褐藻胶裂合酶高产菌株的筛选及其发酵产酶条件优化
Screening of Alginate Lyase Synthase Producing Strain and Optimization of Its Fermentation Conditions
摘要: 通过系统的菌种选育方法,从样品的采集开始,到样品处理,目标菌驯化富集,再到高产菌株的初筛,复筛,最优菌株发酵产酶条件优化等步骤,最终从海洋藻类马尾藻中选育出1株酶活力很高的产褐藻胶裂合酶菌株,初步鉴定为一种革兰氏阳性细菌。该菌株在培养基配方为:褐藻酸钠0.8%,玉米浆干粉0.9%,硫酸铵0.3%,氯化钠3%,磷酸氢二钾0.2%,硫酸镁0.05%,余量为自来水,用氢氧化钠调节初始pH7.2,培养工艺为:150 ml三角瓶装液50 ml进行恒温振荡培养,培养温度全程控制在30℃,摇床转速设定在180 r/min的条件下,好氧发酵18~24 h酶活高达580 U/ml左右。另外通过实验鉴定该菌株所产的酶为胞外酶,具有非常好的研究应用价值。
Abstract: Through systematic method of strain selection, from sample collection to sample treatment, by target bacteria acclimatization and enrichment, then high-yield strain screening, re-screening, optimization of fermentation conditions for enzyme production of the optimal strain and other steps, finally, a strain with high alginic acid degradation enzyme activity was selected from marine algae. It was initially identified as Gram-positive bacteria. The strain was formulated in the medium as: Sodium alginate 0.8%, corn pulp 0.9%, ammonium sulfate 0.3%, sodium chloride 3%, potassium bisphosphate 0.2%, magnesium sulfate 0.05%. The rest is tap water. The initial pH 7.2 was adjusted with sodium hydroxide. The culture process is: 150 ml triangular bottle liquid 50 ml for constant temperature oscillation culture, the culture temperature is controlled at 30˚C, and the rocker speed is set at 180 r/min. The enzyme activity of aerobic fermentation after 18 - 24 h is up to 580 U/ml or so. In addition, the enzyme produced by the strain was experimentally identified as an extracellular enzyme. It has a very good research and application value.
文章引用:杨攀科, 严国富, 汤洁. 褐藻胶裂合酶高产菌株的筛选及其发酵产酶条件优化[J]. 微生物前沿, 2018, 7(3): 87-97. https://doi.org/10.12677/AMB.2018.73011

参考文献

[1] 宋凯, 于文功, 韩峰, 等. 海洋弧菌褐藻胶裂解酶的分离纯化及性质[J]. 生物化学与生物物理学报, 2003, 35(5): 473-477.
[2] 刘斌, 王长云, 张洪荣, 等. 海藻多糖褐藻胶生物活性及其应用研究新进展[J]. 中国海洋药物杂志, 2004, 23(6): 36-41.
[3] 杨钊, 范莹. 不同降解方法制备褐藻胶甘露糖醛酸寡糖的结构特点[J]. 中国生化药物杂志, 2007, 28(1): 69-71.
[4] 袁兆慧, 韩丽君, 林伟, 等. 褐藻酸降解酶的制备及其性质研究[J]. 海洋科学, 2005, 29(2): 78-80.
[5] 韩宝芹, 戴继勋, 王海. 海藻工具酶研究I. 褐藻酸降解菌的分离鉴定及其褐藻酸酶形成条件研究[J]. 海洋学报, 1997, 19(5): 97.
[6] 纪明候. 海藻化学[M]. 北京: 科学出版社, 1997: 54.
[7] 秦国奎, 张玉忠, 陈秀兰, 等. 海藻酸盐酶研究进展[J]. 中国生物工程杂志, 2004, 24(2): 26.
[8] 侯保兵, 刘书来, 张建友, 等. 褐藻胶裂解酶产生菌的发酵优化研究[J]. 水产科学, 2009, 28(11): 667-670.
[9] 刘玉佩, 汪立平, 赵勇, 等. 解淀粉芽孢杆菌产褐藻胶裂解酶的发酵条件优化[J]. 湖南农业科学, 2010, 5(23): 17-20.
