镧离子对氧化铈晶体结构及光催化活性的影响
Effect of Lanthanum Ion on Crystal Structure and Photocatalytic Activity of Cerium Oxide
DOI: 10.12677/HJCET.2017.76039, PDF, HTML, XML, 下载: 1,744  浏览: 4,984  科研立项经费支持
作者: 陈 越, 张 力, 刘 铸, 邱克辉:成都理工大学,四川 成都
关键词: 氧化铈掺杂晶体结构光催化Lanthanum Cerium Oxide Doped Crystal StructurePhotocatalytic
摘要: 本文采用水热法制备了不同铈镧比例的稀土氧化物。通过X射线衍射(XRD),扫描电镜(SEM)、能谱仪(EDX)、紫外可见漫反射光谱仪(UV-vis)以及光催化降解亚甲基蓝实验等进行了分析表征。XRD表明所制备的镧掺杂的稀土氧化物均为立方萤石型结构的氧化铈,在80% La掺杂情况下,仍然具有较强的特征衍射峰。La的掺入使衍射峰向低角度偏移,半峰宽变宽;SEM表明,样品呈现类球形的纳米颗粒,且粒径随着镧含量的增加而减小,EDX证明所得产物纯度高,成分与实验设计一致。紫外可见漫反射光谱表明La3+的掺入使CeO2禁带宽度和紫外吸收强弱呈规律变化。亚甲基蓝光催化实验表明纯氧化铈样品的光降解率最大;而纯氧化镧因为禁带宽度大,只有吸附作用。
Abstract: Rare earth oxides with different cerium lanthanum ratios were prepared by hydrothermal me-thod. X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), UV-Vis diffuse reflectance spectroscopy (UV-vis) and photocatalytic degradation of methylene blue (PDMB) were used to characterize them. XRD results showed that the prepared samples show the ceria crystal structure of fluorite cubic structure. The incorporation of La makes the diffraction peak shift to the low angle, and reduces the grain size. SEM showed that the samples presented spherical nanoparticles, and the particle size decreased with the increase of lanthanum content. EDX analysis showed that the obtained product had high purity and the composition was consistent with the experimental design. The UV-visible diffuse reflectance spectra show that the incorporation of La3+ can change the CeO2 band gap and the UV absorption intensity regularly. PDMB also confirmed that the photocatalytic rate of pure cerium oxide samples was the highest, while the pure lanthanum oxide was only absorbable because of its largest band gap.
文章引用:陈越, 张力, 刘铸, 邱克辉. 镧离子对氧化铈晶体结构及光催化活性的影响[J]. 化学工程与技术, 2017, 7(6): 275-285. https://doi.org/10.12677/HJCET.2017.76039

参考文献

[1] Malleshappa, J., Nagabhushana, H. and Sharma, S.C. (2014) Self Propagating Combustion Synthesis and Luminescent Properties of Nanocrystalline CeO2:Tb3+, (1~10 mol%) Phosphors. Journal of Alloys & Compounds, 590, 131-139.
https://doi.org/10.1016/j.jallcom.2013.11.213
[2] Qian, J., Chen, Z. and Liu, C. (2014) Improved Visible-Light-Driven Photocatalytic Activity of CeO2, Microspheres Obtained by Using Lotus Flower Pollen as Biotemplate. Materials Science in Semiconductor Processing, 25, 27-33.
[3] Anupriya, K., Vivek, E. and Subramanian, B. (2014) Facile Synthesis of Ceria Nanoparticles by Precipitation Route for UV Blockers. Journal of Alloys & Compounds, 590, 406-410.
https://doi.org/10.1016/j.jallcom.2013.12.121
[4] 赵铭. 二氧化铈催化剂的制备及催化性能的研究[D]: [硕士学位论文]. 江苏: 南京理工大学, 2005.
[5] 杨晓丹, 于然波, 宝金荣. 两步法制备镧掺杂氧化铈纳米粉体[J]. 稀有金属材料与工程, 2009, 38(S2): 1067.
[6] 李树娜, 石奇, 李小军. 金属掺杂Ce-M (M= Fe, Ni和Cu)催化剂的CO低温氧化性能研究[J]. 燃料化学学报, 2017, 45(6): 707-713.
[7] Krishna, K., Bueno-López, A. and Makkee, M. (2007) Potential Rare Earth Modified CeO2 Catalysts for Soot Oxidation: I. Characterization and Catalytic Activity with O2. Applied Catalysis B: Environmental, 75, 189-200.
https://doi.org/10.1016/j.apcatb.2007.04.010
[8] Chavan, S.V., Sastry, P.U. and Tyagi, A.K. (2008) Fractal and Agglomeration Behavior in Gd and Sm Doped CeO2 Nano-Crystalline Powders. Journal of Alloys and Compounds, 457, 440-446.
https://doi.org/10.1016/j.jallcom.2007.02.140
[9] 贺素姣, 张予新, 张琳娜. 柠檬酸燃烧法制备钆掺杂氧化铈[J]. 盐业与化工, 2016(3): 24-27.
