基于粒子自旋的原子模型与实验分析
Atomic Model and Experimental Analysis Based on Particle Spin
DOI: 10.12677/MP.2017.74011, PDF, HTML, XML,  被引量 下载: 1,657  浏览: 3,113 
作者: 吴先金*:长江大学信息与数学学院,湖北 荆州
关键词: 粒子自旋原子模型基本电荷光子静止质量常数Particle Spin Atomic Model Basic Charge Photon Rest Mass Constant
摘要: 原子模型是原子物理学的基础。本文通过粒子自旋实验分析,论述了原子核与电子相互作用原理,提出了基于粒子自旋的原子模型。基于对普朗克常数和相关实验分析,阐述了原子核外层梯度能级、外层电子能量、基本电荷及电磁效应原理。基于光子(基本粒子)静止质量常数假设,论述了电子与光子的相互作用及光电效应原理。最后,论述了氢原子光谱与精细结构常数的联系。本文对原子模型一些基本问题的讨论,将对原子物理学的发展开拓新的思路,对原子物理学的应用展示广阔的前景。
Abstract: The atomic model is the foundation of atomic physics. In this paper, the principle of atomic nuc-leus interaction with electrons is discussed, and the atomic model based on particle spin is pro-posed by analysis of experimental particle spin. The nucleus outer gradient energy level, outer electron energy, basic charge and electromagnetic effect principle are described based on analysis of the Planck's constant and related experimental. The interaction between electron and photon and the principle of photoelectric effect are discussed based on the assumption of photon (elementary particle) rest mass constant. Finally, the relationship between hydrogen atom spectra and fine structure constants is discussed. This article discusses some basic problems of atomic model, will open up new ideas for the development of atomic physics, showing broad prospects for application of atomic physics.
文章引用:吴先金. 基于粒子自旋的原子模型与实验分析[J]. 现代物理, 2017, 7(4): 94-105. https://doi.org/10.12677/MP.2017.74011

参考文献

[1] Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V. and Shih, Y.H. (1995) New High Intensity Source of Polarization Entangled Photon Pairs. Physical Review Letters, 75, 4337-4341.
https://doi.org/10.1103/PhysRevLett.75.4337
[2] Hall, E.H. (1897) On a New Action of the Magnet on Electric Currents. American Journal of Mathematics, 2, 3.
[3] Hall, E.H. (1880) On the New Action of Magnetism on a Permanent Electric Current. Philosophical Magazine, 10, 301.
https://doi.org/10.1080/14786448008626936
[4] Klitzing, K.V., Dorda, G. and Pepper, M. (1980) New Method for High-Accuracy Determination of the Fin×10-Struc- ture Constant Based Quantized Hall Resistance. Physical Review Letters, 45, 494.
https://doi.org/10.1103/PhysRevLett.45.494
[5] Murakami, S., Nagaosa, N. and Zhang, S.C. (2003) Dissipa-tionless Quantum Spin Current at Room Temperature. Science, 301, 1348-1351.
https://doi.org/10.1126/science.1087128
[6] Sinova, J., Culcer, D., Niu, Q., et al. (2004) Universal Intrinsic Spin Hall Effect. Physical Review Letters, 92, 126603.
https://doi.org/10.1103/PhysRevLett.92.126603
[7] Chang, C.Z., Zhang, J.S. and Feng, X. (2013) Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science, 340, 167.
https://doi.org/10.1126/science.1234414
[8] Mott, N.F. and Jones, H. (1936) The Theory of the Properties of Metals and Alloys. Oxford University Press, Oxford.
[9] Baibieh, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A. and Chazelas, J. (1988) Giant Magneto Resistance of (001)Fe/(001)Cr Magnetic Super Lattices. Physical Review Letters, 61, 2472.
[10] Binasch, G., Grünberg, P., Saurenbach, F. and Zinn, W. (1989) Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interflayer Exchange. Physical Review B, 39, 4828.
https://doi.org/10.1103/PhysRevB.39.4828
[11] Planck, M. (1901) On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 4, 553.
https://doi.org/10.1002/andp.19013090310
[12] Mohr, P.J., Taylor, B.N. and Newell, D.B. (2012) CODATA Recommended Values of the Fundamental Physical Constants: 2010. Reviews of Modern Physics, 84, 1586.
[13] 吴先金. 普朗克常数与光子静止质量常数统一实验分析[J]. 现代物理, 2016, 6(6): 183-193. https://image.hanspub.org/pdf/MP20160600000_45285564.pdf
[14] Millikan, R.A. (1913) On the Elementary Electrical Charge and the Avogadro Constant. Physical Review, 2, 109-143. http://authors.library.caltech.edu/6438/1/MILpr13b.pdf
https://doi.org/10.1103/PhysRev.2.109
[15] Millikan, R.A. (1916) A Direct Photoelectric Determination of Planck’s “H”. Physical Review, 7, 355-388.
https://doi.org/10.1103/PhysRev.7.355
[16] Haurs,S.E., Field, J.E. and Kasapi, A. (1992) Dispersive Properties of Electromagnetically Induced Transparency. Physical Review, 46, 29.
https://doi.org/10.1103/PhysRevA.46.R29
[17] Hau, L.V., Haurs, S.E., Dutton, Z. and ßehroozi, C.H. (1999) Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas. Nature, 397, 594.
https://doi.org/10.1038/17561
[18] Haurs, S.E. and Hau, L.V. (1999) Nonlinear Optics at Low Light Levels. Physical Review Letters, 82, 4611.
https://doi.org/10.1103/PhysRevLett.82.4611
[19] Fleisehhauer, M. and Lukin, M.D. (2000) Dark-State Polaritons in Electromagnetically Induced Transparency. Physical Review Letters, 84, 5094.
https://doi.org/10.1103/PhysRevLett.84.5094
[20] Herzberg, G. (2007) Atomic Spectra and Atomic Structure. Prentice-Hall, Upper Saddle River, New Jersey.