化学共沉淀法制备镍钴铝酸锂(NCA)正极材料及其性能研究
Preparation and Properties of NCA Cathode Materials by Chemical Co-Precipitation Method
DOI: 10.12677/AMC.2017.52006, PDF, HTML, 下载: 2,485  浏览: 5,627 
作者: 李 荐*, 周宏明:中南大学材料科学与工程学院, 湖南 长沙;中南大学有色金属科学与工程教育部重点实验室, 湖南 长沙;湖南省正源储能材料与器件研究所, 湖南 长沙;刘忠忠, 陈宝荣:中南大学材料科学与工程学院, 湖南 长沙
关键词: NCA正极材料共沉淀法锂离子电池NCA Cathode Material Co-Precipitation Method Lithium Battery
摘要: 本文以碳酸锂、硝酸铝、硝酸镍、硝酸钴为主要原料,用共沉淀法制备碳酸镍钴铝与碳酸锂的混合物,然后将混合物在管式炉中550℃预烧4h,750℃烧结15h得到镍钴铝酸锂,并对镍钴铝酸锂进行SEM、XRD性能表征及电化学性能测试。1C的首次放电比容量约为180 mAh/g,循环50次后仍有165 mAh/g,具有良好的循环性能和倍率性能。
Abstract: In this article, Li2CO3, Ni(NO3)2, CO(NO3)2, Al(NO3)2 were used as the raw materials to synthesize the mixture of nickel cobalt aluminum carbonate and lithium carbonate via co-precipitation method, then the mixture were presintered 4 hours at 550˚C and sintered 15 hours at 750˚C in the tube furnace to obtain cathode material NCA. XRD, SEM of this material were investigated as well as its electrochemical properties. The first discharge capacity of the material was about 180 mAh/g at 1C, and still kept at 165 mAh/g after 50 circulations, which showed good cycle perfor-mance and rate performance.
文章引用:李荐, 刘忠忠, 周宏明, 陈宝荣. 化学共沉淀法制备镍钴铝酸锂(NCA)正极材料及其性能研究[J]. 材料化学前沿, 2017, 5(2): 46-51. https://doi.org/10.12677/AMC.2017.52006

参考文献

[1] Liu, H., Yang, Y., Zhang, Z., et al. (2001) New Progress in Studies of Lithium Nickel Oxide as Positive Electrode Materials of Lithium Ion Batteries. Electrochemistry, 7, 145-154.
[2] Tang, Z., Li, J., Xue, J., et al. (2001) On the Synthesis and Modification of LiNiO2. Battery Bi-Monthly, 31, 10-13.
[3] Cho, J. and Park, B. (2001) Preparation and Electrochemical/Thermal Properties of LiNi0. 74Co0. 26O2 Cathode Material. Journal of Power Sources, 92, 35-39.
https://doi.org/10.1016/S0378-7753(00)00499-7
[4] Ohzuku, T., Nakura, K. and Aoki, T. (1999) Comparative Study of Solid-State Redox Reactions of LiCo1/4Ni3/4O2 and LiAl1/4NiO2 for Lithium-Ion Batteries. Electrochimica Acta, 45, 151-160.
https://doi.org/10.1016/S0013-4686(99)00200-5
[5] Ohzuku, T., Yanagawa, T., Kouguchi, M., et al. (1997) Innovative Insertion Material of LiAl1/4Ni3/4O2, (R-m) for Lithium-Ion (Shuttlecock) Batteries. Journal of Power Sources, 68, 131-134.
https://doi.org/10.1016/S0378-7753(97)02516-0
[6] Li, X., Qiu, W., Lin, C., et al. (2000) Studies of the LiAlyNi1-yO2 as Cathode Materials. Electrochemistry, 6, 357-362.
[7] Madhavi, S., Subba Rao, G.V., Chowdari, B.V.R., et al. (2001) Effect of Aluminum Doping on Cathodic Behaviour of LiNi0.7Co0.3O2. Journal of Power Sources, 93, 156-162.
https://doi.org/10.1016/S0378-7753(00)00559-0
[8] Madhavi, S., Rao, G.V.S., Chowdari, B.V.R., et al. (2002) Cathodic Properties of (Al, Mg) Co-Doped LiNi0.7Co0.3O2. Solid State Ionics, 152-153, 199-205.
[9] Delmas, C., Prado, G., Rougier, A., et al. (2000) Effect of Iron on the Electrochemical Behaviour of Lithium Nickelate: From LiNiO2 to 2D-LiFeO2. Solid State Ionics, 135, 71-79.
https://doi.org/10.1016/S0167-2738(00)00333-7
[10] Ven, A.V.D., Aydinol, M.K., Ceder, G., et al. (1998) First-Principles Investigation of Phase Stability in LixCoO2. Physical Review B, 58, 2975-2987.
https://doi.org/10.1103/PhysRevB.58.2975
[11] Ohzuku, T., Ueda, A. and Nagayama, M. (1993) Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of The Electrochemical Society, 140, 1862-1870.
https://doi.org/10.1149/1.2220730
[12] Reimers, J.N., Rossen, E., Jones, C.D., et al. (1993) Structure and Electrochemistry of LixFeyNi1-yO2. Solid State Ionics, 61, 335-344.
https://doi.org/10.1016/0167-2738(93)90401-N