[10] Jaiswal, N., Upadhyay, S. and Kumar, D. (2013) Ionic Conductivity Investigation in Lanthanum (La) and Strontium (Sr) Co-Doped Ceria System. Journal of Power Sources, 222, 230-236.
https://doi.org/10.1016/j.jpowsour.2012.08.095
[11] Basu, J., Divakar, R., Winterstein, J.P. and Carter, C.B. (2010) Low-Temperature and Ambient-Pressure Synthesis and Shape Evolution of Nanocrystalline Pure, La-Doped and Gd-Doped CeO2. Applied Surface Science, 256, 3772-3777.
https://doi.org/10.1016/j.apsusc.2010.01.024
[12] Gómez, D.M., Gatica, J.M., Hernández-Garrido, J.C., et al. (2014) A Novel CoOx/La-Modified-CeO2 Formulation for Powdered and Washcoated onto Cordierite Honeycomb Catalysts with Application in VOCs Oxidation. Applied Catalysis B: Environmental, 144, 425-434.
https://doi.org/10.1016/j.apcatb.2013.07.045
[13] Gholipur, R. and Bahari, A. (2016) Electrical and Structure Properties for the Alloy System CexLa1−xOy Nanostructure Thin Films. Materials Research Bulletin, 74, 70-77.
https://doi.org/10.1016/j.materresbull.2015.10.015
[14] Pino, L., Vita, A., Laganà, M. and Recupero, V. (2014) Hydrogen from Biogas: Catalytic Tri-Reforming Process with Ni/La-Ce-O Mixed Oxides. Applied Catalysis B: Environmental, 148-149, 91-105.
https://doi.org/10.1016/j.apcatb.2013.10.043
[15] Bueno-López, A., Krishna, K., Makkee, M. and Moulijn, J.A. (2005) Enhanced Soot Oxidation by Lattice Oxygen via La3+-Doped CeO2. Journal of Catalysis, 230, 237-248.
https://doi.org/10.1016/j.jcat.2004.11.027
[16] Han, X., Yu, Y., He, H., et al. (2013) Oxidative Steam Reforming of Ethanol over Rh Catalyst Supported on Ce1−xLaxOy (x = 0.3) Solid Solution Prepared by Urea Co-Precipitation Method. Journal of Power Sources, 238, 57-64.
https://doi.org/10.1016/j.jpowsour.2013.03.032
[17] Rangaswamy, A., Sudarsanam, P. and Reddy, B.M. (2015) Rare Earth Metal Doped CeO2-Based Catalytic Materials for Diesel Soot Oxidation at Lower Temperatures. Journal of Rare Earths, 33, 1162-1169.
https://doi.org/10.1016/S1002-0721(14)60541-X
[18] Zhang, F.X., Tracy, C.L., Lang, M. and Ewing, R.C. (2016) Stability of Fluorite-Type La2Ce2O7 under Extreme Conditions. Journal of Alloys and Compounds, 674, 168-173.
https://doi.org/10.1016/j.jallcom.2016.03.002
[19] Gong, W., Zhang, R. and Chen, Z. (2011) Thermodynamic Modelling and Applications of Ce-La-O Phase Diagram. Transactions of Nonferrous Metals Society of China, 21, 2671-2676.
https://doi.org/10.1016/S1003-6326(11)61109-6
[20] 张国芳, 张羊换, 葛启录, 刘卓承, 张巍, 张胤. 纳米La3+-Eu3+共掺杂CeO2基固溶体的合成及微结构表征[J]. 稀土, 2013(05): 46-50.
[21] Wang, L., Huang, M., Li, B., et al. (2015) Enhanced Hydrothermal Stability and Oxygen Storage Capacity of La3+, Doped CeO2-γ-Al2O3, Intergrowth Mixed Oxides. Ceramics International, 41, 12988-12995.
https://doi.org/10.1016/j.ceramint.2015.06.142
[22] Hou, X., Xue, Y., Han, N., et al. (2016) Nanocrystalline Ce1− xLaxO2− δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing. Journal of Electronic Materials, 45, 2559-2562.
https://doi.org/10.1007/s11664-016-4417-5
[23] 马娟宁, 陈志刚, 张玉珠. 介孔Ce1−xLaxO2 复合氧化物的合成及其催化性能[J]. 机械工程材料, 2014, 38(7): 25-28.
[24] 姜银举, 安文虎. 氧化镧-氧化铈体系结构及性质研究[J]. 稀土, 34(6): 61-64.
[25] Chen, M.Y., Zu, X.T., Xiang, X. and Zhang, H.L. (2007) Effects of Ion Irradiation and Annealing on Optical and Structural Properties of CeO2 Films on Sapphire. Physica B: Condensed Matter, 389, 263-268.
[26] 桑园, 王雷妮, 罗婧婧, 等. 二氧化铈紫外吸收光谱蓝移机理研究进展[J]. 2011.
[27] Tsunekawa, S., Wang, J.T., Kawazoe, Y. and Kasuya, A. (2003) Blueshifts in the Ultraviolet Absorption Spectra of Cerium Oxide Nanocrystallites. Journal of Applied Physics, 94, 3654-3656.
https://doi.org/10.1063/1.1600520