一种光纤染料随机激光器
A Random Fiber Laser of Dye
DOI: 10.12677/MP.2017.75024, PDF, HTML, XML, 下载: 1,518  浏览: 3,966  国家自然科学基金支持
作者: 任 芝, 宋金建, 葛 坤, 郑 宁:华北电力大学数理学院,河北 保定
关键词: 罗丹明6G随机激光中心波长阈值半峰宽脉冲宽度Rhodamine 6G Random Laser Center Wavelength Threshold Full Width at Half Maximum Pulse Width
摘要: 本文将PMMA和罗丹明6G的氯仿溶液虹吸到0.5 mm内径的毛细管内,待溶剂挥发后,制备成一种光纤型随机激光器,研究了光纤型随机激光器在532 nm的泵浦光作用下发射出的随机激光,中心波长位于603 nm、阈值为350 mJ/cm2,半峰全宽为4.5 nm,及脉冲宽度为15 ns。本文提出了制备一种光纤型随机激光器的简易方法,并测量了该随机激光器的基本特性。
Abstract: In this paper, a fiber-type random laser was prepared after the volatilization process of the chlo-roform solution, combining PMMA with rhodamine 6G, which was siphoned into the capillary with the inner diameter of 0.5 mm. In addition, this paper also researched the random laser which is emitted from the fiber-type random laser, inspired by the pump light of 532 nm. The result shows that the center wavelength is 603 nm, threshold is 350 mJ/cm2, full width at half maximum (FWHM) is 4.5 nm and the pulse width is 15 ns involving in the random laser. A simple method for preparing a fiber-type random laser is presented and the basic parameters of the random laser are measured.
文章引用:任芝, 宋金建, 葛坤, 郑宁. 一种光纤染料随机激光器[J]. 现代物理, 2017, 7(5): 213-219. https://doi.org/10.12677/MP.2017.75024

参考文献

[1] Letokhov, V.S. (1968) Generation of Light by a Scattering Medium with Negative Resonance Absorption. Soviet Journal of Experimental & Theoretical Physics, 26, 835-840.
[2] Lawandy, N.M., Balachandran, R.M., Gomes, A.S.L., et al. (1994) Laser Action in Strongly Scattering Media. Nature, 368, 436-438.
https://doi.org/10.1038/368436a0
[3] Asatryan, A.A., Stone, A.D., Vanneste, C., et al. (2010) Modes of Random Lasers. Physics, 3, 88-127.
[4] Cao, H., Zhao, Y.G., Ho, S.T., et al. (1999) Random Laser Action in Semiconductor Powder. Physical Review Letters, 82, 2278-2281.
https://doi.org/10.1103/PhysRevLett.82.2278
[5] Horng, C.T., Ma, C.L., Lee, C.R., et al. (2015) Electrically and Thermally Controllable Nanoparticle Random Laser in a Well-Aligned Dye Doped Liquid Crystal Cell. Optical Materials Express, 5, 1469-1481.
https://doi.org/10.1364/OME.5.001469
[6] Cao, H., Redding, B. and Choma, M.A. (2014) Physics and Applications of Random Lasers. European Conference on Optical Communication, 1-2.
https://doi.org/10.1109/ECOC.2014.6964242
[7] Redding, B., Choma, M.A. and Cao, H. (2012) Speckle-Free Laser Imaging Using Random Laser Illumination. Nature Photonics, 6, 355-359.
https://doi.org/10.1038/nphoton.2012.90
[8] Polson, R.C. and Vardeny, Z.V. (2004) Random Lasing in Human Tissues. Applied Physics Letters, 85, 1289-1291.
https://doi.org/10.1063/1.1782259
[9] Yurlov, V., Lapchuk, A., Yun, S., et al. (2008) Speckle Suppression in Scanning Laser Display. Applied Optics, 47, 179-187.
https://doi.org/10.1364/AO.47.000179
[10] Wang, C. and Deng, L.G. (2014) Electrically Controlled Plasmonic Lasing Resonances with Silver Nanoparticles Embedded in Amplifying Nematic Liquid Crystals. Laser Physics Letters, 11, Article ID: 115814.