[10] Baron, A.J., Wong, T.Y., Hicks, S.J., et al. (1994) Alginatelyase from Klebsiella Pneumniae, Subsp Aerogenes, Genecloning, Sequence Analysis and High Level Production in Escherichia coli. Gene, 143, 61.
https://doi.org/10.1016/0378-1119(94)90605-X
[11] Boyd, A., Ghosh, M., May, T.B., et al. (1993) Sequence of the algL Gene of Pesumonas aeruginosa and Purification of Its Alginate Lyase Product. Gene, 131, 1.
https://doi.org/10.1016/0378-1119(93)90662-M
[12] 项翔. 产褐藻酸酶菌株的筛选、发酵条件优化和酶学性质研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2006.
[13] 刘涛, 郭继强, 王运吉. 海藻酸裂解酶的发酵条件优化[J]. 大连轻工业学院学报, 2003(2): 139-141.
[14] Caswell, R.C., Gacesa, P., Lutrell, K.E., et al. (1989) Molecular Cloning and Heterologous Expression of a Klebsiella pneumoniae Gene Encoding Alginate Lyase. Gene, 75, 127.
https://doi.org/10.1016/0378-1119(89)90389-2
[15] 张绪, 赵琳, 钱龙, 等. 海藻酸分解菌研究进展[J]. 生命科学, 2011, 24(5): 475-482.
[16] 张宁宁. 褐藻酸降解菌株S3的筛选分离及培养条件和产酶能力[J]. 东北林业大学学报, 2010, 38(10): 106-108.
[17] 马悦欣, 纪涛, 李慧琼, 等. 假交替单胞菌LJ1菌株产褐藻胶裂解酶的培养条件优化及酶学性质[J]. 微生物学报, 2009, 49(8): 1086-1094.
[18] 李丽妍, 管华诗, 江晓路, 等. 海藻工具酶——褐藻胶裂解酶研究进展[J]. 生物工程学报, 2011, 27(6): 838-845.
[19] 蔡俊鹏, 程璐. 褐藻酸裂解酶及其裂解产物的研究进展[J]. 食品研究与开发, 2006, 27(11): 219-222.
[20] 刘妍, 李志勇. 具有多重酶活性的澳大利亚厚皮海绵共附生放线菌的研究[J]. 生物技术通报, 2006(5): 121-125.
[21] Weisburg, W.G., Barns, S.M., Pelletier, D.A., et al. (1991) 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.
https://doi.org/10.1128/jb.173.2.697-703.1991
[22] Cello, F.D., Bevivino, A., Chiarini, L., et al. (1997) Biodiversity of a Burkholderia cepacia Population Isolated from the Maize Rhizosphere at Different Plant Growth Stages. Applied and Environment Microbiology, 63, 4485-4493.
[23] Sawabe, T., Ohtsuka, M. and Ezura, Y. (1997) Novel Alginate Lyasesfrom Marine Bacterium Alteromonas sp. Strain H-4. Carbohydrate Research, 304, 69-76.
https://doi.org/10.1016/S0008-6215(97)00194-8
[24] Sim, S.J., Baik, K.S., Park, S.C., et al. (2011) Characterization of Alginatelyase Gene Using a Metagenomic Library Constructed from the Gut Microflora of Abalone. Journal of Industrial Microbiology and Biotechnology, 39, 585-593.
https://doi.org/10.1007/s10295-011-1054-0
[25] Li, L.Y., Jiang, X.L., Guan, H.S., et al. (2011) Three Alginate Lyases from Marine Bacterium Pseudomonas fluorescens HZJ216: Purification and Characterization. Applied Biochemistry and Biotechnology, 164, 305-317.
https://doi.org/10.1007/s12010-010-9136-4
[26] Hu, X., Jiang, X. and Hwang, H.M. (2006) Purification and Characterization of an Alginate Lyase from Marine Bacterium Vibrio sp. Mutant Strain 510-64. Current Microbiology, 53, 135-140.
https://doi.org/10.1007/s00284-005-0347-9
[27] Kim, D.E., Lee, E.Y. and Kim, H.S. (2009) Cloning and Characterization of Alginate Lyase from a Marine Bacterium Streptomyces sp. ALG-5. Marine Biotechnology, 11, 10-16.
[28] Zhang, Y.Q., Schumann, P., Li, W.J., et al. (2005) Isoptericola halotolerans sp. nov., a Novel Actinobacterium Isolatedfrom Saline Soil from Qinghai Province, North-West China. International Journal of Systematic and Evolutionary Microbiology, 55, 1867-1870.
[29] Stackebrandt, E., Schumann, P. and Cui, X.L. (2004) Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb, nov. International Journal of Systematic and Evoutionary Microbiology, 54, 685-688.
https://doi.org/10.1099/ijs.0.02878-0