水通道蛋白在肾脏纤维化中作用研究进展
The Role of Aquaporins in Renal Fibrosis
DOI: 10.12677/PI.2017.62010, PDF, HTML, XML, 下载: 1,728  浏览: 4,022  国家自然科学基金支持
作者: 张旻澄, 李 霁, 于 锋*:中国药科大学基础医学与临床药学学院临床药学教研室,江苏 南京
关键词: 肾脏纤维化上皮间充质转分化水通道蛋白Renal Fibrosis Epithelial Mesenchymal Transition Aquaporin
摘要: 肾脏纤维化是多种慢性肾病发展到一定阶段常见的病理改变,是一种进行性的几乎不可能的损伤过程,最终会引发肾脏功能损伤并引发肾衰竭。上皮间充质转分化(EMT)是一种在病理状态下上皮细胞改变表型,细胞间粘附因子表达减少,成纤维特征性细胞因子表达增加,细胞逐渐向成纤维细胞转变的进程。EMT过程在肾间质纤维化中起到重要调控作用。水通道蛋白是肾脏中高度表达的负责水分转运的膜蛋白,当肾脏纤维化发生时,水通道蛋白的表达将发生变化,对肾脏疾病的发生与调控起到重要作用。本文综述了多种水通道蛋白在肾脏纤维化疾病中的作用及机制,并对水通道蛋白作为潜在靶点调控纤维化中的EMT过程进行了一定展望。
Abstract: Renal fibrosis is a common pathological characteristic that usually appears during the process of chronic kidney diseases (CKD), which is a kind of progressive damage and almost irreversible. Renal fibrosis induces kidney dysfunction and finally causes renal failure. Epithelial Mesenchymal Transition (EMT) is a pathological process that the epithelial cells lose their original characteristic and express the feature of fibroblast. Renal epithelial mesenchymal transition plays a critical role in renal fibrosis and regulates the process of renal fibrosis. Aquaporin (AQP) is a kind of water channel protein that highly expressed in kidney, which is involved in water transport and the formation of osmotic pressure in kidney. The expression of AQPs changes when renal fibrosis occurs. Many renal diseases cause imbalance of water transport, so AQPs in kidney may take part in the regulation of various renal diseases, especially renal fibrosis. This article reviews the function and mechanism between various kinds of AQPs and renal fibrosis. At last, we make an outlook on AQPs as the potential target of the EMT process in renal fibrosis.
文章引用:张旻澄, 李霁, 于锋. 水通道蛋白在肾脏纤维化中作用研究进展[J]. 药物资讯, 2017, 6(2): 55-61. https://doi.org/10.12677/PI.2017.62010

参考文献

[1] Owen, W.F. (2003) Patterns of Care for Patients with Chronic Kidney Disease in the United States: Dying for Improvement. Journal of the American Society of Nephrology, 14, S76-S80.
https://doi.org/10.1097/01.ASN.0000070145.00225.EC
[2] O’Donnell, M.P. (2000) Renal Tubulointerstitial Fibrosis. New Thoughts on Its Development and Progression. Postgraduate Medicine, 108, 159-172.
https://doi.org/10.3810/pgm.2000.07.1155
[3] Wang, S. and Hirschberg, R. (2004) Bone Morphogenetic Protein-7 Signals Opposing Transforming Growth Factor in Mesangial Cells. Journal of Biological Chemistry, 279, 23200-23206.
https://doi.org/10.1074/jbc.M311998200
[4] Vilayur, E. and Harris, D.C. (2009) Emerging Therapies for Chronic Kidney Disease: What Is Their Role? Nature Reviews Nephrology, 5, 375-383.
https://doi.org/10.1038/nrneph.2009.76
[5] Liu, Y. (2004) Epithelial to Mesenchymal Transition in Renal Fibrogenesis: Pathologic Significance, Molecular Mechanism, and Therapeutic Intervention. Journal of the American Society of Nephrology, 15, 1-12.
https://doi.org/10.1097/01.ASN.0000106015.29070.E7
[6] Eddy, A.A. (2000) Molecular Basis of Renal Fibrosis. Pediatric Nephrology, 15, 290-301.
https://doi.org/10.1007/s004670000461
[7] Verkman, A.S., Anderson, M.O. and Papadopoulos, M.C. (2014) Aquaporins: Important but Elusive Drug Targets. Nature Reviews Drug Discovery, 13, 259-277.
https://doi.org/10.1038/nrd4226
[8] Papadopoulos, M.C., Saadoun, S. and Verkman, A.S. (2008) Aquaporins and Cell Migration. Pflügers Archiv: European Journal of Physiology, 456, 693-700.
https://doi.org/10.1007/s00424-007-0357-5
[9] Eddy, A.A. (1996) Molecular Insights into Renal Interstitial Fibrosis. Journal of the American Society of Nephrology, 7, 2495-2508.
