光伏–蓄电池系统参与电网二次辅助调频研究
Research on Auxiliary Secondary Frequency Regulation of Power Grid Using Photovoltaic-Battery System
DOI: 10.12677/JEE.2018.61008, PDF, 下载: 1,554  浏览: 3,677 
作者: 范浩东, 肖朝霞:天津工业大学电工电能新技术天津市重点实验室,天津
关键词: 分布式发电多功能光伏–蓄电池二次辅助调频分层控制模式切换Distributed Generation Multi-Functional PV-Battery Auxiliary Secondary Frequency Regulation Hierarchical Control Mode Switch
摘要: 本文提出了一种利用多功能光伏–蓄电池发电系统参与电网二次辅助调频的新方案。该方案利用并网逆变器快速灵活的可控性,将光伏发电由间歇波动的不可调度电源转变为主动参与电网安全稳定运行的“好公民”,不仅有助于增强电网对分布式光伏的消纳能力,更能改善电网的电能质量。当电网频率异常时,综合考虑并网逆变器的额定容量、光照条件、蓄电池充放电状态等实际情况,分析光伏–蓄电池发电系统参与电网二次辅助调频的多种运行模式,提出了一种分层控制策略。
Abstract: A novel control strategy was proposed to participate in auxiliary second frequency regulation of the power grid by using the multi-functional Photovoltaic (PV)-battery system. The scheme can make the intermittent, fluctuating and non-dispatched PV to participate in grid security and sta-bility operation as “good citizens” actively based on the fast and flexible controllability of grid-connected inverter. That can enhance grid absorbability to PV power generation and the value of PV power generation. When the grid frequency is abnormal, multiple operation modes of the PV-battery generation systems participating in the auxiliary second frequency regulation were analyzed and a hierarchical control strategy was presented considering the rated capacity of grid-connected inverter, solar radiation conditions, battery charge and discharge status, etc.
文章引用:范浩东, 肖朝霞. 光伏–蓄电池系统参与电网二次辅助调频研究[J]. 电气工程, 2018, 6(1): 59-70. https://doi.org/10.12677/JEE.2018.61008

参考文献

[1] 任洛卿, 白泽洋, 于昌海, 等. 风光储联合发电系统有功控制策略研究及工程应用[J]. 电力系统自动化, 2014(7): 105-111.
[2] 杨水丽, 李建林, 李蓓, 等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源, 2013(2): 43-47.
[3] Taheri, H., Akhrif, O. and Okou, A.F. (2013) Contribution of PV Generators with Energy Storage to Grid Frequency and Voltage Regulation via Nonlinear Control Techniques. Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, 42, 10-13.
[4] 田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015(14): 3482-3494.
[5] Budenbender, K., Braun, M., Stetz, T., et al. (2011) Multifunktional PV Systems Offering Additional Functionalities and Improving Grid Integration. International Journal of Distributed Energy Resources, 7, 109-128.
[6] 吴文传, 张伯明, 孙宏斌. 电力系统调度自动化[M]. 北京: 清华大学出版社, 2011.
[7] 高翔. 现代电网频率控制应用技术[M]. 北京: 中国电力出版社, 2010.
[8] 黄际元, 李欣然, 黄继军, 等. 不同类型储能电源参与电网调频的效果比较研究[J]. 电工电能新技术, 2015(3): 49-53, 71.
[9] 丁冬, 杨水丽, 李建林, 等. 辅助火电机组参与电网调频的BESS容量配置[J]. 储能科学与技术, 2014(4): 302-307.
[10] 文学, 王坚. 南方电网调频模式现状及未来调频模式研究[J]. 电网技术, 2010(12): 119-123.
[11] 项顶, 宋永华, 胡泽春, 等. 电动汽车参与V2G的最优峰谷电价研究[J]. 中国电机工程学报, 2013(31): 15-25.
[12] 鲍谚, 贾利民, 姜久春, 等. 电动汽车移动储能辅助频率控制策略的研究[J]. 电工技术学报, 2015, 30(11): 115-126.
[13] 黄杨, 胡伟, 闵勇, 等. 计及风险备用的大规模风储联合系统广域协调调度[J]. 电力系统自动化, 2014, 38(9): 41-47.
[14] 孙春顺, 王耀南, 李欣然. 飞轮辅助的风力发电系统功率和频率综合控制[J]. 中国电机工程学报, 2008, 28(29): 111-116.
[15] Bhatt, R. and Chowdhury, B. (2011) Grid Frequency and Voltage Support using PV Systems with Energy Storage. North American Power Symposium, 1, 4-6.
https://doi.org/10.1109/NAPS.2011.6025112
[16] Shi, H., Zhuo, F., Yi, H., et al. (2015) A Novel Real-Time Voltage and Frequency Compensation Strategy for Photovoltaic-Based Microgrid. IEEE Transactions on Industrial Electronics, 62, 3545-3556.
[17] 郭力, 富晓鹏, 李霞林, 等. 独立交流微网中电池储能与柴油发电机的协调控制[J]. 中国电机工程学报, 2012, 32(25): 70-78.