不同载体对Fe/Al2O3催化剂CO加氢性能的影响
Effect of Various Al2O3 Supports on CO Hydrogenation Performance over Supported Iron Catalysts
DOI: 10.12677/HJCET.2017.73017, PDF, HTML, XML, 下载: 1,973  浏览: 4,196 
作者: 刘治华, 周洪义:中国能源工程集团有限公司,北京;余长春, 李然家, 徐春明:中国石油大学(北京),北京
关键词: 低碳烯烃铁基催化剂Al2O3载体CO加氢性能Light Olefins Supported Iron Catalysts Al2O3 Supports CO Hydrogenation Performance
摘要: 选用不同Al2O3载体,采用浸渍法制备负载型铁基催化剂,利用N2-物理吸附(BET)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、CO/CO2程序升温脱附(CO/CO2-TPD)对催化剂进行表征,在空速为1000 h−1、反应温度为320℃、反应压力为2 MPa条件下,考察了不同Al2O3载体对铁基催化剂CO加氢性能的影响。结果表明:比表面积大的催化剂有利于活性组分的分散,提高了催化剂的反应活性。表面碱度高的催化剂,有利于提高CO解离吸附,提高CO的转化率和低碳烯烃的选择性。
Abstract: A series of Fe-based catalysts with different Al2O3 supports were prepared by slurry-impregnation method, characterized by BET, XRD, H2-TPD and CO/CO2-TPD, and tested under the conditions of T = 320˚C, P = 20 bar, GHSV= 1000 h−1. The results indicated that high surface area of catalysts had high dispersion, leading to high catalytic activity for CO hydrogenation performance. The high ca- talyst basicity enhanced CO adsorption and dissociation, accordingly, increased the catalytic acti- vity of the catalyst and the selectivity of light alkenes.
文章引用:刘治华, 周洪义, 余长春, 李然家, 徐春明. 不同载体对Fe/Al2O3催化剂CO加氢性能的影响[J]. 化学工程与技术, 2017, 7(3): 108-117. https://doi.org/10.12677/HJCET.2017.73017

参考文献

[1] Lei, Y. (2007) The Progress and Trend of World Propylene and Its Derivatives. Petroleum & Petrochemical, 15, 38- 44.
[2] Olah, G.A., Goeppert, A. and Prakash, G.K.S. (2006) Beyond Oil and Gas: The Methanol Economy. Wiley VCH, Weinheim, Germany, 27.
[3] Plotkin, J.S. (2005) The Changing Dynamics of Olefin Supply/Demand. Catalysis Today, 106, 10-14.
[4] Chang, C.D. (1984) Methanol Conversion to Light Olefins. Catalysis Reviews, 26, 323-345.
https://doi.org/10.1080/01614948408064716
[5] Chen, J.Q., Bozzano, A., Glover, B., Fuglerud, T. and Kvisle, S. (2005) Recent Advancements in Ethylene and Propylene Production Using the UOP/Hydro MTO Process. Catalysis Today, 106, 103-107.
[6] Rao, V.U.S. and Gormley, R.J. (1980) Make Olefins from Syngas. Hydrocarbon Processing, 139-142.
[7] 徐龙伢, 陈国权, 蔡光宇, 等. 合成气直接合成低碳烯烃概述[J]. 天然气化工, 1990(2): 46-51.
[8] Wang, G., Zhang, K., Liu, P., Hui, H. and Tan, Y. (2013) Synthesis of Light Olefins from Syngas over Fe-Mn-V-K Catalysts in the Slurry Phase. Journal of Industrial and Engineering Chemistry, 19, 961-965.
[9] Xu, J.-D., Zhu, K.-T., Weng, X.-F., Weng, W.-Z., Huang, C.-J. and Wan, H.-L. (2013) Carbon Nanotube-Supported Fe-Mn Nanoparticles: A Model Catalyst for Direct Conversion of Syngas to Lower Olefins. Catalysis Today, 215, 86-94.
[10] Galvis, H.M.T., Koeken, A.C.J., Bitter, J.H., Davidian, T., Ruitenbeek, M., Dugulan, A.I. and de Jong, K.P. (2013) Effect of Precursor on the Catalytic Performance of Supported Iron Catalysts for the Fischer-Tropsch Synthesis of Lower Olefins. Catalysis Today, 215, 95-102.
[11] Galvis, H.M.T., Bitter, H.H., Khare, C.B., et al. (2012) Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science, 335, 835-838.
https://doi.org/10.1126/science.1215614
[12] Galvis, H.M.T., Koeken, A.C.J., Bitter, J.H. and Davidian, T. (2013) Effects of Sodium and Sulfur on Catalytic Performance of Supported Iron Catalysts for the Fischer-Tropsch Synthesis of Lower Olefins. Journal of Catalysis, 303, 22-30.
[13] 王熙庭. 我国开发出合成气直接制烯烃新型催化剂[J]. 天然气化工, 2016, 41(5): 14.
[14] Jiao, F., Li, J., Pan, X., Bao, X., et al. (2016) Selective Conversion of Syngas to Light Olefins. Science, 351, 1065- 1068.
https://doi.org/10.1126/science.aaf1835
[15] 陈丰秋, 等. 核壳结构催化剂及由合成气一步法制取低碳烯烃的方法[P]. 中国专利, 103071528. 2013-05-01.
[16] Raupp, G.B. and Delgass, W.N. (1979) Mössbauer Investigation of Supported Fe Catalysts: III. In Situ Kinetics and Spectroscopy during Fischer-Tropsch Synthesis. Journal of Catalysis, 58, 361-369.
[17] Niemantsverdriet, J.W., Van der Kraan, A.M., Van Dijk, W.L. and Van der Baan, H.S. (1980) Behavior of Metallic Iron Catalysts during Fischer-Tropsch Synthesis Studied with Moessbauer Spectroscopy, X-Ray Diffraction, Carbon Content Determination, and Reaction Kinetic Measurements. The Journal of Physical Chemistry, 84, 3363-3370.
https://doi.org/10.1021/j100462a011