[10] 周凌, 刘必成. 肾小管上皮细胞间充质转分化分子机制的研究进展[J]. 东南大学学报医学版, 2008, 27(4): 312- 315.
[11] Medici, D. and Kalluri, R. (2012) Endothelial-Mesenchymal Transition and Its Contribution to the Emergence of Stem Cell Phenotype. Seminars in Cancer Biology, 22, 379-384.
https://doi.org/10.1016/j.semcancer.2012.04.004
[12] Gonzalez, D.M. and Medici, D. (2014) Signaling Mechanisms of the Epithelial-Mesenchymal Transition. Science Signaling, 7, re8.
https://doi.org/10.1126/scisignal.2005189
[13] Strutz, F.M. (2009) EMT and Proteinuria as Progression Factors. Kidney International, 75, 475-481.
https://doi.org/10.1038/ki.2008.425
[14] Yang, J. and Liu, Y. (2001) Dissection of Key Events in Tubular Epithelial to Myofibroblast Transition and Its Implications in Renal Interstitial Fibrosis. The American Journal of Pathology, 159, 1465-1475.
https://doi.org/10.1016/S0002-9440(10)62533-3
[15] Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196.
https://doi.org/10.1038/nrm3758
[16] Kalluri, R. and Weinberg, R.A. (2009) The Basics of Epithelial-Mesenchymal Transition. Journal of Clinical Investigation, 119, 1420-1428.
https://doi.org/10.1172/JCI39104
[17] Al Moustafa, A.E., Achkhar, A. and Yasmeen, A. (2012) EGF-Receptor Signaling and Epithelial-Mesenchymal Transition in Human Carcinomas. Frontiers in Bioscience, S4, 671-684.
https://doi.org/10.2741/s292
[18] Mccormack, N. and O’Dea, S. (2013) Regulation of Epithelial to Mesenchymal Transition by Bone Morphogenetic Proteins. Cellular Signalling, 25, 2856-2862.
[19] Thiery, J.P., et al. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890.
https://doi.org/10.1016/j.cell.2009.11.007
[20] Agre, P., et al. (1993) Aquaporin CHIP: The Archetypal Molecular Water Channel. American Journal of Physiology, 265, F463.
[21] Agre, P., Sasaki, S. and Chrispeels, M.J. (1993) Aquaporins: A Family of Water Channel Proteins. American Journal of Physiology, 265, F461.
[22] Jung, J.S., et al. (1994) Molecular Structure of the Water Channel through Aquaporin CHIP. The Hourglass Model. Journal of Biological Chemistry, 269, 14648-14654.
[23] Nielsen, S., et al. (2002) Aquaporins in the Kidney: From Molecules to Medicine. Physiological Reviews, 82, 205-244.
https://doi.org/10.1152/physrev.00024.2001
[24] Verbavatz, J.M., et al. (1993) Tetrameric Assembly of CHIP28 Water Channels in Liposomes and Cell Membranes: A Freeze-Fracture Study. Journal of Cell Biology, 123, 605-618.
https://doi.org/10.1083/jcb.123.3.605
[25] Verkman, A.S., et al. (1996) Water Transport across Mammalian Cell Membranes. American Journal of Physiology, 270, C12-C30.
[26] Noda, Y., et al. (2010) Aquaporins in Kidney Pathophysiology. Nature Reviews Nephrology, 6, 168-178.
https://doi.org/10.1038/nrneph.2009.231
[27] Nielsen, S., et al. (1993) CHIP28 Water Channels Are Localized in Constitutively Water-Permeable Segments of the Nephron. Journal of Cell Biology, 120, 371-383.
https://doi.org/10.1083/jcb.120.2.371
[28] Nielsen, S., et al. (1995) Aquaporin-1 Water Channels in Short and Long Loop Descending Thin Limbs and in Descending Vasa Recta in Rat Kidney. American Journal of Physiology, 268, 1023-1037.
[29] Chou, C.L. and Knepper, M.A. (1992) In Vitro Perfusion of Chinchilla Thin Limb Segments: Segmentation and Osmotic Water Permeability. American Journal of Physiology, 263, 417-426.