https://doi.org/10.1088/1612-2011/11/11/115814
[11] Molen, K.L.V.D., Tjerkstra, R.W., Mosk, A.P., et al. (2007) Spatial Extent of Random Laser Modes. Physical Review Letters, 98, Article ID: 143901.
https://doi.org/10.1103/PhysRevLett.98.143901
[12] Ye, L.H., Liu, B., Li, F.J., et al. (2016) The Influence of Ag Nanoparticles on Random Laser from Dye-Doped Nematic Liquid Crystals. Laser Physics Letters, 13, Article ID: 105001.
https://doi.org/10.1088/1612-2011/13/10/105001
[13] Huang, D.F., Xu, M., Liu, X.Y., et al. (2016) Low Threshold Random Lasing Actions in Natural Biological Membranes. Laser Physics Letters, 13, Article ID: 065603.
https://doi.org/10.1088/1612-2011/13/6/065603
[14] Liu, Y.J., Sun, X.W., Elim, H.I., et al. (2006) Gain Narrowing and Random Lasing from Dye-Doped Polymer Dispersed Liquid Crystals with Nano-Scale Liquid Crystal Droplets. Applied Physics Letters, 89, 3373.
[15] Shang, Z., Tao, Z. and Deng, L. (2017) Random Lasing Assisted by CuSO4 and Au Nanoparticles in Random Gain Systems. Optical Materials Express, 27, 1848-1857.
https://doi.org/10.1364/OME.7.001848
[16] Wiersma, D.S. and Cavalieri, S. (2001) Light Emission: A Temperature-Tunable Random Laser. Nature, 414, 708-709.
https://doi.org/10.1038/414708a
[17] Eldardiry, R.G.S. and Lagendijk, A. (2011) Tuning Random Lasers by Engineered Absorption. Applied Physics Letters, 98, 1819.
[18] Zhai, T.R., Chen, J., Chen, L., et al. (2015) A Plasmonic Random Laser Tunable through Stretching Silver Nanowires Embedded in a Flexible Substrate. Nanoscale, 7, 2235-2240.
https://doi.org/10.1039/C4NR06632D
[19] Li, S.T., Wang, L., Zhai, T.R., et al. (2015) Plasmonic Random Laser on the Fiber Facet. Optics Express, 23, 23985-23991.
https://doi.org/10.1364/OE.23.023985
[20] Turitsyn, S.K., Babin, S.A., Churkin, D.V., et al. (2014) Random Distributed Feedback Fibre Laser. Optics Express, 542, 133-193.
[21] De Matos, C.J.S., De, S.M.L., Britosilva, A.M., et al. (2007) Random Fiber Laser. Physical Review Letters, 99, Article ID: 153903.
https://doi.org/10.1103/PhysRevLett.99.153903
[22] Babin, S.A., El-Taher, A.E., Harper, P., et al. (2011) Tunable Random Fiber Laser. Physical Review A, 84, 4903-4911.
https://doi.org/10.1103/PhysRevA.84.021805
[23] Hu, Z., Zhang, Q., Miao, B., et al. (2012) Coherent Random Fiber Laser Based on Nanoparticles Scattering in the Extremely Weakly Scattering Regime. Physical Review Letters, 109, Article ID: 253901.
https://doi.org/10.1103/PhysRevLett.109.253901
[24] Shivakiran Bhaktha, B.N., Bachelard, N., Noblin, X., et al. (2012) Optofluidic Random Laser. Applied Physics Letters, 101, 151101-151114.
https://doi.org/10.1063/1.4757872
[25] Chen, S., Zhao, X., Wang, Y., et al. (2012) White Light Emission with Red-Green-Blue Lasing Action in a Disordered System of Nanoparticles. Applied Physics Letters, 101, Article ID: 091101.
https://doi.org/10.1063/1.4754286
[26] Shi, X., Wang, Y., Wang, Z., et al. (2014) Random Lasing with a High Quality Factor over the Whole Visible Range Based on Cascade Energy Transfer. Advanced Optical Materials, 2, 88-93.
https://doi.org/10.1002/adom.201300299
[27] Li, S., Zhai, T., Zhang, X., et al. (2017) Red-Green-Blue Plasmonic Random Laser. Optics Express, 25, 2100-2106.
https://doi.org/10.1364/OE.25.002100