geomatic Week.
[13] 刘斌, 葛大庆, 李曼, 等. 地基InSAR技术及其典型边坡监测应用[J]. 中国地质调查, 2018(1): 73-81.
[14] Monserrat Hernández, O. (2012) Deformation Measurement and Monitoring with Ground-Based SAR.
[15] 崔喜爱, 曾琪明, 童庆禧, 等. 重轨星载InSAR测量中的大气校正方法综述[J]. 遥感技术与应用, 2014(1): 9-17.
[16] 徐亚明, 王鹏, 周校, 等. 地基干涉雷达IBIS-S桥梁动态形变监测研究[J]. 武汉大学学报(信息科学版), 2013(7): 845-849.
[17] 华远峰, 李连友, 胡伍生, 等. 地面雷达静态微变形测量环境影响改正方法研究[J]. 东南大学学报(自然科学版), 2013(S2): 428-432.
[18] Lee, H., Lee, J., Cho, S., et al. (2008) An Experiment of GB-SAR Interperometric Measurement of Target Displacement and Atmospheric Correction. IEEE International Geoscience and Remote Sensing Symposium, 4, 240-243.
[19] Rödelsperger, S., Läufer, G., Gerstenecker, C., et al. (2010) Monitoring of Displacements with Ground-Based Microwave Interferometry: IBIS-S and IBIS-L. Journal of Applied Geodesy, 4, 41-54.
https://doi.org/10.1515/jag.2010.005
[20] Rödelsperger, S. (2011) Real-Time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements. Technische Universität Darmstadt, Fachbereich Bauingenieurwesen und Geodäsie.
[21] 刘国祥, 陈强, 罗小军, 等. 永久散射体雷达干涉理论与方法[M]. 科学出版社, 2012.
[22] 徐亚明, 周校, 王鹏, 等. 地基雷达干涉测量的环境改正方法研究[J]. 大地测量与地球动力学, 2013(3): 41-43.
[23] 高原, 张恒璟, 赵春江. 多项式曲面模型在GPS高程拟合中的应用[J]. 测绘科学, 2011, 36(3): 179-181.
[24] 张亨. 基于地基雷达的滑坡形变监测与分析[D]: [硕士学位论文]. 成都市: 西南交通大学, 2015.
[25] 张晨, 陈剑平, 肖云华. 基于神经网络对有限元强度折减法分析[J]. 吉林大学学报(地球科学版), 2009, 39(1): 114-118.
[26] 王彦平, 黄增树, 谭维贤, 孙进平, 乞耀龙. 地基SAR干涉相位滤波优化方法[J]. 信号处理, 2015, 31(11): 1504-1509.