[30] Lovisa, S. (2015) Epithelial-to-Mesenchymal Transition Induces Cell Cycle Arrest and Parenchymal Damage in Renal Fibrosis. Nature Medicine, 21, 998-1009.
https://doi.org/10.1038/nm.3902
[31] Nakasatomi, M., et al. (2015) Novel Approach for the Detection of Tubular Cell Migration into the Interstitium during Renal Fibrosis in Rats. Fibrogenesis & Tissue Repair, 8, 12.
https://doi.org/10.1186/s13069-015-0030-0
[32] Shimada, M., et al. (2009) Cell Division and Phenotypic Regression of Proximal Tubular Cells in Response to Uranyl Acetate Insult in Rats. Nephrology Dialysis Transplantation, 24, 2686-2692.
https://doi.org/10.1093/ndt/gfp199
[33] Nielsen, S., et al. (1993) Cellular and Subcellular Immunolocalization of Vasopres-sin-Regulated Water Channel in Rat Kidney. Proceedings of the National Academy of Science of the United States of America, 90, 11663-11667.
https://doi.org/10.1073/pnas.90.24.11663
[34] Wade, J.B., Stetson, D.L. and Lewis, S.A. (1981) ADH Action: Evidence for a Membrane Shuttle Mechanism. Annals of the New York Academy of Sciences, 372, 106-117.
https://doi.org/10.1111/j.1749-6632.1981.tb15464.x
[35] Danilovic, A., et al. (2012) Atorvastatin Prevents the Downregulation of Aquaporin-2 Receptor after Bilateral Ureteral Obstruction and Protects Renal Function in a Rat Model. Urology, 80, 485.e15-485.e20.
https://doi.org/10.1016/j.urology.2012.02.021
[36] Wang, W., et al. (2015) Aliskiren Restores Renal AQP2 Expression during Unilateral Ureteral Obstruction by Inhibiting the Inflammasome. American Journal of Physiology Renal Physiology, 308, F910-F922.
https://doi.org/10.1152/ajprenal.00649.2014
[37] Tamma, G., et al. (2014) A Protein Kinase A-Independent Pathway Controlling Aquaporin 2 Trafficking as a Possible Cause for the Syndrome of Inappropriate Antidiuresis Associated with Polycystic Kidney Disease 1 Haploinsufficiency. Journal of the American Society of Nephrology, 25, 2241-2253.
https://doi.org/10.1681/ASN.2013111234
[38] Ecelbarger, C.A., et al. (1995) Aquaporin-3 Water Channel Localization and Regulation in Rat Kidney. American Journal of Physiology, 269, 663-672.
[39] Terris, J., et al. (1995) Distribution of Aquaporin-4 Water Channel Expression within Rat Kidney. American Journal of Physiology, 269, F775-F785.
[40] Ma, T., et al. (2000) Nephrogenic Diabetes Insipidus in Mice Lacking Aquaporin-3 Water Channels. Proceedings of the National Academy of Science of the United States of America, 97, 4386-4391.
https://doi.org/10.1073/pnas.080499597
[41] Ma, T., et al. (2011) Generation and Phenotype of a Transgenic Knockout Mouse Lacking the Mercurial-Insensitive Water Channel Aquaporin-4. Journal of Clinical Investigation, 100, 957-962.
[42] Bedford, J.J., Leader, J.P. and Walker, R.J. (2003) Aquaporin Expression in Normal Human Kidney and in Renal Disease. Journal of the American Society of Nephrology, 14, 2581-2587.
https://doi.org/10.1097/01.ASN.0000089566.28106.F6
[43] 李真珍, 等. 轻度肾积水儿童肾脏水通道蛋白2、3和4的表达[J]. 中华实用儿科临床杂志, 2007, 22(22): 1751- 1752.
[44] Yasui, M., et al. (1999) Aquaporin-6: An Intracellular Vesicle Water Channel Protein in Renal Epithelia. Proceedings of the National Academy of Science of the United States of America, 96, 5808-5813.
https://doi.org/10.1073/pnas.96.10.5808
[45] Qian, H., et al. (2008) Bone Marrow Mesenchymal Stem Cells Ameliorate Rat Acute Renal Failure by Differentiation into Renal Tubular Epithelial-Like Cells. International Journal of Molecular Medicine, 22, 325-332.
[46] Park, S.H., et al. (2007) Erythropoietin Decreases Renal Fibrosis in Mice with Ureteral Obstruction: Role of Inhibiting TGF-Beta-Induced Epithelial-to-Mesenchymal Transition. Journal of the American Society of Nephrology, 18, 1497- 1507.
https://doi.org/10.1681/ASN.2005080866
[47] Zeisberg, M. (2006) Bone Morphogenic Protein-7 and the Kidney: Current Concepts and Open Questions. Nephrology Dialysis Transplantation, 21, 568-573.
https://doi.org/10.1093/ndt/gfk010